B4.2 Functional Analysis II Consultation Session 2

Luc Nguyen
luc.nguyen@maths

University of Oxford

TT 2022

Paper 2021-Q3(a)

Given

- X : a complex Hilbert space.
- $A: X \rightarrow X$ a bounded linear operator.
- $\operatorname{Im} A$ is closed.

Goal: Which of the following statements are true or false?
(1) 0 is not an element of $\sigma_{c}(A)$.
(1) If $\lambda \in \sigma_{\text {ap }}(A) \backslash \sigma_{p}(A)$, then $\lambda \in \sigma_{c}(A)$.
(I) If A is isometric, then $\sigma(A)$ is a subset of the closed unit disk.
(1) True. $0 \in \sigma_{c}(A)$ means A is injective and $\operatorname{Im} A$ is a proper dense subspace of X. This latter case can't hold as $\operatorname{Im} A$ is closed.
(1) False. $\sigma_{\text {ap }}(A)$ may contain elements of $\sigma_{r}(A)$.
(:) True. As $\|A\|=1, \operatorname{rad}(\sigma(A)) \leq 1$.

Paper 2021-Q3(b)

Given

- $X=L^{2}(-\pi, \pi)$.
- $A: X \rightarrow X$ a bounded linear operator.
- $\operatorname{Im} A$ is closed.
- $A f$ is a trigonometric polynomial for every $f \in X$.

Goal: Show that $\operatorname{Im} A$ is finite-dimensional.

- Let $Y=\operatorname{Im} A$ and V_{N} be the space of trigonometric polynomials of degree at most N. Then $Y=\bigcup_{N}\left(Y \cap V_{N}\right)$.
- Since Y is closed, the Baire category theorem gives an N so that $\overline{Y \cap V_{N}}$ has non-empty interior in Y.
- As Y and V_{N} are closed, this implies that $Y \cap V_{N}$ has non-empty interior in Y. Since $Y \cap V_{N}$ is a subspace of Y, this implies that $Y \cap V_{N}=Y$ (why?), i.e. $Y \subset V_{N}$. Hence $\operatorname{dim} Y<\infty$.

Paper 2021-Q3(c)

Given

- $X=L^{2}(-\pi, \pi)$.
- $A: X \rightarrow X$ a bounded linear operator.
- $\operatorname{Im} A$ is closed.
- Af is a trigonometric polynomial for every $f \in X$.

Goal: Show

- $0 \in \sigma_{p}(A)$.
- $\sigma_{a p}(A) \subset \sigma_{p}(A)$.
- $\sigma_{p}(A)$ contains at most $d+1$ eigenvalues, where $d=\operatorname{dim} Y$.
- Let W be any finite dimensional subspace of X containing $Y=\operatorname{Im} A$ as a proper subspace, and let $B=\left.A\right|_{w}$ so that B maps W into $Y \subset W$. Since $\operatorname{dim} Y<\operatorname{dim} W$, we have by the rank-nullity theorem that B is not injective: there exists $w \in W$ such that $0=B w=A w$. This shows that $0 \in \sigma_{p}(A)$.

Paper 2021-Q3(c)

- Pick $\lambda \in \sigma_{a p}(A)$ and we need to show that $\lambda \in \sigma_{p}(A)$. If $\lambda=0$, we are done from the above. We assume henceforth that $\lambda \neq 0$.
- By definition, there exists $\left(x_{n}\right) \subset X$ such that $\left\|x_{n}\right\|=1$ and $\lambda x_{n}-A x_{n} \rightarrow 0$.
- Note that $\left(A x_{n}\right) \subset Y$ is a bounded sequence in a finite dimensional vector space. Therefore, passing to a subsequence if necessary, we may assume that $\left(A x_{n}\right)$ is convergent.
- As $\lambda x_{n}-A x_{n} \rightarrow 0$, we have that $\left(\lambda x_{n}\right)$ and so $\left(x_{n}\right)$ are strongly convergent (since $\lambda \neq 0$).
- The strong limit x of $\left(x_{n}\right)$ satisfies $\|x\|=1$ and $\lambda x-A x=0$. We conclude that $\lambda \in \sigma_{p}(A)$.

Paper 2021-Q3(c)

- Next, note that every eigenvector of A corresponding to a non-zero eigenvalue belongs to Y.
- Since eigenvectors corresponding to different eigenvalues are linearly independent, the number of nontrivial eigenvalues must be no larger than the dimension d of Y.
- So $\sigma_{p}(A)$ contains no more than $d+1$ elements.

Paper 2021-Q3(d)

Given

- $X=L^{2}(-\pi, \pi)$.
- $A: X \rightarrow X$ a bounded linear operator.
- $\operatorname{Im} A$ is closed.
- Af is a trigonometric polynomial for every $f \in X$.
- $\sigma(A)$ contains exactly two elements.

