Part A Numerical Analysis, Hilary 2018. Problem Sheet 6

Note: some questions are marked optional; its up to you and your tutor if you submit these.

- **1.** (Optional.) Verify that $\max_{x \in [a,b]} |f(x)|$ defines a norm on C[a,b].
- **2.** For each of the following, say if it defines a norm on $C^{1}[a, b]$ (the vector space of continuously differentiable functions on [a, b]), and if not, why not:
 - (i) $\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right|$
 - (ii) $\max_{x \in [a,b]} |f(x) + f'(x)|$
 - (iii) $\max_{x \in [a,b]} [f(x)]^2$ (iv) $\max_{x \in [a,b]} \{|f(x)| + |f(x)| \} = \|f(x)\|_{\infty}$
 - (iv) $\max_{x \in [a,b]} \left\{ |f(x)| + |f'(x)| \right\}$
- **3.** (Optional.) For vectors $v = (v_1, v_2, \dots, v_n)^T \in \mathbb{R}^n$ verify that (i) $||v||_{\infty} = \max_{1 \le i \le n} |v_i|$ and (ii) $||v||_1 = \sum_{i=1}^n |v_i|$ define norms and draw the 'unit ball' in \mathbb{R}^2 (i.e. $\{v \in \mathbb{R}^2 : ||v|| \le 1\}$) in each case.
- 4. [M] The MATLAB norm command applied to a vector $v \in \mathbb{R}^n$ gives the vector two-norm $||v||_2 = \left(\sum_{i=1}^n v_i^2\right)^{1/2}$ whilst norm(v, 'inf') gives the value of the norm in Question 3(i) and norm(v,1) gives the norm in Question 3(ii). If $v^{(r)} = (1/1, 1/2, \dots, 1/r)^T \in \mathbb{R}^r$, experiment to see if $\{||v^{(r)}||_k : r = 1, 2, 3, \dots\}$ is a convergent sequence of real numbers for (a) k = 2, (b) $k = \inf$, (c) k = 1. Analytically, what is the answer?
- 5. (Optional.) Is

$$\langle f,g \rangle = \int_a^b f(x)g(x) + f'(x)g'(x) \,\mathrm{d}x$$

an inner product on continuously differentiable functions on [a, b]?

6. In the inner product $\langle f,g \rangle = \int_0^2 x f(x)g(x) \, dx$, calculate the angle between $1/\sqrt{x}$ and 3x. Can you calculate the angle if the inner product is $\langle f,g \rangle = \int_0^2 f(x)g(x) \, dx$?

7. Calculate the best approximation to x^3 on [0,2] from Π_2 in the norm derived from the inner product

$$\int_0^2 x f(x) g(x) \, \mathrm{d}x = \langle f, g \rangle.$$

[Hint: MATLAB is very good at solving systems of linear equations as you know by now!]

8. (Optional.) Calculate the best approximation to x on $[0, \pi]$ from $V = \text{span}\{1, \cos x\}$ in the norm associated with the inner product

$$\langle f,g \rangle = \int_0^{\pi} f(x)g(x) \,\mathrm{d}x.$$

(You might want to consider using calculus).

- **9.** By considering $||f (p + \epsilon q)||^2$ where $\epsilon \in \mathbb{R}$, $q \in \Pi_n$, show that if $p \in \Pi_n$ is a best approximation to f in this norm with associated inner product $\langle \cdot, \cdot \rangle$ then $\langle f p, q \rangle = 0$ for any $q \in \Pi_n$.
- 10. [M] Use MATLAB to solve the problem as in Question 7 but with $p \in \Pi_3$: note that the (i, j)th entry of the coefficient matrix is of the form

$$\frac{2^{i+j+2}}{i+j+2}, \quad i,j=0,1,\dots,n.$$
(1)

Comment on your answer! What will be the best approximation if Π_4 is used?

The $(n + 1) \times (n + 1)$ coefficient matrix A formed when finding the best fit polynomial $p \in \Pi_n$ to a general function f in the norm corresponding to *this* inner product will always have coefficients of the form (1). Calculate the eigenvalues of A for n = 2, 3, 4, 5 (I suggest you just use **eig**): you will note that the smallest eigenvalue gets closer to zero and the largest one grows as n is increased—these matrices are becoming more 'ill-conditioned' as n increases, which is the result of choosing the 'bad basis' $\{1, x, x^2, \ldots, x^n\}$ for Π_n rather than an orthogonal one. This ill-conditioning makes the system of equations difficult to solve; how many accurate decimal places are there in the coefficients of the approximation polynomial to $f(x) = x^3$ for n = 3, 5, 10?

In this question you may want to use format long to increase the number of displayed digits.

11. Specimen Exam question

Given that n is a non-negative integer, let \mathcal{P}_n denote the set of all polynomials in x of degree n of less. Suppose that f is a function, defined and continuous on the interval [-1, 1] of the real line.

(a) What does it mean to say that $p_n \in \mathcal{P}_n$ is the polynomial of best least-squares approximation for f on [-1, 1] with respect to the norm $\|\cdot\|_2$ defined by

$$||f||_2 = \left(\int_{-1}^1 |f(x)|^2 \,\mathrm{d}x\right)^{1/2}?$$

(3 marks)

- (b) Consider the function $f: x \mapsto x^4$ on the interval [-1, 1]. By constructing a suitable set of orthogonal polynomials on [-1, 1], or otherwise, find the polynomial $p_3 \in \mathcal{P}_3$ of best least-squares approximation for f on [-1, 1] with respect to the norm $\|\cdot\|_2$, and verify that $p_3(-x) = p_3(x)$ for all $x \in [-1, 1]$. (15 marks)
- (c) Now suppose that f is any real-valued function, defined and continuous on the interval [-1, 1] such that f(-x) = f(x) for all $x \in [-1, 1]$. Show that the polynomial $p_n \in \mathcal{P}_n$ of best least-squares approximation for f on the interval [-1, 1] has the property $p_n(-x) = p_n(x)$ for all $x \in [-1, 1]$. (7 marks)