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Health warning:

The following lecture notes are meant as a rough guide to the lec-
tures. They are not meant to replace the lectures. You should expect
that some material in these notes will not be covered in class and that
extra material will be covered during the lectures (especially examples
and applications). Nevertheless, I will try to follow the notation and
the overall structure of the notes as much as possible. Also, these notes
may be updated during the course of the term. In particular, please
alert me if you catch any typos or errors. I will notify you if I upload
an updated version.

1 Introduction

In this course, we will develop various techniques for solving differential
equations. Our primary concern will be finding ways to solve and understand
inhomogeneous linear boundary value problems (BVPs), that is an ordinary
differential equation (ODE)

Ly(x) = f(x), a < x < b (1)

where L is a linear differential operator of the form

Ly(x) ≡ any(n)(x) + an−1y
(n−1)(x) + · · ·+ a1y(x) + a0y(x) (2)

and the function f(x) on the right hand side (RHS) is a given forcing function
in the system. The operator L is linear in the sense that

L(α1y1(x) + α2y2(x)) = α1Ly1(x) + α2Ly2(x)

for any constants αi and functions yi(x).
Along with equation (1) we require n boundary conditions. For a linear
system, this consists of n linear combinations of y(x) and its derivatives up
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to order n − 1 evaluated at the boundary points x = a and x = b. We will
write these generically as

Biy
∣
∣
∣
x=a,b

= γi, i = 1, 2, . . . n.

For instance, if n = 2, a 2nd order system, the boundary conditions would
have the form

B1y := α1y(a) + α2y(b) + β1y
′(a) + β2y

′(b)

B2y := α̃1y(a) + α̃2y(b) + β̃1y
′(a) + β̃2y

′(b)
(3)

for constants α1,2, β1,2.
Note: it is useful to distinguish between the differential system, comprised
of the operator L and the boundary terms Bi; and the data: the function
f(x) and the boundary values {γ1, γ2, . . . , γn}.

The key elements in our analysis are:

1. BVP. A boundary value problem is fundamentally different from an
initial value problem (IVP), which formed the crux of the Differential
Equations 1 course. In an IVP, the extra conditions needed to complete
the system are all defined at a single point. In IVPs, the independent
variable is often time t, and hence data is given at the initial time
t = 0.

In a boundary value problem, data is given at multiple points1. For
BVPs, the independent variable is often a spatial dimension, and data
is provided about the solution at the ends of the spatial domain.

2. Inhomogeneity. An important element in our development is the
presence of the arbitrary function f(x) in (1). In a physical system,
the forcing function represents some action of the outside world. The
presence of such an inhomogeneity greatly affects solution behaviour
and complicates analysis.

3. Linearity. In general, an inhomogeneous BVP can be quite chal-
lenging and often intractable. In nearly of our developments, we will
exploit linearity: through much of the course will use the linearity of
the operator and boundary conditions, and at the end we will con-
sider asymptotic approaches, which can be a means of finding linear
approximations to nonlinear systems.

1Note: some textbooks will define a BVP simply as a differential equation plus extra
conditions, in which case an IVP is a subset of a BVP.
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Some questions we will consider:

1. How do we solve the system for an arbitrary function f(x)?

2. Is there always a solution? If so, is it unique?

3. What is the effect of the boundary conditions?

4. Can we solve if the ak = ak(x) are functions of x?

5. Can we exploit the presence of a small parameter in the system?

1.1 Homogeneous vs inhomogeneous

Consider the second order operator

Ly ≡ P2(x)y
′′(x) + P1(x)y

′(x) + P0(x)y(x), a ≤ x ≤ b

(and ignore boundary conditions for now).
We distinguish between two equation types:

Ly(x) = 0 : H, homogeneous

Ly(x) = f(x) : N , inhomogeneous

for some given f .

1.2 Solutions

The following properties of solutions of H and N are easily established:

(i) the solutions of H form a vector space (since if Ly1 = 0 = Ly2 then
L(αy1 + βy2) = 0).

(ii) if y1 and y2 satisfy N then y1 − y2 satisfies H, so that the general
solution of N may be written

y = yPI
︸︷︷︸

any solution of N

+ yCF
︸︷︷︸

general solution of H

where yPI is called the particular integral and yCF the complementary func-
tion.
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1.3 Linear independence of functions

A pair of functions y1(x), y2(x) is linearly independent if the only linear
combination that vanishes (identically):

c1y1(x) + c2y2(x) ≡ 0

has c1 = c2 = 0. They are linearly dependent if such ci, not both zero, can
be found. If the yi are also differentiable then this would entail

c1y
′
1 + c2y

′
2 = 0,

i.e. (
y1 y2
y′1 y′2

)(
c1
c2

)

= 0

so that the determinant of the matrix is zero.

Define the Wronskian of a pair of function to be this determinant:

W (x; y1, y2) = y1y
′
2 − y2y′1. (4)

From what we have just seen:

Proposition If two functions are linearly dependent then their Wronskian
vanishes.
The converse to this isn’t obvious; consider the following pair of (once)
differentiable functions:

y1 =

{
0 x < 0
x2 x ≥ 0

y2 =

{
x2 x < 0
0 x ≥ 0

then W = 0. However, if c1y1 + c2y2 = 0 then evaluation for positive and
negative x shows that c1 = c2 = 0, so that these functions are in fact linearly
independent. To establish a partial converse note the following:

Proposition If y1 and y2 satisfy H, i.e.

P2y
′′
i + P1y

′
i + P0yi = 0,

then their Wronskian W satisfies

W ′

W
= −P1

P2
.
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The proof is an easy exercise. Solving for W , we get

W = const× exp

[

−
∫ x P1(t)

P2(t)
dt

]

. (5)

In particular, provided P2 is nowhere zero, if W = 0 at one point, then
W = 0 at every point (since in this case the exponential can’t vanish so this
can only happen if the constant in front of (5) is zero).

1.4 A basis of solutions of H

We choose solutions y1 and y2 of H with

y1(a) = 1, y1
′(a) = 0

y2(a) = 0, y2
′(a) = 1.

By the work in DE’s 1, these exist and are unique at least in a neighbourhood
of x = a provided P2(a) 6= 0. Also their WronskianW (x) hasW (a) = 1, so is
nonzero in this neighbourhood of x = a, and they are linearly independent.
Do they span the vector space of solutions? Suppose y(x) is any other
solution and set

Y (x) = y1(x)y(a) + y2(x)y
′(a).

Then this is a solution with

Y (a) = y(a); Y ′(a) = y′(a)

and so by uniqueness Y (x) = y(x). Thus, y(x) is a linear combination of y1
and y2 and hence they do span the vector space of solutions, i.e. they are a
basis. We can conclude:

Proposition

(i) The dimension of the space of solutions of H is 2.

(ii) Any pair of solutions of H with W 6= 0 is a basis.2

Exercise: generalise everything done so far to n-th order linear ODEs.

2Remark: Any linearly independent pair of solutions is also a basis, and so will be
related to the basis of Section 1.4 by a nonsingular matrix. At a, their Wronskian will be
the determinant of this matrix, and therefore nonzero. This gives our partial converse to
the first Proposition: two solutions of a given fixed H are linearly dependent if and only
if their Wronskian is zero. This fact can be proved directly as follows: suppose u and v

are two solutions of H; if they are linearly dependent then we know already that their
Wronskian is zero so now suppose for the converse that their Wronskian is zero; if u is the
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1.5 Finding the general solution of the Homogeneous prob-

lem

For the 2nd order ODE

P2(x)y
′′ + P1(x)y

′ + P0(x)y = 0,

there are a few standard methods for finding the general solution.
Constant coefficients
If P2, P1 and P0 are constants then guessing the solution y = emx will result
in the auxiliary equation for m and the general solution can then easily be
found (care must be taken for cases where the roots, m, are complex or are
repeated.)
Cauchy-Euler equation
If the coefficients are of the form P2(x) = αx2, P1(x) = βx, P0(x) = γ, with
α, β, γ constants, then a solution can be found with the guess y = xm (again
taking care if the roots m are repeated or complex).
Reduction of order
If one solution, y1(x), is known then the general solution can be found by
solving an ODE of reduced order. The method is to assume that the solution
to the full ODE can be written as

y(x) = v(x)y1(x).

Note we know that the function v(x) = C is a possible answer but we seek
something more general. Putting this into the ODE gives

P2(vy
′′
1 + 2v′y′1 + v′′y1) + P1(vy

′
1 + v′y1) + P0vy = 0 .

Using the fact that y1(x) satisfies the ODE, we are left with

P2(2v
′y′1 + v′′y1) + P1v

′y1 = 0 .

This is a separable first order ODE for the function z = v′(x):

P2y1z
′ + (2P2y

′
1 + P1y1)z = 0 .

zero function then they are certainly linearly dependent so suppose that there is at least
one value of x, say x = a, with u(a) 6= 0; pick µ so that v(a) = µu(a) then

0 = W (a) = u(a)v′(a)− v(a)u′(a) = u(a)(v′(a)− µu
′(a));

cancel u(a) to conclude that v′(a) = µu′(a); now define y(x) = v(x)− µu(x), then y(x) is
a solution of H by linearity, while y(a) = 0 = y′(a) by the choices made so far; thus by
uniqueness of solution of H we conclude that y(x) = 0 and therefore u and v are linearly
dependent QED.
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Solving for z(x) then gives the general solution

y = v(x)y1(x).

Note all three methods can be used for higher order problems with similar
properties.

1.6 Variation of parameters

We now know a good deal about the solutions of H. Much of this course is
concerned with solving for N . ‘Variation of parameters’ is the first method
we will encounter to do so. Recall the distinction:

Ly(x) ≡ P2y
′′ + P1y

′ + P0y =

{

0 : H

f : N
,

and suppose that H is solved by y = c1y1(x) + c2y2(x) with linearly inde-
pendent y1, y2. We seek a solution of N of the form

y(x) = c1(x)y1(x) + c2(x)y2(x), (6)

i.e. we ‘vary the parameters’. Using two functions, c1 and c2, to find one,
y(x), we expect to be able to impose another condition on the ci.
First, differentiate (6) to find

y′ = c1y
′
1 + c2y

′
2 + c′1y1 + c′2y2

and now impose
c′1y1 + c′2y2 = 0. (7)

The justification for this is that it will simplify the equations for c1 and c2 so
that we can find an explicit formula for the solution of N (otherwise we just
get two 2nd order ODEs to solve and have gained nothing). Differentiating
again,

y′′ = c1y
′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2

so that
Ly = P2(c1y

′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2)

+P1(c1y
′
1 + c2y

′
2)

+P0(c1y1 + c2y2).

But, since the yi satisfy H, this gives

Ly = P2(c
′
1y

′
1 + c′2y

′
2) = f. (8)
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Solve (7) and (8) for c′1 to find

c′1 = −
fy2
P2W

, W = y1y
′
2 − y2y′1

and then

c′2 =
fy1
P2W

.

We can integrate these to obtain

c1(x) = −
∫ x f(t)y2(t)

P2(t)W (t)
dt

c2(x) =

∫ x f(t)y1(t)

P2(t)W (t)
dt







(9)

y(x) = −
∫ x f(t)y2(t)y1(x)

P2(t)W (t)
dt+

∫ x f(t)y1(t)y2(x)

P2(t)W (t)
dt (10)

The freedom in the choice of lower limit in these integrals gives additive
constants in ci and so, by (6), adds a solution of H to this solution of N .

1.7 Fixing the boundary values

We now develop a method for solving BVP (N) with homogeneous boundary
conditions for any nonhomogeneity f(x). We consider the BVP

P2y
′′ + P1y

′ + P0y = f (11)

with boundary data
y(a) = 0 = y(b). (12)

We follow the Variation of Parameters recipe, but we choose y1 so that
y1(a) = 0, and y2 so that y2(b) = 0. (We assume this can be done and
return to this point later.) So

y(x) = c1(x)y1(x) + c2(x)y2(x)

with the ci as in (9). Then the boundary data requires

y(a) = c1(a)y1(a) + c2(a)y2(a) = 0

y(b) = c1(b)y1(b) + c2(b)y2(b) = 0.
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and, with the choices made for yi, this requires that we take c2(a) = 0 =
c1(b). Imposing these conditions on (9) we therefore need to take

c1(x) =

∫ b

x

f(t)y2(t)

P2(t)W (t)
dt,

c2(x) =

∫ x

a

f(t)y1(t)

P2(t)W (t)
dt







(13)

(note the change of limits). Thus we fix the ci completely. Now the solution
can be written as

y(x) = c1(x)y1(x) + c2(x)y2(x)

=

∫ x

a

f(t)y1(t)y2(x)

P2(t)W (t)
dt+

∫ b

x

f(t)y2(t)y1(x)

P2(t)W (t)
dt

which we can write concisely as

y(x) =

∫ b

a
g(x, t)f(t) dt (14)

where

g(x, t) =







y1(t)y2(x)

P2(t)W (t)
a ≤ t ≤ x ≤ b

y2(t)y1(x)

P2(t)W (t)
a ≤ x ≤ t ≤ b

. (15)

We call g(x, t) the Green’s function, something we explore fully in Section
3.

1.8 An example

Consider the BVP
y′′ + y = f(x) for 0 ≤ x ≤ π

2

with data
y(0) = 0 = y

(π

2

)

,

and run through the method:

• Identify H as y′′ + y = 0.

• Choose solution y1 with y1(0) = 0 so y1 = sinx will do.

• Choose solution y2 with y2
(
π
2

)
= 0 so y2 = cosx will do.

11



• Calculate

W =

∣
∣
∣
∣

y1 y2
y′1 y′2

∣
∣
∣
∣
= −1.

• Note P2 = 1

and so by (51)

g(x, t) =

{
− sin t cosx 0 ≤ t ≤ x ≤ π

2
− cos t sinx 0 ≤ x ≤ t ≤ π

2

The solution of the BVP is then, by (50):

y(x) =

∫ π
2

0
g(x, t)f(t) dt,

with this g.

2 Eigenfunction methods

Our next approach to solving linear inhomogeneous BVP’s is through an
eigenfunction expansion. The idea is to exploit the linearity of the operator
by constructing a solution as a superposition of a (generally infinite) set of
functions {yi(x)}. In particular, the yi will be the functions satisfying

Lyi(x) = λiyi(x), (16)

along with homogeneous boundary conditions. Here yi is an eigenfunction
with corresponding eigenvalue λi. This is analogous to the linear algebra
eigenproblem

A~xi = λi~xi (17)

where A is a matrix and ~xi an eigenvector with eigenvalue λi.

2.1 Sets of functions

Similar to a vector space, we can introduce a set of linearly independent basis
functions yn(x), n = 1, 2, . . .∞ such that any ‘reasonable’ function f(x) can
be written as a linear combination of these functions3:

f(x) =
∞∑

n=0

cnyn(x). (18)

3Note the difference between this statement and the discussion of Sec. 1.4: there we
found a 2D basis of solutions to the homogeneous problem, here we mean a basis for any
function, hence the basis becomes infinite dimensional.
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You have encountered this idea before with Fourier Series, where the basis
functions are sines and cosines; this is merely a generalisation. Hence it
should be clear that we can have different sets of basis functions.
We also define the inner product

〈u, v〉 :=
∫ b

a
u(x)v(x) dx. (19)

Here the overbar denotes complex conjugate. In this course, we will rarely
be concerned with complex valued functions. If it is clear that we are dealing
with real functions, we may drop the overbar for simplicity.

2.2 Adjoint

We also require the notion of the adjoint of an operator. For operator L
with homogenous BC, the adjoint problem (L∗ BC*) is defined by the inner
product relation

〈Ly,w〉 = 〈y, L∗w〉. (20)

To determine the adjoint, one needs to move the derivatives of the operator
from y to w, and define adjoint boundary conditions so that all boundary
terms vanish.

Example

Let Ly =
d2y

dx2
with a 6 x 6 b, y(a) = 0 and y′(b) − 3y(b) = 0. We wish to

find L∗w, such that

∫ b

a
(w)(y′′)dx =

∫ b

a
(y)(L∗w)dx

To do this, we need to shift the derivatives from y to w using integration by
parts:

∫ b

a
wy′′dx = wy′|ba −

∫ b

a
w′y′dx

= wy′ − w′y|ba +
∫ b

a
yw′′dx

The integral gives the formal part so:

L∗w =
d2w

dx2
.
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The inner product only includes integral terms, so the boundary terms must
vanish, which will define boundary conditions on w, i.e. this defines BC*.
Here, we require

w(b)y′(b)− w′(b)y(b)− w(a)y′(a) + w′(a)y(a) = 0.

Using the BC’s y′(b) = 3y(b) and y(a) = 0, gives:

0 = y(b)
(

3w(b)− w′(b)
)

− w(a)y′(a) + w′(a)y(a)
︸ ︷︷ ︸

=0

As these terms need to vanish for all values of y(b) and y′(a), we can infer
two boundary conditions on w:

• y(b): 3w(b)− w′(b) = 0

• y′(a): w(a) = 0

If L = L∗ and BC = BC∗ then the problem is self-adjoint. If L = L∗

but BC 6= BC∗ we still call the operator self-adjoint. (Some books use
the terminology formally self-adjoint if L = L∗ and fully self-adjoint if both
L = L∗ and BC = BC∗).

2.2.1 Eigenfunction Properties

The main idea in solving the BVP is to construct a solution as a linear
combination of eigenfunctions. There are two fundamental properties of
eigenfunctions that will be vital to this approach.

1. Eigenfunctions of the adjoint problem have the same eigen-
values as the original problem

That is,
Ly = λy ⇒ ∃w ∋ L∗w = λw.

2. Eigenfunctions corresponding to different eigenvalues are or-
thogonal

That is, if Lyj = λjyj (so L∗wj = λjwj) and Lyk = λkyk (L∗wk =
λkwk), then for λj 6= λk, 〈yj , wk〉 = 0.
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Proof

λj〈yj , wk〉 = 〈λjyj , wk〉
= 〈Lyj , wk〉
= 〈yj , L∗wk〉
= 〈yj , λkwk〉
= λk〈yj , wk〉.

But λj 6= λk so 〈yj , wk〉 = 0. (The proof is exactly as for matrix
problems.)

2.3 Inhomogeneous solution process

We are now in a position to outline the construction of solution to the BVP

Ly = f(x)

with linear, homogeneous boundary conditions, denotedBC1(a) = 0, BC2(b) =
0.

Step 1: Solve the eigenvalue problem

Ly = λy, BC1(a) = 0, BC2(b) = 0

to obtain the eigenvalue-eigenfunction pairs (λj , yj).

Step 2: Solve the adjoint eigenvalue problem

L∗w = λw, BC∗
1 (a) = 0, BC∗

2 (b) = 0

to obtain (λj , wj).

Step 3: Assume a solution to the full system Ly = f(x) of the form

y =
∑

i

ciyi(x).

To determine the coefficients ci, start from Ly = f and take an inner
product with wk:

Ly = f(x)

⇒ 〈Ly,wk〉 = 〈f, wk〉
⇒ 〈y, L∗wk〉 = 〈f, wk〉
⇒ 〈y, λkwk〉 = 〈f, wk〉

⇒ λk〈
∑

i

ciyi, wk〉 = 〈f, wk〉

⇒ λkck〈yk, wk〉 = 〈f, wk〉

(21)
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We can solve the last equality for the ck, and we are done! Note that
in the last step we have used the orthogonality property 〈yj , wk〉 =
0, j 6= k.

2.4 A note on boundary conditions

In the above construction we assumed homogeneous boundary conditions. In
the general case of an inhomogeneous system with inhomogenous boundary
conditions,

Ly = f(x)

Biy = γi
(22)

a useful technique is to split the system in two, i.e. solve both

Ly1 = f(x), Biy1 = 0 (23)

and
Ly2 = 0, Biy2 = γi. (24)

Here, solving for y1(x) has the difficulty of the forcing function but with zero
BC’s while the other equation is homogeneous but has the non-zero BC’s.
Due to linearity, it is easy to see that y(x) = y1(x) + y2(x) solves the full
system (22).
This decomposition can always be performed4 and since solving (24) tends to
be an easier matter (for linear systems!), it is safe for us to primarily focus
on the technique of solving the system (23), i.e. homogeneous boundary
conditions.
For completeness it is worth noting that one can solve BVPs with inho-
mogeneous BC using an eigenfunction expansion and without needing a
decomposition. The keys are:

1. The eigenfunctions are always determined using homogeneous bound-
ary conditions. Thus, eigenfunctions won’t change whether you “de-
compose” or not. The difference comes in:

2. In going from Line 2 to 3 of (21), care must be taken in the integration
by parts, as boundary terms will generally still be present. (Can you
see why?) These extra boundary terms then carry through to the
formula for the ck.

4As we shall see in Section 4, it requires caution if there is a zero eigenvalue λ = 0.
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2.5 Example

Let y′′ = f(x) with 0 6 x 6 1, y(0) = α and y(1) = β. Then:

BC’s Incorporated Solution Route

1. Solve y′′ = λy, with y(0) = 0 and y(1) = 0.

We get yk(x) = sin(kπx) and λk = −k2π2 with k = 1, 2, 3, . . ..

The problem is self-adjoint (show this as an exercise), so wk = yk =
sin(kπx) and w′′

k = λkwk.

2.

y′′ = f(x)
∫ 1

0
wky

′′dx =

∫ 1

0
wkfdx

⇒ (y′wk − yw′
k)|10 +

∫ 1

0
w′′
kydx =

∫ 1

0
wkfdx

⇒ (y′wk − yw′
k)|10 + λk

∫ 1

0
wkydx =

∫ 1

0
wkfdx

⇒ (y′wk − yw′
k)|10 + λkck

∫ 1

0
wkykdx =

∫ 1

0
wkfdx

⇒ (y′wk − yw′
k)|10 − k2π2ck

∫ 1

0
sin2(kπx)dx =

∫ 1

0
wkfdx

3. Now
∫ 1
0 sin2(kπx) dx = 1/2, and wk = sin(kπx), hence

y′wk − yw′
k|10 = −kπ cos(kπ)y(1) + kπ cos(0)y(0)

⇒ −βkπ(−1)k + αkπ − 1

2
k2π2ck =

∫ 1

0
f(x) sin kπxdx

Solving for ck gives us y(x) as a Fourier series.

Decomposed Solution Route
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1. Solve two systems separately:

y′′ = f(x), y(0) = y(1) = 0

u′′ = 0, u(0) = α, u(1) = β

2. To solve for y, since BC=0 we can jump straight to the formula

ck =
〈f, wk〉

λk〈yk, wk〉
= −2

∫ 1
0 f(x) sin(kπx) dx

k2π2
.

3. The solution for u is easily obtained as

u = (β − α)x+ α

4. The full solution is y(x) + u(x).

Although they look different, both approaches give the same solution. Either
way, we see that self-adjoint problems are great: they are less work since
the wk’s are the same as the yk’s.

2.6 Connection with linear algebra

There are direct parallels between linear algebra and linear BVPs:

Linear algebra Linear BVP

vector ~v ∈ R
n ←→ function y(x) for a 6 x 6 b

~v · ~w =
n∑

k−1

vkwk

︸ ︷︷ ︸

dot product

←→ 〈f, g〉 =
∫ b

a
f(x)g(x)dx

︸ ︷︷ ︸

inner product

‖ ~v ‖2= ~v · ~v > 0
︸ ︷︷ ︸

norm

←→ ‖ f ‖2= 〈f, f〉 > 0
︸ ︷︷ ︸

norm

⊥ vector ~v · ~w = 0 ←→ orthogonal function 〈f, g〉 = 0

Matrix A ←→ Linear Differential Operator L

Given a vector ~v, then the product A~v is a new vector. Similarly, given a
function y(x),

Ly = a
d2y

dx2
+ b

dy

dx
+ cy

18



evaluates to a new function on a 6 x 6 b.
In linear algebra, a common problem is to solve the equation

A~v = ~b

for ~v, given matrix A and vector ~b. Compare that to our general task of
solving Ly = f for y, given operator L and RHS f .

Eigenvalue problems

Linear algebra Linear BVP

A~v = λ~v ←→ Ly = λy

How many eigenvalues?

Linear algebra Linear BVP

A is n× n L is order n

Solve |A− λI| = 0

⇒ n eigenvalues ∞ eigenvalues

Adjoint

Linear algebra Linear BVP

A→ AT L→ L∗

BC’s→ BC∗’s

Self adjoint if A = AT L = L∗, BC=BC*

A self-adjoint matrix is called Hermitian. A self-adjoint linear differential
operator is also referred to as Hermitian. We next look at a particular
class of Hermitian operator – Sturm-Liouville operators – that occurs quite
commonly and has very useful properties.

2.7 Sturm-Liouville theory

Sturm–Liouville (SL) theory of second order concerns self-adjoint operators
of the form:

Ly = λr(x)y
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where r(x) > 0 is a weighting function, and the operator L is of the form

Ly = − d

dx

(

p(x)
dy

dx

)

+ q(x)y, a ≤ x ≤ b (25)

The functions p, q, and r are all assumed to be real. It is easy to check that
the operator is formally self-adjoint. It is fully self-adjoint if the boundary
conditions take the separated form

α1y(a) + α2y
′(a) = 0

α3y(b) + α4y
′(b) = 0.

Observe also that if p(a) = p(b) = 0, then 〈Ly,w〉 = 〈y, Lw〉 irrespective of
boundary conditions. This defines the so-called natural interval [a, b] for the
problem.

2.7.1 Inhomogeneous SL problems

Since a SL operator is self-adjoint, the eigenfunction expansion process is
quite straightforward. Consider

Ly = f(x)

with homogeneous BC’s. The system can be solved with an eigenfunction
expansion in the same manner as in Section 2.3:

Ly = f(x)

⇒ 〈Ly, yk〉 = 〈f, yk〉
⇒ 〈y, Lyk〉 = 〈f, yk〉 (since L∗ = L,wk = yk)

⇒ 〈y, λkryk〉 = 〈f, yk〉
⇒ λkck〈yk, ryk〉 = 〈f, yk〉.

(26)

Thus we obtain the formula

ck =
〈f, yk〉

λk〈yk, ryk〉
(27)

and the full solution is given by

y =
∑

k

ckyk.
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2.7.2 Transforming an operator to SL form

Many problems encountered in physical systems are Sturm-Liouville. In
fact, though, any operator

Ly ≡ a2(x)y′′(x) + a1(x)y
′(x) + a0(x)y(x)

with a2(x) 6= 0 in the interval can be converted to a SL operator.
To transform to a self-adjoint SL operator, multiply by an integrating factor
function µ(x):

µa2(x)y
′′(x) + µa1y

′(x) + µa0y

We then choose µ so that the first and second derivatives collapse, i.e. so it
can be expressed in the form

− d

dx
(py′) + qy

Suppose we are considering the problem

Ly = f(x)

where L is not Sturm-Liouville. We could solve following the approach
in Eq’n (21); alternatively we could convert to Sturm-Liouville first, and
then proceed using the nice properties of a self-adjoint operator. So, is the
problem self-adjoint or isn’t it?? The key observation is that we are no
longer solving the same problem. We have transformed to a new operator

L̂y = − d

dx
(py′) + qy

which does not satisfy the same equation as the original, that is Ly = f
while L̂y = µf . They are both valid, and must ultimately lead to the same
answer in the end.

2.7.3 Further properties

Orthogonality.
Due to the presence of the weighting function, the orthogonality relation is

∫ b

a
yk(x)yj(x)r(x)dx = 0. (28)

Eigenvalues.
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The functions p, q, r are real, so L = L. Thus, taking the conjugate of both
sides of Lyk = λkryk gives

L yk = λk r yk

⇒ 〈yk, L yk〉 = λk〈yk, ryk〉
but 〈yk, L yk〉 = 〈Lyk, yk〉 = λk〈ryk, yk〉 = λk〈yk, ryk〉

⇒ λk = λk

(29)

Thus, all eigenvalues are real.
Moreover, if a ≤ x ≤ b is a finite domain, then λ’s are discrete and countable:

λ1 < λ2 < λ3 < · · · < λk < · · ·
with limk→∞ λk =∞.

Eigenfunctions.
The {yk} are a complete set, that is all h(x) with

∫
h2r dx < ∞ can be

expanded as

h(x) =
∑

ckyk(x).

Take an inner product with r(x)yj(x):

〈ryj , h〉 = 〈ryj ,
∑

ckyk〉 =
∑

ck〈ryj , yk〉 = cj〈ryj , yj〉

⇒ cj =

∫ b
a h(x)yj(x)r(x) dx
∫ b
a y

2
j (x)r(x) dx

Note: I’ve used h(x) to make clear that we’re not talking about the solution
to the BVP, rather we are expanding any function that is suitably bounded
on the same domain.

2.7.4 Other tidbits

Regular Sturm-Liouville Problems. If the system satisfies all of the
above and the additional conditions

• p(x) > 0 and r(x) > 0 on a ≤ x ≤ b.
• q(x) ≥ 0 on a ≤ x ≤ b.
• BCs have α1α2 ≤ 0 and α3α4 ≥ 0,
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then all λk ≥ 0
Proof: Using 〈yk, Lyk − λkryk〉 = 0,

−
∫ b

a
y(py′)′ dx+

∫ b

a
yqy dx−

∫ b

a
yλry dx = 0

−
∫ b

a
y(py′)′ dx+

∫ b

a
qy2 dx− λ

∫ b

a
ry2 dx = 0

−pyy′
∣
∣
∣
∣

b

a

+

∫ b

a
p(y′)2 dx+

∫ b

a
qy2 dx− λ

∫ b

a
ry2 dx = 0

λ =

[
∫ b

a
p(y′)2 dx+

∫ b

a
qy2 dx− pyy′

∣
∣
∣
∣

b

a

]/∫ b

a
ry2 dx ≥ 0

As a side note, the Rayleigh quotient, R[y] = 〈y, Ly〉/〈y, ry〉, is used ex-
tensively in analysis.

3 Green’s function

In this section we will devise an alternative approach to viewing and solving
linear BVP, using the so-called Green’s function.

3.1 Form of the eigenfunction expansion solution

Consider the form of the final solution obtained through the eigenfunction
expansion approach. Taking (21) one step further, we have

y(x) =

∞∑

k=1

〈f, wk〉
λk〈yk, wk〉

yk(x)

(Of course, this requires all λk 6= 0 – we’ll treat the case of a zero eigenvalue
in Section 4). Let nk = 〈yk, wk〉 (normalisation), then:

y(x) =
∞∑

k=1

1

λknk

(∫ b

a
f(t)wk(t)dt

)

yk(x)

=

∫ b

a

(
∞∑

k=1

1

λknk
wk(t)yk(x)

)

f(t)dt

=

∫ b

a
g(x, t)f(t)dt
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where

g(x, t) =
∞∑

k=1

wk(t)yk(x)

λknk
. (30)

Thus, we have constructed a solution to Ly = f in the form

y(x) =

∫ b

a
g(x, t)f(t) dt. (31)

The function g(x, t) is called the Green’s function (GF), and the form (30)
is an eigenfunction expansion of g(x, t).
Of course, if we knew the Green’s function, we would have the solution
without any need for the expansion, i.e. no need for the eigenfunctions.
The goal in this section is to understand the properties of the GF and how
to construct it.

Side note: Observe that if L = L∗, then wk = yk and:

g(x, t) =
∑ 1

λknk
yk(t)yk(x)

In this case g(x, t) = g(t, x), and we have the important connection between
a self-adjoint operator and a symmetric Green’s function.

3.2 Inverse of differential operator

A nice way to think of the Green’s function is in terms of inverting the
differential operator. Think about the familiar equation A~x = ~b from linear
algebra, to be solved for the unknown vector ~x. The solution is given by

~x = A−1~b,

i.e. we find the solution by multiplying the inverse of the linear operator
(matrix) by the inhomogeneous term. Once you know the inverse operator,
you can solve the problem for any given vector ~b. In the context of BVP’s,
L is a differential operator, so it stands to reason that the inverse operator
involve integration, hence the form (31). Constructing the Green’s function
is analogous to finding the inverse of the matrix, once we have g we can
write down the solution (31) for any forcing function f(x).
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3.2.1 An example

There are numerous ways to construct a Green’s function. We’ve just seen
one: the eigenfunction expansion. In fact, we’ve already seen two! The
method of variation of parameters gives the Green’s function in a piecewise
form.
Let’s take a simple example and look at the behaviour. Consider the BVP:

Ly ≡ −y′′ = f(x), 0 < x < 1

y(0) = y(1) = 0
(32)

The GF via variation of parameters is given by

g(x, ξ) =

{
(1− ξ)x 0 < x < ξ
(1− x)ξ ξ < x < 1.

(33)

The following properties are easily checked:

• The GF satisfies Lg = 0 if x 6= ξ5

• g(x, ξ) satisfies the boundary conditions as a function of x.

• g is continuous on the whole interval [0, 1]

• g is differentiable everywhere except at x = ξ, where it suffers a jump
in the derivative.

These properties are in fact always true of the GF of a second order linear
operator.6 To make sense of this, and to build some physical intuition, we
shall need the notion of the delta function.

3.3 Green’s function via delta function

To fix the context, consider stationary heat conduction in a rod:

−y′′(x) = f(x) 0 < x < 1 (34)

y(0) = 0, y(1) = 0. (35)

where y(x) is the temperature field and f(x) is a given heat source density.

5Here by L we mean the operator acting on the x variable, i.e. derivatives are with
respect to x – this is sometimes written Lxg(x, ξ) to clarify.

6Note, however, that the function y(x) satisfying Ly = f is continuously differentiable
assuming continuously differentiable f , meaning that the integration with f(x) smooths
out the discontinuity in g.
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3.3.1 Delta function

The function f(x) describes any heat added or removed from the system
by the outside world. As a simple scenario, consider a point heat source,
say located at the middle of the rod. Physically, this would correspond to
applying heat at a single point only. How would we describe such a situation
mathematically? What should we use for the function f(x)?
The notion of a point source is described by the “delta function” δ, charac-
terised by properties

δ(x) = 0 ∀x 6= 0,

∫ ∞

−∞
δ(x) dx = 1. (36)

The first property captures the notion of a point function. The second
property constrains the area under the curve (which you might think of as
infinitely thin and infinitely high). This is an idealized point source at x = 0,
a point source at x = a would be given by δ(x− a).

The problem is that no classical function satisfies (36) (think: any function
that is non-zero only at a point is either not integrable or integrates to zero).

3.3.2 Approximating the delta function

One way around this is to replace δ by an approximating sequence of in-
creasingly narrower functions with normalized area, i.e. fn(x) where

∫ ∞

−∞
fn(x)dx = 1 ∀n, lim

n→∞
fn(x) = 0 ∀x 6= 0.

Example: “hat” functions

fn(x) =

{
0 for |x| > 1/n
n/2 for |x| ≤ 1/n

(37)

You can verify the fn(x) approach δ(x) as n→∞.

3.3.3 Properties of delta function

We have defined δ by (36). We can use the approximating functions to ob-
tain further properties.

Sifting property. What happens when δ is integrated against another
function?
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Let f(x) be a continuous function, and F (x) =
∫ x

f(s)ds its antiderivative.
Now consider approximating sequences:

∫ ∞

−∞
δ(x− a)f(x)dx = lim

n→∞

∫ ∞

−∞
fn(x− a)f(x)dx,

and if fn are the hat functions (37),

= lim
n→∞

∫ a+1/n

a−1/n

n

2
f(x)dx = lim

n→∞

F (a+ (1/n))− F (a− (1/n))

2/n

= lim
s→0

F (a+ s)− F (a− s)
2s

= F ′(a) = f(a).

Thus, we have
∫ ∞

−∞
δ(x− a)f(x)dx = f(a) if f is continuous at a. (38)

In particular,
∫ ∞

−∞
δ(x)f(x)dx = f(0) if f is continuous at x = 0. (39)

Thus, the delta function can be seen to sift out the value of a function at a
particular point.

Antiderivative of δ(x). The antiderivative of the delta function is the
so-called Heaviside function,

∫ x

−∞
δ(s)ds = H(x) ≡

{
0 x < 0
1 x > 0.

(40)

Note that (40) follows by integrating the sequence of approximating func-
tions and showing that the limit is the Heaviside function. That is, if
Hn(x) =

∫ x
−∞ fn(s)ds, then limn→∞Hn(x) = H(x). (We leave this detail as

an exercise!)

3.3.4 Point heat source

Let’s return to the heat conduction BVP with a point heat source of unit
strength at the centre of the rod:

−y′′(x) = δ(x− 1/2), 0 < x < 1 (41)

y(0) = y(1) = 0. (42)
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Since δ(x− 1/2) = 0 ∀x 6= 1/2, this implies

−y′′(x) = 0, 0 < x < 1/2, 1/2 < x < 1. (43)

We can easily solve (43) in each of the two separate domains [0, 1/2) and
(1/2, 1] and then apply the BC (42). But be careful: there are two constants
of integration for each domain, meaning four unknown constants total, and
only two boundary conditions.
As you might expect (since δ(x − 1/2) has vanished from (43)), the extra
two conditions come in at x = 1/2. To derive the extra conditions, imagine
integrating equation (41) across x = 1/2:

∫ 1/2+

1/2−
−y′′(x) dx =

∫ 1/2+

1/2−
δ(x− 1/2) dx, (44)

where 1/2− (1/2+) signifies just to the left (right) of 1/2. Using property
(36) of the delta function, we have

− y′]1/2+1/2− = 1 ⇒ y′(1/2+)− y′(1/2−) = −1. (45)

That is, the presence of the delta function defines a jump condition on y′. 7

The other extra condition needed comes as a requirement that y(x) is con-
tinuous across the point source, that is

y]
1/2+
1/2− = 0. (46)

More on this condition below. Solving Equations (43), (42) along with extra
conditions (45) and (46), we obtain the solution

u(x) =

{
x
2 0 < x < 1/2
−x

2 + 1
2 1/2 < x < 1.

(47)

3.3.5 Green’s function construction

To motivate the construction of the Green’s function, consider the heat
conduction problem with an arbitrary heat source:

−y′′(x) = f(x), 0 < x < 1 (48)

y(0) = y(1) = 0. (49)

7Here, y(ξ−) = limx↑ξ y(x), and y(ξ+) = limx↓ξ y(x)
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Imagine now describing f by a distribution of point heat sources with vary-
ing strength; that is at point x = ξ we imagine placing the point source
f(ξ)δ(x− ξ).

The idea of the Green’s function is to introduce such an extra parameter ξ,
and consider the system

−g′′(x, ξ) = δ(x− ξ), 0 < x < 1 (50)

g(0, ξ) = g(1, ξ) = 0. (51)

Note that prime denotes differentiation with respect to x, while ξ is more
like a place-holding variable. So, we have replaced f(x) by a delta function,
in order to solve for the Green’s function g(x, ξ).

We have seen how to solve (50), (51) in the last section. The Green’s function
is

g(x, ξ) =

{
(1− ξ)x 0 < x < ξ
(1− x)ξ ξ < x < 1.

(52)

You can notice that this is exactly the solution (50) one would obtain via
variation of parameters.

How to get back to the solution of (48), (49)? For each ξ, the Green’s
function gives the solution if a point heat source of unit strength were placed
at x = ξ. Conceptually, then, to get the full solution we must “add up” the
point sources, scaled by the value of the heat source at each point:

y(x) =

∫ 1

0
g(x, ξ)f(ξ) dξ. (53)

To verify that this is indeed a solution, we can plug (53) into (48):

− y′′(x) =
∫ 1

0
−g′′(x, ξ)f(ξ) dx =

∫ 1

0
δ(x− ξ)f(ξ) dx = f(x) X (54)

3.4 General linear BVP

We now consider a general nth order linear BVP with arbitrary continuous
forcing function,

Ly(x) = any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
′(x) + a0y(x) = f(x) (55)
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for a < x < b, where each ai = ai(x) is a continuous function, and moreover
an(x) 6= 0 ∀x8. Along with (55) are n boundary conditions, each a linear
combination of y and derivatives up to y(n−1), evaluated at x = a, b. For
instance, in the case n = 2, the general form is:

B1y ≡ α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = γ1

B2y ≡ α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = γ2.
(56)

3.5 General Green’s Function

In the same way as in Section 3.3.4, to solve (55) with homogeneous BC

Biy = 0, i = 1 . . . n− 1,

we first determine the Green’s function by solving

Lg(x, ξ) = δ(x− ξ), a < x < b

Big = 0.
(57)

As before,
Lg(x, ξ) = δ(x− ξ)

implies
Lg(x, ξ) = 0 on a < x < ξ, ξ < x < b,

i.e. we have a homogeneous problem to solve on two separate domains. As
before, we require extra conditions, which come by integrating Lg(x, ξ) =
δ(x− ξ) across x = ξ:

∫ ξ+

ξ−
ang

(n)(x, ξ) + · · ·+ a0g(x, ξ) dξ =

∫ ξ+

ξ−
δ(x− ξ) dξ. (58)

The right hand side clearly integrates to one. If we were to perform an
integration by parts on the first term of the left hand side, we would obtain

an(x)g
(n−1)(x, ξ)]ξ+ξ− +

∫ ξ+

ξ−
(an−1 − a′n)g(n−1) + · · ·+ a0g(x, ξ) dξ = 1.

This equation is balanced by setting a jump condition on the n−1st deriva-
tive:

g(n−1)(x, ξ)]ξ+ξ− = 1/an(ξ),

8We’ll return to the case where an(x) = 0 somewhere in the domain later in the course.
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and taking all lower derivatives to be continuous across x = ξ:

g(j)(x, ξ)]ξ+ξ− = 0, j = 0, 1, . . . n− 2.

Once the Green’s function is determined, the solution to the BVP is given
by

y(x) =

∫ b

a
g(x, ξ)f(ξ) dξ. (59)

3.6 Another view

There is one more way of viewing the GF. Start from Ly(x) = f(x), and
take an inner product with G(x, ξ) on both sides of the equation9. We are
not assuming we know G, rather we want to find properties it should satisfy
for us to solve the equation. We obtain

〈Ly,G〉 = 〈G(x, ξ), f(x)〉 =
∫ b

a
G(x, ξ)f(x) dx. (60)

(Note the integration is over x). Now, using the adjoint, we can write

〈Ly,G〉 = 〈y, L∗G〉 (61)

The idea now is to isolate y. This can be accomplished if

L∗G(x, ξ) = δ(x− ξ) (62)

in which case the left hand side leaves just y(ξ), and we have the solution

y(ξ) =

∫ b

a
G(x, ξ)f(x) dx. (63)

Comparing with our previous construction, here the big difference is that
the GF is constructed through the adjoint operator – hence we will refer to
this as the adjoint Green’s function. Compare the form of solution with the
form (31):

y(x) =

∫ b

a
g(x, t)f(t) dt, (64)

we see the subtle difference that in (63) we integrate over the first variable
of the adjoint GF, and the second variable of the GF. For a self-adjoint
operator, the constructions are the same and we must get the same GF, and
indeed as we’ve stated, the GF for a self-adjoint operator is symmetric.

9G will be the Green’s function, but not quite the same one we’ve constructed, so I am
differentiating by using capital G.
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4 Fredholm Alternative

We have now seen two different ways to solve linear BVPs. So far, we have
been happily going along, assuming that the solutions we construct are the,
one and only, solutions. But are we sure? Now it is time to address the
important question of existence and uniqueness.

Existence: Does a solution actually exist? Will the method we employ
“work,” or will it for instance lead to contradictions?

Uniqueness: We’ve found a solution, it exists, great. Is it the only one?

From a mathematical point of view, these are incredibly important ques-
tions. They can be even more important from a physics/applied mathemat-
ics standpoint. If you’re modelling a physical situation with a particular
differential equation, you’d like to think that you can find a single answer
that has physical meaning and that would agree with experiment.
To think about: What would non-existence mean in a physical context?
What about non-uniqueness?

These are important questions, and whole branches of mathematics have
been developed to think about them. Here, we’ll just look at one very useful
theorem in this arena: the Fredholm Alternative Theorem (FAT).

4.1 A closer look at SL solution

Let’s look more closely at the solution we obtained in Section 2.7.1 for a
SL-BVP. The last step in obtaining the coefficients ck of

y =
∑

k

ckyk

was
λkck〈yk, ryk〉 = 〈f, yk〉. (65)

But what happens if there is an eigenvalue equal to zero, say λ0 = 0? We
potentially have a problem, as this equation would read

0× c0 = 〈f, y0〉.

If so, there are two possibilities:
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1. 〈f, y0〉 6= 0. In this case, we have a contradiction, and we are forced to
conclude that no solution exists.

2. 〈f, y0〉 does actually equal zero. In this case, no contradiction, but we
don’t get any way to solve for c0 either. Hence

y = c0y0(x) +

∞∑

k=1

ckyk(x)

where ck are calculated values for k = 1, 2, . . ., but c0 is arbitrary,
leading to an infinite set of solutions.

So, if there is a zero eigenvalue (meaning λ0 = 0 yields a non-trivial so-
lution), it seems that either we get non-existence, or we get existence but
non-uniqueness.

And if there isn’t a zero eigenvalue? If there is no eigenfunction correspond-
ing to λ0 = 0, then (65) would never yield any problems, we could always
divide by λk to get well defined ck, and the expansion would have no issues.
Thus, we would have both existence and uniqueness.

4.2 Zero eigenvalue

The question of the zero eigenvalue is a special case, as we are really asking
whether the homogeneous system

Ly = 0

has a non–trivial solution y0(x).

4.3 FAT

What we’ve just seen above for a SL-BVP in fact holds much more widely.
For general (not necessarily self-adjoint) ODE-BVPs, the statement of FAT
reads:
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Exactly one of the two alternatives holds:

I. EITHER the homogeneous adjoint problem

L∗w0 = 0, BC∗
1 = 0, BC∗

2 = 0

has a non-trivial solution

II. OR the inhomogeneous problem

Ly = f, BC1 = α1, BC2 = α2

has a unique solution for any f, α1, α2

Notes:

1. Note the exclusive “or”. Exactly one of the alternatives is true.

2. You’ll see I’ve put in inhomogeneous boundary conditions. If we are
in Case II, with no homogeneous solution, then we can construct a
solution with inhomogeneous BC either by decomposing or by putting
BC directly into the eigenfunction construction.

In Case I, there are two subcases. Suppose we have inhomogeneous BCs,
and we solve the problem by putting the BC’s directly into the eigenfunction
expansion. Since there is an eigenvalue λ0 = 0, we will have an equation
that looks like:

0× c0 = 〈f, w0〉+ ‘stuff’0

where ‘stuff’0 has come from the inhomogeneous boundary conditions. The
two possibilities are:

1. If the RHS is non-zero, then we have a contradiction, and thus no
solution exists.

2. If the RHS=0, there is no contradiction, but we have no information
on c0 either, thus the solution is valid for any constant c0, and we have
existence but non-uniqueness.
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4.4 Homogeneous vs inhomogeneous BC

With homogeneous boundary conditions, FAT has a very ‘nice’ form, easily
stated in words. It says that to have a unique solution, the adjoint homo-
geneous problem must have only the trivial solution; otherwise, if there is
a non-trivial solution w0, then the solvability condition to have a solution
(but non-unique!) is that the forcing function f(x) must be orthogonal to
the homogeneous solution w0.

With inhomogeneous BC, the criteria for a unique solution is the same,
but when the non-trivial w0 exists, the solvability condition is not so cute,
due to the ‘stuff’0 arising from the BCs. Note that if we had tried to de-
compose the solution, i.e. separate the boundary conditions into a problem
Ly = 0, BC 6= 0, then in looking at Ly = f, BC = 0, we would arrive at the
wrong solvability condition, since there would be no mention of boundary
conditions! In other words, decomposing the solution could lead to incorrect
conclusions! Which leads to the following...

Health warning: If you have a problem with inhomogeneous boundary
conditions AND there is a zero eigenvalue, do not try to decompose the so-
lution. Incorporate the boundary conditions directly into the eigenfunction
expansion!

4.5 Examples

Ex. 1
Solve y′′ + y = f , y(0) = 0, y(π) = 0. This is self-adjoint and has the zero
eigensolution y0 = sinx. Then

〈y′′, sinx〉 =

∫ π

0
y′′ sinxdx

= −
∫ π

0
y sinxdx (by parts, twice)

= −〈y, sinx〉

There is a solution only if
〈f, sinx〉 = 0,

in which case y + c sinx is a solution for all c.

Ex. 2a
Solve y′′ = f(x) with 0 < x < 1, y(0) = 0 and y′(1) = 7. The zero eigenvalue
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adjoint problem is L∗w0 = w′′
0(x) = 0 (this problem is also self-adjoint), with

w0(0) = w′
0(1) = 0. This only has the trivial solution w0 ≡ 0, so the full

problem has a unique solution for any f(x).
Ex. 2b
Same problem, but change the BC to y′(0) = 0 and y′(1) = β, and let
f(x) = 3. This time we get w0(x) = 1. Thus:

〈y′′, w0〉 = 〈f, w0〉

⇒
∫ 1

0
y′′dx = 3

⇒ y′|10 = 3

The BC’s give that y′(1) − y′(0) = β, and thus if β 6= 3, we have a con-
tradiction and no solution exists, while if β = 3, we have a non-unique
solution.

4.6 FAT - Linear algebra version

The Fredholm alternative can also be expressed as a theorem of linear alge-
bra. It addresses the question: when does Ax = b have a unique solution?,
where

A ∈ R
n,n : n× n matrix

b ∈ R
n : n dim, column vector

}

given

x ∈ R
n : n dim column vector (unknown)

FAT says:
Exactly one of the two alternatives holds:

I. Either: AT y = 0 has a non-trivial solution y 6= 0.

II. Or: Ax = b has a unique solution (has a solution, and it is unique).

If AT y = 0 has solutions y 6= 0, then Ax = b has either no or multiple
solutions.
Distinguish cases by solvability condition.
Let y1, y2, . . . , yN be a basis of AT y = 0.

(a) If yTk b = 0 for all k, then Ax = b is solvable, and the solution space
has dimension N .

(b) If yTk b 6= 0 for one or more k, then Ax = b has no solutions.
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Example

(1)

A =

(
1 2
3 4

)

b =

(
1
2

)

Look at AT y = 0 (GE=Gaussian Elimination)

(
1 3 0
2 4 0

)

GE−−→
(
1 3 0
0 −2 0

)

⇒ y1 + 3y3 = 0
−2y2 = 0

⇒ y = 0 i.e. AT y = 0 only has a trivial solution. Therefore, FAT I is
false, thus FAT II is true i.e. Ax = b has a unique solution (for any b).

(2)

A =

(
1 2
3 6

)

b =

(
b1
b2

)

AT y = 0 :

(
1 3 0
2 6 0

)

GE−−→
(
1 3 0
0 0 0

)

⇒ y1 + 3y2 = 0

Thus, a non-trivial solution for AT y = 0 is: y0 =

(
−3
1

)

.

Therefore I is true, thus II of FAT is false:
Ax = b has either none or multiple solutions. Which of these two
cases applies? That depends on b. Since y0 forms a basis for the one
dimensional null space AT y = 0, the solvability condition is yT0 b = 0.

Alternatively, we could see this by GE for Ax = b.

(
1 2 b1
3 6 b2

)

GE−−→
(
1 2 b1
0 0 b2 − 3b1

)

⇒ x1 + 2x2 = b1
0 = b2 − 3b1

So, no solution if b2−3b1 6= 0, and a one-dimensional space of solutions
if b2 − 3b1 = 0.
Note:

b2 − 3b1 = (−3, 1)
(
b1
b2

)

= yT b
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4.7 FAT and Variation of parameters

To see how Fredholm Alternative ties in with the Variation of parameters
recipe, suppose y1 satisfies Ly1 = 0 and both boundary conditions (i.e.
there exists a zero eigenvalue), say y1(a) = y1(b) = 0. We let y2 be a
second, linearly independent solution (which means that y2 can’t satisfy
either boundary condition, else we’d have the Wronskian W = 0). Then
consider

y = c1y1 + c2y2.

Applying y(a) = 0 requires c2(a) = 0, so we have

c2(x) =

∫ x

a

f(t)y1(t)

P2(t)W (t)
dt,

as before (Eqn (13)). But then y(b) = 0 requires c2(b) = 0, i.e.

∫ b

a

f(t)y1(t)

P2(t)W (t)
dt = 0

this is the solvability condition. If this solvability condition holds (FAT I),
then we can construct our solution, but we have no information on the ad-
ditive constant in c1, i.e. existence but not uniqueness.

As an example, consider the problem

y′′ + y = f(x), y(0) = 0 = y(π), (66)

so H is y′′ + y = 0.
We try to follow the method: choose y1 so that y1(0) = 0, e.g. y1 = sinx; but
then y1(π) = 0 too. So y1 is the zero eigenfunction. We revert to Variation
of Parameters, choosing a second, linearly independent, solution y2 of H,
say y2 = cosx. Then W = −1, P2 = 1 and y = c1(x)y1(x)+ c2(x)y2(x) with
ci as in (9). Now we try to impose the boundary conditions:

y(0) = 0⇒ c2(0) = 0⇒ c2 = −
∫ x

0
f(t) sin t dt

by (9); but now
y(π) = −c2(π)

so for y(π) = 0, we must have
∫ π

0
f(t) sin t dt = 0. (67)
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4.8 FAT and Green’s functions

As we’ve seen, Variation of Parameters is just one way to construct the
Green’s Function. The Green’s function approach gave the solution to Ly =
f as

y =

∫ b

a
g(x, ξ)f(ξ) dξ.

So, if the GF approach works, i.e. if we can find g, then we have both
existence and uniqueness. Clearly, if there is a zero eigenvalue, something
must go wrong with any construction of the GF.
Consider the delta function formulation for the GF:

Lg(x, ξ) = δ(x− ξ),

and let’s apply FAT, thinking of ξ as a dummy variable. If there is a zero
eigenvalue, then there exists non-trivial w0(x) for which L

∗w0 = 0. Then we
are in case I and Lg = δ does not have a unique solution, and the solvability
condition for any solution to exist is

〈w0(x), δ(x− ξ)〉 = 0

which clearly does not hold since

〈w0(x), δ(x− ξ)〉 = w0(ξ)

and w0 6≡ 0. Thus, we can’t construct the GF. If the solvability condition
is satisfied, we can construct a so-called Modified Green’s function can be
constructed, yielding a non-unique solution, but we won’t go into details
here.

5 Singular points of differential equations

In this section we will seek solutions of the nth order linear differential
equation

Ly = y(n)(x)+ pn−1(x)y
(n−1)(x)+ · · ·+ p1(x)y

(n)(x)+ p0(x)y(x) = 0, (68)

in the form of a series expansion in the neighbourhood of x = x0. How we
proceed, and the nature of the solution, depends on how well-behaved the
functions pj(x) are around x0.
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5.1 Ordinary points

The point x0 is an ordinary point of the ODE if all pj(x) are analytic there,
i.e. they can be expanded as a convergent power series. The procedure in
this case is pretty straightforward: (i) write y(x) =

∑∞
0 akx

k as a power
series, (ii) plug into (68), using the power series expansions of each of the
pj , then (iii) obtain a sequence of equations for the coefficients ak that can
be solved recursively.
This is the simplest (and least interesting) case, so we won’t really spend
any time on it, but it is worth noting a few things about ordinary points:

• All n linearly independent solutions of (68) are analytic at x0.

• The radius of convergence of the series solution ≥ distance (in C) to
next singular point.

Example:
(x2 + 1)y′ + 2xy = 0

Here x0 = 0 is an ordinary point. Nearest singular points are x = ±i,
distance 1 from 0 ⇒ radius of convergence ≥ 1.
Here we can obtain the solution 1

(1+x2)
via easier routes, but we note that

1

(1 + x2)
= 1− x2 + x4 − . . .

with a radius of convergence = 1, is the series solution one would obtain.

5.2 Singular points

The point x0 is called a singular point of the ODE if one of the pj(x) is
not analytic there.
In this case, the general solution y may have a singularity at x = x0
(but not necessarily). This means that the general solution y may not be
analytic at x0: y or its derivatives can “blow-up” as x→ x0.

Where do ODEs with singular points arise?

• As we will see later, equations with singular points at x = 0 commonly
arise from linear PDEs in polar/spherical co-ordinates (where x = 0
corresponds to radius r = 0).
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• SL-BVPs with a singular point at the boundary - such problems often
require the solution to be bounded at the boundary point (rather than
prescribing a specific value).

Note: x0 = ∞ can also be classified as an ordinary or singular point by
changing the independent variable via the substitution t = 1/x, u(t) = y(x),
(i.e. dy/dx = −t2du/dt, etc.) and classifying the point t = 0 for the result-
ing ODE for u(t).

Some Examples

(a) y′′ = exy: every x0 is an ordinary point

(b) x5y′′′ = y: x0 = 0 is a singular point, every x0 6= 0 is an ordinary
point.

Let’s consider more closely a simple example to see the types of solutions
near singular points. Consider the equation:

y′ + x−my = 0, m ≥ 0 an integer

The general solution can be found via separation of variables, and depends
on the value of m:

1. For m = 0, the point x = 0 is ordinary and y(x) = C exp(−x). This
function can be expanded into a power series at x = 0 which converges
for all x ∈ C.

2. For m = 1, y(x) = C/x. This solution clearly has a singularity at
x = 0, but a rather benign one (a simple pole).

3. For m = 2 (and similarly for larger m), y(x) = C exp(1/x); this solu-
tion has a very strong singularity: x = 0 is an essential singularity of
exp(1/x) in the complex plane.

This example suggests that the solution at a singular point of an ODE tends
to have a stronger singularity the higher the order of the poles in the coeffi-
cients in front of the lower order terms of the ODE. In fact, this is the key
idea behind the classification of singular points:

Regular singular points: x0 is a regular singular point, if all p̃j(x) ≡
pj(x)(x− x0)n−j are analytic at x = x0 (for j = 0, . . . , n− 1).
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Irregular singular points: all other singular points.

For regular singular points, you might think of it as the singularities are not
“too bad”, we are essentially able to remove the trouble in pj by multiplying
by a power of (x−x0) decreasing with the degree of derivative. In this case,
a modification of the power series approach can be used.
For irregular singular points, though, there is no general theory!

Cauchy-Euler. One of the simplest and most instructive examples is the
Cauchy-Euler equation

x2y′′ + axy + by = 0,

which clearly has a regular singular point at x = 0. As you’ve seen before,
the general solution can be found via the ansatz y = xm. The characteristic
equation for m is m(m− 1) + am+ b = 0. There are two cases:

(i) The characteristic equation has two distinct roots m1 and m2. Then, the
general solution is:

y(x) = C1x
m1 + C2x

m2 .

(ii) The characteristic equation has a double root m. Then, the general
solution is:

y(x) = C1x
m + C2x

m ln(x).

Note that if the roots are two distinct non-negative integers, then the general
solution in (i) is analytic (even though the ODE has a singular point). In
general, however, the behaviour as x → 0 is a fractional or even complex
power of x.
This behaviour carries over to the general situation for regular singular
points, except that the functions xm are multiplied by an analytic func-
tion (i.e. a power series in x). Next, we’ll look at the general theory for
regular singular points.

5.3 Frobenius method for 2nd order ODEs

From now on, we’ll restrict to 2nd order equations. If the ODE

Ly ≡ y′′ + P (x)y′ +Q(x)y = 0 (69)

has a regular singular point at x = x0, then

p(x) := P (x)(x− x0)
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and
q(x) := Q(x)(x− x0)2

are analytic, i.e.

p(x) =
∞∑

n=0

pn(x− x0)n (70)

q(x) =
∞∑

n=0

qn(x− x0)n (71)

The idea is to seek a solution in the form of a Frobenius series

y(x) = (x− x0)α
∞∑

n=0

an(x− x0)n (72)

(In terms of the Cauchy-Euler example, α is playing the role of m and
∑
an(x−x0)n is the analytic function with coefficients an to be determined.)

We may assume that a0 = 1 (by choosing α appropriately and normalizing).
Now plug in and equate coefficients. At the lowest power ((x − x0)α−2, we
find

α(α− 1) + p0α+ q0 = 0

This polynomial plays an important role, we will denote it

F (α) = α(α− 1) + p0α+ q0.

The equation F (α) = 0 is called the indicial equation, it determines the
possible indicial exponents α1, α2. Note that these exponents can be com-
plex! We’ll order them such that ℜ(α1) ≥ ℜ(α2).

Let’s carry on with equating coefficients of powers of (x−x0). We find after
some algebra that the coefficients of (x− x0)n+α−2 satisfy

F (α+ n)an = −
n−1∑

k=0

[(α+ k)pn−k + qn−k]ak (73)

Setting α = α1, we know that F (α1 + n) 6= 0 for any integer n ≥ 1 (do you
see why?), thus we can use (73) to solve for all the coefficients an, and we
obtain one solution
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y1(x) = (x− x0)α1

∞∑

n=0

an(x− x0)n

︸ ︷︷ ︸

A(x)

. (74)

Thus the first solution can always be expressed as a Frobenius series with
indicial exponent α = α1.

For the second solution, we have to distinguish between several cases and
sub-cases10.

Case I: α1 − α2 is not an integer (in particular 6= 0).
In this case, F (α2 + n) 6= 0 for all n ≥ 1. Thus we can solve (73) for all
coefficients – let’s call them bn to distinguish from previous coefficients.
Thus, we obtain with no problems a second solution also as a Frobenius
series, with indicial exponent α2,

y2(x) = (x− x0)α2

∞∑

n=0

bn(x− x0)n

︸ ︷︷ ︸

B(x)

Case IIa: α1 = α2

In the case of a double root we clearly only get one solution with the Frobe-
nius method, and we have to multiply by logs to get a second solution
(similar to the case of a double root in Cauchy-Euler). In particular, the
second solution is of the form

y2(x) = y1(x) ln(x− x0) + (x− x0)α1

∞∑

n=0

cn(x− x0)n,

where y1 is the first solution. We can determine the cn in the usual manner.
A derivation of this form can be done using the so-called derivative method,
which is outlined in Section 5.4.

Case IIb: α1 − α2 = N , where N > 0 is an integer. In this case, we will
potentially run into trouble in (73) at n = N . There are two possibilities:

10and sub-sub-cases. It’s a bit of a headache...
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(i) For n = N , RHS 6= 0 in (73). Then we have a contradiction, and the
solution method doesn’t work. To get a second solution, we use the same
form as Case IIa:

y2(x) = y1(x) ln(x− x0) + (x− x0)α2

∞∑

n=0

cn(x− x0)n

and determine the cn by substituting into the ODE. Note that the indicial
exponent for the second term is α2 (whereas y1 is given by the Frobenius
series using the exponent α1).

(ii) For n = N , RHS = 0 in (73).
There is no contradiction, but any choice for an (or bn) will satisfy (73) ⇒
2nd solution has Frobenius form

y2(x) = (x− x0)α2

∞∑

n=0

bn(x− x0)n

︸ ︷︷ ︸

B(x)

. (75)

where b0 can be chosen to be b0 = 1 and bN is also arbitrary. Notice that
changing bN changes (75) by multiples of y1.

5.3.1 Example

Find a series solution about the regular singular point x0 = 0 for the differ-
ential equation

4x2y′′ + 4xy′ + (4x2 − 1)y = 0. (76)

Step 1 Assume a solution of form

y = xα
∞∑

k=0

akx
k (77)

with the assumption a0 6= 0. Compute the corresponding series for
y′, y′′ by differentiating “term by term”.

Step 2 Plug the series into the ODE and multiply everything out.

0 =
∞∑

k=0

4(k + α)(k + α− 1)akx
k+α

︸ ︷︷ ︸

4x2y′′

+
∞∑

k=0

4(k + α)akx
k+α

︸ ︷︷ ︸

4xy′

−
∞∑

k=0

akx
k+α

︸ ︷︷ ︸

y

+
∞∑

k=0

4akx
α+k+2

︸ ︷︷ ︸

4x2y

(78)
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The indicial equation comes from the balance at lowest order, in this
case xα:

F (α) = 4α2 − 1. (79)

Step 3 The indicial exponents are the roots of F

α1 =
1

2
, α2 = −

1

2
(80)

Step 4 Shift the terms in the series above in oder to combine all terms into
one series, i.e. the goal is to obtain a form
∑

[stuff not involving x]xsomething+possibly extra terms from start of series

For this example, we need only shift the index in the last sum, so all
series have sum with xα+k. Thus, writing

∞∑

k=0

4akx
α+k=2

n=k+2
︷︸︸︷
=

∞∑

n=2

4an−2x
n+α

we obtain

0 = a0F (α)x
α+a1(4α

2+8α+3)xα+1+

∞∑

n=2

[(4(n+α)2−1)an+4an−2]x
n+α

(81)
We have chosen the α so that the equation balances at xα, and hence
a0 is free. Balancing at all other orders will determine the coefficients
an

Step 5 Treat α = α1 first. Setting α = α1 = 1/2 in (81), we obtain

a1 = 0, an =
−1

n(n− 1)
an−2, n = 2, 3, . . .

Step 6 Use the recursion formula to determine a formula for the ak in terms
of a0. A good idea is to write out a few terms, and look for a pattern.

a2 =
−1
2 · 3a0

a3 = 0

a4 =
−1
4 · 5a2 =

1

5 · 4 · 3 · 2a0
. . .

a2k =
(−1)ka0
(2k + 1)!

, a2k+1 = 0, k = 1, 2, 3 . . .

(82)
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Step 7 Input the formula for the coefficients to obtain the first solution

y1(x) = a0x
1/2

∞∑

k=0

(−1)k
(2k + 1)!

x2k (83)

Step 8 Repeat the process for the second root α2, being careful to treat the
right case depending on whether α1 − α2 is an integer. In this case,
α1 − α2 = 1 is an integer, so we are in Case IIb. At n = N , we obtain
0 ∗ b1 = 0. There is no contradiction, and b1 is arbitrary and can be
set to zero (CaseIIb(ii)). Following the recursion forward with b0 6= 0,
similar computations as above yield

y2(x) = b0x
−1/2

∞∑

k=0

(−1)k
(2k)!

x2k (84)

Step 9 The general solution is a combination of the two solutions. Thus the
general solution is

y(x) = C1x
−1/2

∞∑

k=0

(−1)k
(2k)!

x2k + C2x
−1/2

∞∑

k=0

(−1)k
(2k + 1)!

x2k+1

But you might recognise the series for sine and cosine here, with a
root x out front! In fact, the general solution to (76) (which is Bessel’s
equation of order 1/2) is

y(x) = C1
cosx√
x

+ C2
sinx√
x

5.4 Derivative method

Suppose α1 is a double root of F (α). Let a0 = 1 and solve (73) for a1, a2 . . .
with arbitrary α (i.e. F (α) not generally = 0. Thus, the an = an(α), and
we can think of α as a parameter in the series

y(x;α) ≡ (x− x0)α +
∞∑

n=1

an(α)(x− x0)n+α

⇒ Ly = L(x− x0)α = (x− x0)α−2F (α) (85)

We know that y(x;α1) is a solution. But α1 is double root, which implies

d

dα
F |α=α1

= 0
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The idea is to differentiate (85), then set α = α1. Since L has no dependence
on α,

∂

∂α
(Ly)|α=α1

= 0 = L

(
∂y

∂α

)

|α=α1

⇒ y2 =

(
∂y

∂α

)

|α=α1

is also a solution. Specifically, to get a more concise form:

(
∂y

∂α

)

|α=α1
=

∞∑

n=0

an(α1)(x− x0)n+α1 ln(x− x0)+

∞∑

n=0

dan
dα
|α=α1

(x− x0)n+α1

= y1(x) ln(x− x0) +
∞∑

n=0

bn(x− x0)n+α1

︸ ︷︷ ︸

=(x−x0)α1C(x)

(86)

• Derivative method can be used to determine bn, however, a closed form
for an(α) for general α is required for this! It is usually easier to just
use the appropriate form of the series.
Plug it into the equation, and compare coefficients (as you would do
for a power series expansion). After plugging in, the terms containing
the log terms should cancel.

6 Special functions

We have seen in the previous section a method for constructing solutions
to ODEs with non-constant coefficients and singular points. For any given
problem, the success of the method and the utility of the solution depends
on whether one can obtain a direct formula for the series coefficients.

In this section, we explore several special functions, which occur commonly
enough to have a name, and for which the “hard work”, the series solution
method, has already been done.
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6.1 Bessel Functions

These particularly common functions can be motivated by considering the
vibrating membrane of a circular drum. Let U(x, y, t be the position of the
membrane at time t and position (x, y), compared to the flat horizontal rest
state.
The governing equations for the membrane are (wave equation):

Utt = c2∆U for x2 + y2 < 1 (Newton’s second law & elastic stresses)

U = 0 at x2 + y2 = 1 (Membrane pinned at boundary.)

Separation of variables U(x, y, t) = v(t)u(x, y) yields

vtt
v

=
∆u

u
= const ≡ −λ,

i.e. ∆u = −λu.
Switch to polar coordinates: u now depends on r, θ:

1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂θ2
+ λu = 0 0 < r < 1, 0 ≤ θ ≤ 2π,

u = 0 r = 1, 0 ≤ θ ≤ 2π

u periodic in θ.

This is a PDE eigenvalue problem, we need to find λ for which there are
non-trivial solutions u(r, θ).
What about r = 0? Note that in

1

r

∂

∂r

(

r
∂u

∂r

)

=
∂2u

∂r2
+

1

r

∂u

∂r

the first derivative of u has a singular coefficient. As for ODEs with singular
points, we may therefore expect that this will give rise to singularities in the
solutions of the PDE and thus we impose the condition

u bounded as r → 0,

since we expect the solution of the governing equations for the drum mem-
brane to be bounded.
Since u is periodic in θ we can expand u into a Fouries series in θ:

u(r, θ) = U0(r) +
∞∑

n=1

Un(r) cosnθ + Vn(r) sinnθ;
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substituting this into the previous set of equations gives (′ = d/dr)

1

r

(
rU ′

n

)′
+

(

λ− n2

r2

)

Un = 0, for 0 ≤ r < 1, (87a)

Un = 0 at r = 1, (87b)

Un bounded as r → 0. (87c)

The same equations hold for the Vn. Now eliminate λ by rescaling: Un(r) =
y(x), x =

√
λr,

x2y′′ + xy′ + (x2 − n2)y = 0,

and we arrive at Bessel’s equation (for integer n ≥ 0.).

6.2 Bessel functions of first and second kind

Bessel’s equation (BE) has a regular singular point at x = 0, with indicial
equation α(α− 1)+α−n2 = 0, the solutions of which are α1 = n, α2 = −n
(double root for n = 0).

The general solution is given as a linear combination of two linearly inde-
pendent solutions. A detailed discussion along the lines of Section 5 reveals
that one is locally given at x = 0 by a Frobenius series with the exponent
α1 = n and the other by a Frobenius series with exponent α2 = −n plus
ln(x) times the first solution (case II(b)(i) in our general discussion of ODEs
with singular points).

The first Frobenius series with a specific normalization of the leading coef-
ficient of the expansion defines the Bessel functions of first kind

Jn(x) =
(x

2

)n
∞∑

k=0

(−1)k
k!(k + n)!

(x

2

)2k

for integer n ≥ 0.
Similarly, a specifically normalized choice for the second expansion defines
the Bessel functions of second kind

Yn(x) =
2

π
ln(x/2)Jn(x)−

(x/2)−n

π

n−1∑

k=0

(n− k − 1)!

k!

(
x2/4

)k

− (x/2)n

π

∞∑

k=0

[ψ(k + 1) + ψ(n+ k + 1)]

(
−x2/4

)k

k!(n+ k)!
,
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where ψ(m) = −γ +
∑m−1

k=1 k
−1, (m ≥ 1) and γ = 0.5772 . . . is the Euler-

Mascheroni constant. (Details regarding these expansions will be studied in
the problem sets on problem sheet 7.)

Some Bessel function fun facts:

• Since Bessel’s equation has only one singular point for finite x, the
series for Jn and in Yn have an infinite radius of convergence.

• Also, Jn and Yn are oscillating functions that decay as x→∞. They
have an infinitude of discrete zeros for x ≥ 0, which are quite important
and have therefore been tabulated (for example in Abramowitz and
Stegun).

• At x = 0, the behaviour of the two kinds of Bessel functions is quite
different. For Jn, we have Jn(0) = 0 if n > 0, and J0(0) = 1, while
Yn →∞ as x→ 0.

• Two recursion relations, which can be derived from the local expan-
sions:

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x),

Jn+1(x) = −2J ′
n(x) + Jn−1(x).

The same relations also hold for the Yn’s. In principle, these relations
can be used to compute the Bessel functions, however, the straightfor-
ward way – calculating the values for larger n from those for smaller n
– is usually numerically unstable and is therefore not recommended.

Many more relations as well as theory exist. A vast collection of results for
the Bessel functions can be found in particular in Abramowitz and Stegun;
some derivations in Riley et al. But for now, back to the vibrating drum. We
can now express the general solution for (87a) in terms of Bessel functions
as

Un(r) = aJn

(√
λr
)

+ bYn

(√
λr
)

.

The boundedness condition (87c) requires b = 0. A non-trivial solution
therefore requires that we set a 6= 0, without loss of generality: a = 1.
Thus, the boundary condition (87b) at r = 1 leads to

Jn

(√
λ
)

= 0,
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i.e.
√
λ has to be one of the zeros of Jn. If we label the zeros of Jn by αm

m = 1, 2, . . ., (sorted, for example, in ascending order), then the eigenvalues
for (87) are

λ = α2
m m = 1, 2, . . .

with corresponding eigenfunctions Jn (αmr), m = 1, 2, . . .. (Note that n is
kept fixed, and that the zeros depend on n!)
The differential equation (87a) can be written in Sturm-Liouville form by
multiplying through with r; i.e. (87) is a singular SL problem with weight-
ing function r, and we therefore have the following orthogonality relations
between the eigenfunctions

∫ 1

0
rJn (αlr) Jn (αmr) dr = 0 for l 6= m;

a separate calculation is required for l = m:

∫ 1

0
rJ2

n (αmr) dr =
1

2

(
J ′
n(α)

)2
.

6.3 Legendre equation and Legendre functions

Legendre equations/functions arise from studying eigenvalue problems for
the 3D Laplace operator in spherical coordinates.
The associated Legendre equation is given by

(1− x2)y′′ − 2xy′ +

(

l(l + 1)− m2

1− x2
)

y = 0,

or in self-adjoint form

(
(1− x2)y′

)′
+

(

l(l + 1)− m2

1− x2
)

y = 0.

The numbers m and l can in general be complex; here, we will focus on the
case where m and l are non-negative integers. The solutions of the associate
Legendre equation are the associated Legendre functions and are denoted by
Pm
l ; for m = 0, we drop the ‘associated’ and speak of the Legendre equation

and functions, usually denoted by Pl.
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6.3.1 Properties

1. The points x = ±1 and x = ∞ are regular singular points of the
associated Legendre equation. The indicial exponents for x = 1 are
−m/2 and m/2. Thus, the local expansion yields one bounded and
one unbounded solution at x = 1. The same is true for x = −1.

2. If we replace l(l+1) in the self-adjoint form of the associated Legendre
equation by λ,

(
(1− x2)y′

)′
+

(

− m2

1− x2
)

y + λy = 0, (88)

and consider bounded solutions on −1 < x < 1, we see that bound-
edness imposes two conditions, one at each end of the interval. This
suggests that (88) is a singular Sturm-Liouville problem (with coeffi-
cient functions p = 1 − x2, q = −m2/(1 − x2), r = 1) with discrete
eigenvalues. Indeed, the eigenvalues are exactly of the form λ = l(l+1)
with integer l ≥ m. The eigenfunctions are the corresponding asso-
ciated Legendre functions, i.e. Pm

l . From Sturm-Liouville theory, we
infer the orthogonality relation

∫ 1

−1
Pm
l (x)Pm

n (x)dx = 0 for l 6= n.

The case l = n requires explicit calculation, see problem sheet.

3. For m = 0 the Legendre functions (without ‘associated’) are polyno-
mials, and are given explictly by a so-called Rodrigues’ formula:

Pl(x) =
1

2ll!

dl

dxl

[

(x2 − 1)l
]

.

Of course, to find the general solution of the Legendre equation we
need a second, linearly independent solution, and this is given by the
Legendre function of 2nd kind, denoted by Qn. These solutions are
unbounded at x = ±1. For the case n = 0, the solution Q0 was stated
on problem sheet 4:

Q0(x) =
1

2
ln

(
1 + x

1− x

)

.
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4. For the general case, 0 ≤ m ≤ l, the associated Legendre functions of
first and second kind are given by

Pm
l (x) = (−1)m(1− x2)m/2d

mPl

dxm

and

Qm
l (x) = (−1)m(1− x2)m/2d

mQl

dxm

respectively. The associated Legendre functions Pm
l are polynomials,

if and only if m is even.

5. There are several recurrence relations for (associated) LF, e.g.: These
relations, and further properties can be found in Abramowitz and Ste-
gun, and some derivations in Riley at al.

6.4 Generalisation: Orthogonal Polynomials

There are other second order linear ODEs with families of orthogonal poly-
nomials as solutions. Often, the orthogonality relations

∫ b

a
pm(x)pn(x)ω(x)dx = 0 m 6= n

with a fixed weighting function ω(x) (in general non-trivial, i.e. 6≡ 1) can by
inferred by formulating appropriate Sturm-Liouville (eigen)problems. Or-
thogonal polynomials play an important role in approximation theory, for
the construction of numerical methods to discretized differential equations,
and in many applications, e.g. from physics.

One can in fact give a complete classification of all infinite families of or-
thogonal polynomials that can arise from second order linear differential
equations (we omit here some specific conditions that are needed to make
this a precise statement). The most important ones include (n is a non-
negative integer):

1. The “Jacobi-like” polynomials, to which the Legendre, the Chebychev,
and the Gegenbauer polynomials belong. These arise from DEs of the
type

x(1− x)y′′ + (a+ bx)y′ + λy = 0,

with constants a and b and an appropriate discrete set of λ.
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2. The Laguerre and associated Laguerre polynomials, which are solu-
tions of

xy′′ + (k + 1− x)y′ + λy = 0,

for k 6= −1,−2, . . . and an appropriate discrete set of λ. (For the
Laguerre polynomials, i.e. without ‘associated’, we have k = 0, and
λ = n.)

3. Hermite polynomials, which are solutions of the Hermite equation

y′′ − 2xy′ + λy = 0 with λ = 2n.

These families share many similar structural properties, e.g. they are given
explicitly by Rodrigues’ formulae and have similar recurrence relations, see
Abramowitz and Stegun.

7 Approximation techniques: Asymptotic Expan-

sions and Regular Perturbations

A complex mathematical problem often cannot be solved exactly but it may
contain parameters that represent physical constants or other conditions
relevant to particular circumstances. If these parameters are small or large
it may be possible to exploit this in order to derive approximate solutions to
the original problem. Doing this in a systematic manner is possible through
the use of asymptotic expansions. In this section a basic framework for
using these methods is presented and some insight given into how to derive
approximations. Such methods can be put on a more rigorous footing but
we shall not pursue this further here.
We shall consider mathematical problems that have been put into a form,
usually through a process of “nondimensionalisation” that allows simple
parameters to be considered in the problem. More details on how to nondi-
mensionalise a given physical problem can be found elsewhere and in Part
B and C applied mathematical courses.

7.1 Definitions: order notation and twiddles

To start it is necessary to give a basic structure where approximations to a
function can be considered as some parameter in the function becomes large
or small.
The goal of the next few definitions is to capture the idea that a function is
‘the same size as’ or ’much bigger (smaller)’ than another near a point
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We consider two functions as x tends towards a particular value x0. Let
f(x), g(x) ∈ R and x0 ∈ R (often x0 = 0 or ∞ so it will be a small or large
parameter).
There are now some definitions that will allow the size of functions to be
compared. The first is close to the idea that one function is “less than or
equal” to the magnitude of another function.

Definition (‘Big O’ notation). We write

f(x) = O (g(x)) as x→ x0

if ∃A > 0 such that |f | < A |g| for all x near x0 (compare to definition of
limit, Lipschitz).

Examples.
sin(2x) = O (x) as x→ 0

3x+ x3 = O(x) as x→ 0

5x2 + x−3 − e−x = O
(
x2
)

as x→∞.

The next definition defines when two functions are “equal” (this includes
any coefficients)

Definition (‘Twiddles’ or ‘is asymptotic to’). We write

f(x) ∼ g(x) if
f

g
→ 1 as x→ x0

(“f is asymptotic to g as x→ x0”).

Examples.
sin 2x ∼ 2x as x→ 0

x+ e−x ∼ x as x→∞

and finally we can consider one function to be strictly greater in magnitude
than another function

Definition (‘little o’ notation). We write

f(x) = o (g(x)) as x→ x0

if limx→x0

f
g = 0.

(Note that this relationship is also written in the form “f ≪ g as x→ x0”).
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Examples.
9x2 − 4x5 = o (x) as x→ 0

3

x2
− 3e−x = o

(
1

x

)

as x→∞
.

Note that whenever using the notation ’O()’, ’∼’ or ’o()’ you should include
in the statement what value x is tending to.

Example. You know from previous courses Taylor’s theorem for a smooth
function f(x). This allows the statements to be made:

f(x) = f(x0) + (x− x0)f ′(x0) + O
(
(x− x0)2

)
as x→ x0

f(x) = f(x0) + (x− x0)f ′(x0) + o ((x− x0)) as x→ x0

f(x) = f(x0) + (x− x0)f ′(x0) + o
(

(x− x0)3/2
)

as x→ x0

f(x) ∼ f(x0) as x→ x0

f(x)− f(x0) ∼ (x− x0)f ′(x0) as x→ x0.

7.2 Asymptotic Sequences

We now use these ideas of determining the magnitude of a function to ex-
amine how to solve problems approximately. We shall change the notation
here a bit to allow us to use the ideas in many different situations.
In the previous work x was considered as the parameter that was tending
to a particular value. In practice, as mentioned earlier, some physically
relevant parameter in a problem will be considered to be large or small. To
focus these ideas in the following work consider the physical parameter to
be ǫ and take the particular case where the solution to a problem is sought
in the case where ǫ is small so that we take ǫ → 0. (as this is generally
understood from context, we will not always repeat the phrase ‘as ǫ→ 0’).
To start the approximation of a function it is useful to generalise the idea
of a Taylor series for a function by expanding the function in terms of ǫ. To
do so, a sequence is needed similar to the powers of x− x0 in Taylor series.

Definition. A set of functions {φn(ǫ)}n=0,1,2,... is an asymptotic sequence
as ǫ→ 0 if, for each i > 0, φn+i(ǫ) = o (φn(ǫ)) as ǫ→ 0, i.e. each subsequent
term in the sequence is of smaller magnitude than the previous term.

Examples.
{1, ǫ, ǫ2, ǫ3, . . .}
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{1, ǫ1/2, ǫ, ǫ3/2, . . .}
{1, ǫ, ǫ log ǫ, ǫ, ǫ2 log ǫ, . . .}

Note the use of “. . .” to indicate the sequence continues.

Definition. A function f(ǫ) has an asymptotic expansion with respect to
{φn(ǫ)} as ǫ→ 0 if there exist constants an such that

f(ǫ) ∼
∑

n

anφn(ǫ).

This means that

f(ǫ) =
N∑

n=0

anφn(ǫ) + o (φN (ǫ)) ∀N.

From earlier you know that if f(x) is smooth then the coefficients of a Taylor
expansion are unique; a similar property holds for an asymptotic expansion.

Lemma. Given {φn}, the coefficients an are unique.

Proof. By induction on n — try it at home.

Note. The function defines the expansion but not vice versa.

Example. If φn(ǫ) = ǫn, n = 0, 1, 2, . . ., then

1

1− ǫ ∼ 1 + ǫ+ ǫ2 + · · · as ǫ→ 0

but
1

1− ǫ + e−1/ǫ ∼ 1 + ǫ+ ǫ2 + · · · as ǫ→ 0 as well

because
e−1/ǫ = o (ǫn) ∀n

(“exponentially small” (“transcendentally small”))

Hence asymptotic expansions generalise the concept of Taylor series but
lose the property of defining the function. In addition such asymptotic
expansions may, and in most cases do, have zero radius of convergence but
we do not consider such issues here.

In solving a physical problem where ǫ is a parameter (e.g. a coefficient) the
series may look like

f(~x, ǫ) ∼
∑

n

an(~x)φn(ǫ)

and we shall only seek the first few terms of the expansion as the approxi-
mation of the function.
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7.3 Approximate roots of equations, dominant balance

To start using asymptotic methods consider the problem of finding the roots
of equations. Here the roots are given by values of x and the parameter in
the problem is ǫ, and the roots are sought in the case ǫ → 0. Hence the
roots are x(ǫ). To focus ideas, consider a simple case where the exact roots
can be easily found.

Example. Solve approximately the quadratic

ǫx2 + x− 1 = 0 as ǫ→ 0.

Note. It is reasonable to consider that the solution “as ǫ → 0” might be
found by taking ǫ = 0 so that

x− 1 = 0 ⇒ x = 1

is the solution. But the original problem was a quadratic, so we will use
asymptotics to see how we get a better approximation to this root near
x = 1 but also how to find an approximation to the other root.

• First try : The simplest strategy is to guess that the asymptotic ex-
pansion of x(ǫ) is simply a Taylor series, so we guess

x(ǫ) ∼ x0 + ǫx1 + ǫ2x2 + · · ·

where x0, x1, x2 etc are constants (they do not depend on ǫ).
Putting this guess into the quadratic gives

ǫ(x0 + ǫx1 + · · · )2 + (x0 + ǫx1 + ǫ2x2 + · · · )− 1 = 0

and collecting together the different terms in the asymptotic sequence
then gives

(x0 − 1) + ǫ(x20 + x1) + ǫ2(2x0x1 + x2) + O
(
ǫ3
)
= 0.

Then since this is true for all ǫ, and we have assumed that x0, x1, . . . are
independent of ǫ, we conclude that equality must hold independently
for each power of ǫ. Hence, we have

O (1) : x0 − 1 = 0 ⇒ x0 = 1
O (ǫ) : x20 + x1 = 0 ⇒ x1 = −x20 = −1
O
(
ǫ2
)

: 2x0x1 + x2 = 0 ⇒ x2 = −2x0x1 = 2
. . . etc.
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Hence we find we can systematically improve the approximation of the
root near x = 1 and it is

x ∼ 1− ǫ+ 2ǫ2 +O
(
ǫ3
)

as ǫ→ 0

This root near x = 1 has been found from considering a ‘dominant
balance’ between x and 1 in the equation (Notice there are three terms
in the equation and this balance leaves a small error in the equations):

ǫx2
︸︷︷︸

small

+ x− 1
︸ ︷︷ ︸

balance (nearly, ǫx2 gives connections)

= 0

If we want to approximate the other root, we need to consider balances
between different terms in the equation,

• Second try Let’s consider the case where we try balancing ǫ2x and 1
(This is the dominant balance only if the other term in the equation
is small, i.e. x≪ (ǫ2x, 1)).

• To get a balance between ǫx2 and 1 requires that⇒ x = O
(

1√
ǫ

)

. This

gives the following sizes for the terms:

ǫx2
︸︷︷︸

O(ǫ)×O( 1

ǫ )=O(1)

+ x
︸︷︷︸

O
(

1√
ǫ

)

− 1
︸︷︷︸

O(1)

= 0

but this contradicts the assumption that x was smaller than the terms
ǫx2 and 1 (if we continued on this route we’d also get two more roots
because of the ± and hence that also seems wrong)

We conclude that x 6≪ (ǫx2, 1) and this balance does not make sense

• Third try There is one other possible balance left to try namely: ǫx2 ∼
x. Of course this will only be a dominant balance by assuming that
1≪ (ǫx2, x). To get this balance we require x ∼ 1

ǫ and when we check
we find x ∼ 1

ǫ ≫ 1 as ǫ → 0 so this is a consistent balance (aka, a
“dominant” balance)

Now, use this new balance to find an approximate solution. To get the
balance we need to take x = 1

ǫ y (where we assume y = O(1)).

⇒ ǫy2

ǫ2
+
y

ǫ
− 1 = 0⇒ y2 + y − ǫ = 0
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Again assume this simplest possible asymptotic expansion for the un-
known y by taking y ∼ y0 + ǫy1 + · · · . Putting this into the equation
gives

(y0 + ǫy1 + · · · )2 + (y0 + ǫy1 + · · · )− ǫ = 0.

Then, as before, equate powers of ǫ to find:

O (1) : y20 + y0 = 0 ⇒ y0 = 0,−1
O (ǫ) : 2y0y1 + y1 − 1 = 0 ⇒ y1 = 1,

1

2y0 + 1
︸ ︷︷ ︸

−1

. . . y1(2y0 + 1) = 1

(Note y0 = 0 actually corresponds to the previous root we found with
the original dominant balance)

⇒







y = 0 + ǫ+O(ǫ)2 ⇒ x = 1 + O(ǫ)
︸ ︷︷ ︸

root from before

y = −1− ǫ+O
(
ǫ2
)
⇒ x = −1

ǫ
− 1 + O (ǫ)

We didn’t find the second value of x before because we had tacitly
assumed that the largest term was of size O (1).

Note for algebraic equations to check all possibilities, you can do dom-
inant balance to help determine which expansions you need.

Now consider using the same ideas to find the roots of an equation where
you cannot find the exact solution.

Example. Find the asymptotic expansion of all the roots of

xe−x = ǫ as ǫ→ 0.

Determine the number of roots and their approximate location
A sketch can help determine what roots we need to find. For example write
the equation as

x = ǫex

and by plotting the functions on either side of the equality we can see that
if ǫ ≪ 1 there are two points where the two graphs intersect. Hence there
are two roots for sufficiently small ǫ; one small root and one large root
Exercise: show that there exist two roots if ǫ < e−1.
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Small root: If x is small then to get a dominant balance we have that
ex ∼ 1 so the equation is approximately x ∼ ǫ1 so this balance requires
x ∼ ǫ. Using this a reasonable assumption is that a suitable asymptotic
expansion for this root is x ∼ ǫx1 + ǫ2x2 + ǫ3x3 + · · · . Using this gives

(ǫx1 + ǫ2x2 + ǫ3x3 + · · · ) = ǫeǫx1+ǫ2x2+···

= ǫ(1 + ǫx1 + ǫ2x2 +
1

2
ǫ2x21 + · · · ) (Taylor series)

• equate like powers of ǫ:

O (ǫ) : ⇒ x1 = 1
O
(
ǫ2
)

: ⇒ x2 = 1
O
(
ǫ3
)

: ⇒ x3 = x2 +
1
2x

2
1 =

3
2

· · ·

Large root:
It is less obvious how large this root is or what asymptotic series should be
assumed. Hence we write the solution in a general form as

x ∼ x0φ0(ǫ) + x1φ1(ǫ) + x2φ2(ǫ) + · · · where φ0 ≫ φ1 ≫ · · · ǫ→ 0

To find the other possible dominant balance, take logs of both sides of
xe−x = ǫ to get:

log x− x = log ǫ

Then note that, as x → ∞, x ≫ log x, so that the dominant term on the
LHS is −x. and the balance gives −x ∼ ln ǫ. Now plug the approximation
x ∼ x0φ0 + x1φ1 + · · · in the equations so that

log(x0φ0 + x1φ1 + x2φ2 + · · · )− (x0φ0 + x1φ1 + x2φ2 + · · · ) = log ǫ

The dominant terms are −x0φ0 and log ǫ (all others are smaller), so take
x0φ0 = − log ǫ (ie: x0 = 1 and φ0 = − log ǫ so that φ0 is positive!)
Now expand the ln term by noting that we can write

log(x0φ0 + x1φ1 + · · · ) = log x0φ0 + log

(

1 +
x1φ1
x0φ0

+ · · ·
)

∼ log x0φ0 +
x1φ1
x0φ0

+ · · ·

Returning to the equations this gives

log x0φ0
︸ ︷︷ ︸

largest remaining term

+
x1φ1
x0φ0
︸ ︷︷ ︸

2nd largest remaining term

+ · · ·− (
✟
✟✟x0φ0+x1φ1+ · · · ) =✟

✟✟log ǫ
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Separating the terms by the size in the asymptotic series







x1φ1 = log x0φ0 = log |log ǫ|
x2φ2 =

x1φ1
x0φ0

=
log |log ǫ|
|log ǫ|

· · ·

Hence the solution can be written

x ∼ x0φ0(ǫ) + x1φ1(ǫ) + x2φ2(ǫ) + · · ·

where
x0 = 1 φ0 = |log ǫ|

x1 = 1 φ1 = log |log ǫ|

x2 = 1 φ2 =
log |log ǫ|
|log ǫ|

For this large root it was not obvious what the form of the asymptotic
sequence should be. Hence rather than assuming the form of the asymptotic
sequence, φn(ǫ) these were found as each of the terms was found.

7.4 Regular Perturbations in ODEs

Having shown how to use asymptotic methods to find approximate roots
to asymptotic and transcendental equations it is now useful to see how the
same ideas apply to solving ODEs. The simplest case is when the solution
to an ODE is a regular expansion.
A regular expansion using an asymptotic sequence {φn(ǫ)} is an asymptotic
expansion in which we don’t rescale any of the independent variables (this is
the same procedure used for the root x = 1− ǫ+ · · · in the earlier quadratic
equation). It is easiest to see how this works via an example.

Example. Find the solution u of the following problem as ǫ→ 0

{
u′′ = 1 + ǫ sinu, 0 < x < 1
u(0) = u(1) = 0

Note. This can be solved exactly, so you can use the exact solution to check
your asymptotics.
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The solution u(x, ǫ) depends on both x and ǫ. As a simplest assumption
take the solution to be approximated by the asymptotic expansion

u(x, ǫ) ∼ u0(x) + ǫu1(x) + ǫ2u2(x) + · · ·

Putting this into the ODE gives

u′′0 + ǫu′′1 + · · · = 1 + ǫ sin(u0 + ǫu1 + · · · )
∼ 1 + ǫ(sinu0 + ǫu1 cosu0 + · · · )

with
u(0, ǫ) ∼ u0(0) + ǫu1(0) + · · · = 0

u(1, ǫ) ∼ u0(1) + ǫu1(1) + · · · = 0

and then equating each power of ǫ gives

• O(1) : u′′0 = 1 with u0(0) = u0(1) = 0

⇒ u0 = −
1

2
x(1− x)

• O(ǫ): u′′1 = sinu0 = − sin
[
1
2x(1− x)

]
with u1(0) = u1(1) = 0

⇒ u1 = −
∫ x

0
(x− t) sin

[
1

2
t(1− t)

]

dt+Ax+B,

where the boundary conditions give B = 0 (and A is found from
u1(0) = 0).

Example. Small oscillations for a pendulum
Consider solving the problem

θ̈ + sin θ = 0, θ(0) = ǫ, θ̇(0) = 0 ǫ→ 0

The simplest possible assumption to take for the asymptotic expansion of
θ(t, ǫ) is to take a Taylor series

θ ∼ θ0 + ǫθ1 + ǫ2θ2 + · · · .

A simple calculation shows that θ0 = 0 (though you can certainly check
this), so the expansion is taken as

θ ∼ ǫθ1 + ǫ2θ2 + · · · .
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Plugging this into the problem gives

(ǫθ̈ + ǫ2θ̈2 + · · · ) + sin(ǫθ1 + ǫ2θ2 + · · · ) = 0

with {
θ1(0) = 1

θ̇1(0) = 0

{
θ2(0) = θ3(0) = · · · = 0

θ̇2(0) = θ̇3(0) = · · · = 0
.

We then note that the trigonometric function can be expanded using

sin(ǫθ1 + ǫ2θ2 + ǫ3θ3 + · · · ) ∼ ǫθ1 + ǫ2θ2 + ǫ3θ3 −
1

6
ǫ3θ31 − o

(
ǫ3
)

so that the ODE becomes

ǫθ̈1 + ǫ2θ̈2 + ǫ3θ̈3 + · · ·+ ǫθ1 + ǫ2θ2 + ǫ3θ3 −
1

6
ǫ3θ31 + · · · = 0 .

We now consider equating powers of ǫ in the ODE and in the boundary
conditions. Considering each size of terms we find

θ̈1 + θ1 = 0 ⇒ θ1 = cos t (using BCs)

θ̈2 + θ2 = 0 ⇒ θ2 ≡ 0

θ̈3 + θ3 =
1

6
cos3 t

=
1

24
(3 cos t+ cos 3t)

(Note it is easiest to solve this by expanding in component harmonics)

θ3 =
1

16
t sin t− 1

192
(cos 3t− cos t)

The asymptotic expansion of the solution to the ODE is therefore

θ ∼ ǫ cos t+ ǫ3
(

1

16
t sin t− 1

192
(cos 3t− cos t)

)

+ . . .

Note. This solution is a good approximation to the solution at least initially.
However, we would hope that the solution might be valid as we take t to
be large and a difficulty arises. The term t sin t in θ3 — called a secular
term — grows unboundedly as t → ∞. In particular this means that the
assumption about the asymptotic expansion for θ will become invalid if t is
very large. We have assumed that

ǫθ1 = ǫ cos t = o(ǫ3θ3) = o(ǫ3t sin t) .
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However, this become invalid (as ǫ→ 0) when t = O(1/ǫ2).
To approximate the solutions for larger times, beyond this limit, it is neces-
sary to use multiscale perturbation theory (but we shall not discuss this here
and leave it for later courses such as C6.3a)

Example (Another example where taking an infinite interval for the inde-
pendent variable leads to trouble). Consider solving

u′ = u+ ǫu2, u(0) = 1, x > 0, ǫ→ 0

and make the simple assumption about the asymptotic expansion

u ∼ u0 + ǫu1 + · · ·

and equating powers of ǫ then gives us

u0 = ex

u′1 = u1 + e2x, u1(0) = 0 ⇒ u1 = e2x − ex.

If the assumption about the asymptotic expansion is now checked then the
first and second terms become the same size, ǫu1 ∼ u0, when ǫe2x ∼ ex,
i.e. when x ∼ |log ǫ|.
In fact, the exact solution is

u =
ex

1 + ǫ− ǫex

which ceases to exist when

x =

∣
∣
∣
∣
log

(
ǫ

1 + ǫ

)∣
∣
∣
∣
.

7.5 Boundary Layers

The previous solutions by asymptotic expansions assumed regular expan-
sions. However, the last examples indicated that sometimes the expansions
need to be carefully considered in different regions of the independent vari-
able. The size of these regions depends on the limiting parameter ǫ and
arise in many situations. The following discusses some initial ideas on how
to analyse such problems.
Suppose we try to solve

ǫy′ + y = e−x, x > 0, y(0) = 0
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If the asymptotic expansion is assumed to be y ∼ y0 + ǫy1 + · · · , then

ǫ(y′0 + ǫy′1 + · · · ) + (y0 + ǫy′1 + · · · ) = e−x.

Equating the powers of ǫ then gives

y0 = e−x with y0(0) = 0

y1 = −y′0 = e−x with y1(0) = 0

· · ·

The problem is that we can never satisfy the boundary condition y(0) = 0
To examine why this problem occurs note that the exact solution is

y =
e−x

1− ǫ −
e−x/ǫ

1− ǫ
Plot this function and you will find it looks like y = e−x. However, if you
look carefully at such a plot (use a very small value of ǫ) you will find that
there is a nearly vertical line near x = 0 where the solution jumps rapidly
from y = 0 to the graph that looks like e−x

Such a rapid variation in the solution is called a “boundary layer”. It is
occurs in a very narrow region and examining the exact solution we can see
that the behaviour is caused by the part of the solution containing e−x/ǫ.
Hence we expect that this “boundary layer” will be approximately x = O(ǫ)
since this is the scale of x that this function changes over. We shall now
how to include such boundary layers in our solution method.11

We need to change our solution method because the exact solution indicates
that the derivative is large, O (1/ǫ), near x = 0, so that ǫy′ comes back in
at leading order (in the dominant balance) near x = 0.
The method we shall adopt to allow for this behaviour is to construct differ-
ent asymptotic expressions in different regions of x and then join them up
by matching. The conventional notation is to call the region where x = O(1)
the “outer region” and the very narrow layer near x = 0 the “inner region”
(or inner layer). The expansions in the different regions (each with different
scalings for x) should smoothly match together.

7.5.1 Inner and Outer Expansions

To get the ideas clear consider the case where the exact solution to the
problem is known and we want to find the inner and outer expansions.

11The terminology, boundary layer, comes from Prandtl’s work on fluid mechanics re-
lated to viscous flow near a boundary.
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The outer expansion
Consider

f(x, ǫ) =
e−x − e−x/ǫ

1− ǫ
an assuming that the region is x = O(1) then this gives a regular expansion

f(x, ǫ) ∼ f0 + ǫf1 + · · · ∼ e−x(1 + ǫ+ ǫ2 + · · · )

and the term e−x/ǫ is left out because, for x = O(1), e−x/ǫ = o (ǫn) for all
n; f0 + ǫf1 + · · ·

The inner expansion
We can see from the exact solution that something interesting happens to
the expansion of the exponential when x is the size of ǫ ( e−x/ǫ = O(1) is
not small). Hence consider the inner expansion to occur when x = O(ǫ).
To allow this to occur we rescale the independent variable by taking x = ǫy
and assuming y = O(1), so that the expansion becomes

f(x, ǫ) = F (y, ǫ) =
e−ǫy − e−y

1− ǫ

∼
(

1− ǫy + ǫ2y2

2
+ · · · − e−y

)
(
1 + ǫ+ ǫ2 + · · ·

)

⇒ F ∼ F0 + ǫF1 + · · · ∼ 1− e−y + ǫ(1− e−y − y) + O
(
ǫ2
)
.

This is the inner expansion, it is in terms of the scaled variable y = x
ǫ

(In general, an outer expansion has one scaling and an inner expansion has
another scaling; one could imagine a problem with lots of different regions
with different scalings but we do not consider these here)

7.5.2 Matching

In the previous section we showed how to create different asymptotic expan-
sions of a single function in different regions. IF we know the function then
we will find that the two approximations smoothly join together but, when
we try to solve ODEs, we will need to find out how to make this smooth con-
nection. This method of smoothly connecting two asymptotic expansions in
different regions is called matching.
We start by considering the simple function we expanded earlier.
At leading order (O (1)), the outer expansion is

f ∼ f0 +O(ǫ) where f0 = e−x
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and the inner expansion is

F = F0 +O(ǫ) where F0 = 1− ǫ−y

Recall: when y = O(1), x = O(ǫ) and when x = O(1), y = O(1/ǫ).
A sketch shows that the outer expansion looks like f = e−x and the inner
expansion like F = 1− e−y. Using these two functions plotted on the same
graph (using a particular value of ǫ such as 0.1). Each approximation is valid
in its own region but they are both valid in an “overlap region” between the
two.
We say that the expansions “match” in the sense than

lim
x→0

f0(x) = 1 = lim
y→∞

F0(y)

Loosely we interpret matching:, ‘as we go into the boundary layer, the outer
expansion tends to 1’ and ‘as we go out of the boundary layer, the inner
expansion tends to 1 (the term e−y becomes negligible)’
This loose statement can be made much more precise. One can think of
such matching as follows: the inner and outer expansions should agree in a
fuzzy ‘intermediate’ region such that O (ǫ)≪ x≪ O(1) - where x≪ 1 and
y ≫ 1.
Formally we can find asymptotic expansions in the inner and outer region
and match them together. For some cases it is desirable to try to create
a single function that is a reasonable approximation everywhere. Such a
function is called a “composite expansion” and can be made in some cir-
cumstances, but not always. We can construct a composite expansion, by
forming ‘inner expansion + outer expansion - common limit’ (the common
limit should be subtracted to remove double-counting). This gives a uniform
description

composite expansion = f0 + F0 − 1

= e−x + 1− e−x/ǫ − 1
︸ ︷︷ ︸

need to put both in terms of variable x

= e−x − e−x/ǫ

which is a good approximation to the exact solution

e−x − e−x/ǫ

1− ǫ .

The method used to examine the ODE above is a specific example of a more
general method of matched asymptotic expansions(MAEs).
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7.5.3 Getting the expansion from the ODE

In the last example, we compared an approximate solution to one we found
exactly, the whole point of MAEs is to use it on problems where we don’t
already know the answer (can’t find it exactly, etc.).
In the previous example we found the outer expansion by assuming a very
simple form for the asymptotic expansion (a Taylor series) of the ODE

ǫf ′ + f = e−x

to find the solution
f ∼ e−x + ǫe−x +O

(
ǫ2
)
.

Now the exact solution indicated that we should consider a narrow region
near x = 0 and so we introduced a rescaling with x = ǫy with y = O(1). If
we now take the ODE problem and do this rescaling we find that it becomes

dF

dy
+ F = e−ǫy ∼ 1− ǫy + · · · , F (0) = 0

Now we can assume a simple Taylor expansion for the solution in this inner
region by taking

F = F0 + ǫF1 + · · · .
Putting the assumed solution in the ODE problem and equating powers of
ǫ gives us

dF0

dy
+ F0 = 1, F0(0) = 0⇒ F0 = 1− e−y

and
dF1

dy
+ F1 = −y, F1(0) = 0⇒ F1 = 1− y − e−y

and so on for higher terms.
Note that we have been able to impose the boundary conditions on the
problem near x = 0 whereas we could not impose them on the outer solution.
It is important to note when a boundary layer might be present in a problem
and hence need to be carefully accounted for. A common sign that a bound-
ary layer (BL) is present is a power of ǫ multiplying the highest derivative
in the ODE.
If, as ǫ > 0 the order of ODE is reduced the problem is analogous to ǫ
prefactor of the highest power, x2, in the quadratic equation example we
showed earlier. In general problems where the highest power or the high-
est derivative disappear when using a simple expansion are called singular
perturbation problems
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In the example earlier the only place there could be a BL is at x = 0 so
that matching was ‘automatic’. We found an inner solution and and outer
solution but did not have to do anything to make them join smoothly.
There are two issues that need to be considered. Firstly, how to match the
different solutions in the inner region and the outer region together when we
are solving an ODE (and we do not know the solution and where matching
is NOT automatic). Secondly we need some method to determine if there
is a boundary layer and where it might be (it could be at either end of
the domain, possible at both ends of the domain and in some very difficult
problem in the interior of the region). Here we just consider cases where
there is one boundary layer at one end of the region.

Example. Solve

ǫf ′′ + f ′ = 1, 0 < x < 1 (ǫ > 0)

f(0) = f(1) = 0

Again you can find the exact solution:

f = x+A+Be−x/ǫ

where the boundary conditions give A+B = 0, 1 +A+Be−1/ǫ = 0.
This indicates that there is a boundary layer near x = 0, but if we didn’t
have the exact solution, we wouldn’t know this. However, let’s find the
solution knowing this and discuss why it is near x = 0 later.
Outer solution:

f ∼ f0 + ǫf1 + · · · ⇒ f ′0 = 1⇒ f0 = x+ a

Because this is a first order ODE we can satisfy one of the two boundary
conditions; let’s satisfy the one at x = 1 (will get back to this soon)

1 + a = 0⇒ a = −1⇒ f0 = x− 1

Then limx→0+ f0 = −1 6= 0, so we don’t satisfy the boundary condition at
x = 0 and there must be a BL.
Now we find the size of the BL by scaling x = δy, where δ will depend on
ǫ. Putting this change of independent variables into the problem gives

ǫ

δ2
d2F

dy2
+

1

δ

dF

dy
= 1

Now consider the dominant balance. In particular we want to choose δ to be
very small and to make the highest derivative be in the dominant balance.
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In this case this implies we take ǫ
δ2

= 1
δ , so δ = ǫ so the ODE problem

becomes
d2F

dy2
+

dF

dy
= ǫ.

We can then assume a simple expansion: F = F0 + ǫF1 + · · · to give

F ′′
0 + F ′

0 = 0⇒ F0 = c(1− e−y),

which satisfies F0(0) = 0.
Matching
Having found the inner and the outer expansion we match these two parts
of the solution together to make them smoothly join. The outer limit of F0

is c (outer limit of inner solution) and it must equal the inner limit of f0
which is −1 (the inner limit of outer solution).
Hence matching tells us that we must take c = −1. This then gives us

F0 = e−y − 1 .

If we wanted to we could now create a composite expansion

f0 + F0 − (−1) = x+ e−x/ǫ − 1,

which is a good approximation of the exact solution.

7.5.4 Locating the position of possible Boundary Layers

The analysis of the ODE and the boundary layer that needed to be consid-
ered was guided by the exact solution. But what might be ways of finding
where a boundary layer is needed??
OK, so why was the layer near x = 0 rather than x = 1? Basically, we want
the inner solution to decay to a constant as we leave the BL and the sign in
the inner region dominant balance ODE will ensure decay as x increases.
It is worth examining what would happen if we assumed the boundary layer
was near x = 1. The first thing we would need to do is to rescale x to
consider points near x = 1 and this could be done by taking x = 1 + δ(ǫ)ξ
where ξ ≤ 0 is the new independent variable. A dominant balance argument
for the highest derivative would then reveal δ(ǫ) = ǫ so that x = 1+ǫξ, ξ < 0.
Assuming a simple expansion and equating powers of ǫ would then give us

d2F0

dξ2
+

dF0

dξ
= 0, F0(0) = 0 −∞ < ξ < 0 .
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The solution to this problem is F0 = a(1−e−ξ) and this grows exponentially
as ξ becomes large and negative. Hence it is not possible to “match” this
solution to the solution in the outer region (except by taking a = 0 in which
case there is no boundary layer to analyse).

Note. For the case ǫ < 0, the BL is at x = 1.

7.6 Concluding remarks on asymptotic expansions of DEs

There is lots of other perturbation theory which you can do in C6.3a.
Overview: dynamical models in physical applied maths represent interaction
between (physical) procedures and ‘universal’ (or at least reasonable) ‘laws’;
they also often incorporate experimental data. These models quite often take
the form of ODEs and PDEs.
Once a model has been written down it is possible to use scaling and nondi-
mensionalisation methods to reveal dimensionless parameters (or dimension-
less groups) in the problem. By examining particular physical situations we
may identify that some of these parameters may be very large or very small.
In such circumstances it may be possible to use the asymptotic methods
outlined here to generate solutions to problems where no exact solution
is possible. Such approaches can be very useful and complement numeric
methods.
Examples of problems where asymptotic methods can be used (The re-
maining part of these notes is non-examinable material)

Example. Convection of heat in a pipe
A circular pipe is held at a constant temperature T = 1 and there is a flow
of fluid around the pipe. The fluid is at temperature T = 0 a long way
from the pipe. The problem is considered to be in two dimensions. We are
interested in how much heat leaves the pipe and goes into the fluid.
The governing equation for steady movement of the heat is

Pe ~u · ∇T = ∇2T

where u is a vector field representing the velocity of the fluid and Pe is a
nondimensional parameter (the Peclet number) dependent on the speed of
the fluid, the conductivity of heat in the fluid, and the radius of the pipe.
A common situation is that Pe≫ 1 due to the high speed of the fluid. Then
we might rewrite the problem as

~u · ∇T = ǫ∇2T, where ǫ =
1

Pe
≪ 1
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Our previous discussion, indicates that because the highest derivative would
disappear if we did a simple expansion with ǫ→ 0 we must expect boundary
layers. In fact we can find that there are boundary layers near the pipe (the
fluid far from the pipe is at T = 0 so we need some conduction to get from
T = 1 on the pipe to T → 0 away from the pipe)
Boundary layers can also occur in other regions such as near stagnation
points (points there flow vanishes — like behaviour near equilibrium points.
A less common situations is where the flow is very slow and Pe≪ 1 but it
is instructive to consider. Then the problem might be written as

ǫ~u · ∇T = ∇2T, where ǫ = Pe≪ 1

here we expect a regular expansion to work but in two-dimensions the
leading-order solution T0 ∝ log r (r = |~x|), which is unbounded at ∞; this
implies that there is a “boundary layer at ∞”. Such a boundary layer can
be considered by rescaling ~x = 1

ǫ~y to get the problem

~u · ∇~yT = ∇2
~yT

(here ∇~y is the gradient with respect to ~y) with ‘point source’ behaviour at
the origin. This is examined further in later courses.

In quantum mechanics you have the Schrödinger equation

i~
∂Ψ

∂τ
= − ~

2

2m
∇2Ψ+ V (x, τ)Ψ .

Semiclassics: what happens as ~→ 0? (i.e., use asymptotic analysis to try
to recover classical mechanics descriptions from quantum ones!)
In general, whenever you are dealing with descriptions at multiple physical
scales, asymptotics and perturbation theory provide much of the mathemat-
ical language to help address such issues!
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