Goal:

- Show that if A is self-adjoint, then there is a constant $c \in \mathbb{R} \backslash\{0\}$ such that $(1 / c) A$ is the orthogonal projection operator onto its range.
- If A is not self-adjoint, must A be a multiple of a (non-necessarily orthogonal) projection operator, i.e. must there be a $c \in \mathbb{C} \backslash\{0\}$ such that $A^{2}=c A$? Give either a proof or a counter-example.

Paper 2021-Q3(d)

- If A is self-adjoint, then $\sigma_{r}(A)$ is empty and $\sigma(A)=\sigma_{\text {ap }}(A)$ is real. Together with (c), we have that all elements of $\sigma(A)$ are real eigenvalues of A and one of which is 0 . Since $\sigma(A)$ contains exactly 2 elements, $\sigma(A)=\{0, \lambda\}$ with $\lambda \in \mathbb{R} \backslash\{0\}$.
- Let $Z=Y^{\perp}$. Then $\operatorname{Ker} A=\operatorname{Im} A^{\perp}=Z$. It follows that $\hat{A}:=\left.A\right|_{Y}: Y \rightarrow Y$ is a bijection.
- Note that \hat{A} is self-adjoint on Y :

$$
\langle\hat{A} x, y\rangle=\langle A x, y\rangle=\langle x, A y\rangle=\langle x, \hat{A} y\rangle \text { for all } x, y \in X
$$

As Y is finite dimensional, Y has a basis consisting of eigenvectors of \hat{A}, which are also eigenvectors of A.

- From the above, $\hat{A}=\left.\lambda I\right|_{Y}$ and so A is a multiple of the orthogonal projection into Y.

Paper 2021-Q3(d)

- If A isn't self-adjoint, it is not necessary that A is a multiple of a projection operator.
- For example, consider the operator

$$
A\left(\sum_{n} c_{n} e^{i n x}\right)=2 c_{0}+c_{1} e^{-i x} .
$$

It is clear that $Y=\operatorname{Span}\left(1, e^{-i x}\right)$, hence closed.

- A computation gives

$$
A^{2}\left(\sum_{n} c_{n} e^{i n x}\right)=4 c_{0} \text { and } A^{3}\left(\sum_{n} c_{n} e^{i n x}\right)=8 c_{0} .
$$

In particular, A satisfies $A^{3}-2 A^{2}=0$, which implies $\sigma(A) \subset\{0,2\}$.

- Clearly $A(1)=2$ and $A\left(e^{2 i x}\right)=0$, so $\sigma(A)=\{0,2\}$. But certainly A^{2} is not a multiple of A.

Paper 2015-Q2

Let X be a Hilbert space.
(2) Prove that a subset E of X is norm-bounded if for each $x \in X$ there exists a constant M_{x} such that

$$
|\langle x, y\rangle| \leq M_{x} \text { for all } y \in E
$$

(D) Let $T: X \rightarrow X$ be a bijective continuous linear operator. Prove that there is a constant $m>0$ such that $y \in X$ and $\left\|T^{*} y\right\|=1$ together imply $\|y\| \leq m$. Hence prove that T has a continuous inverse.
(c) Deduce that a surjective bounded linear operator from X to X maps open sets to open sets.

Paper 2015-Q2(a)

Let X be a Hilbert space. Prove that a subset E of X is norm-bounded if for each $x \in X$ there exists a constant M_{x} such that

$$
|\langle x, y\rangle| \leq M_{x} \text { for all } y \in E
$$

- For $y \in X$, define a linear functional $\ell_{y} \in X^{*}$ by $\ell_{y}(x)=\langle x, y\rangle$. Note that $\left\|\ell_{y}\right\|=\|y\|$ in view of the Cauchy-Schwarz inequality (why?).
- Let $\mathscr{F}=\left\{\ell_{y}: y \in E\right\}$. Clearly E is bounded iff \mathscr{F} is bounded in X^{*}.
On the other hand, by the principle of uniform boundedness, \mathscr{F} is bounded in X^{*} iff $\left({ }^{*}\right)$ holds. The conclusion follows.

Paper 2015-Q2(b)

Let X be a Hilbert space and $T: X \rightarrow X$ be a bijective continuous linear operator. Prove that there is a constant $m>0$ such that $y \in X$ and $\left\|T^{*} y\right\|=1$ together imply $\|y\| \leq m$. Hence prove that T has a continuous inverse.

- Let $E=\left\{y:\left\|T^{*} y\right\|=1\right\}$. We need to show that E is bounded.
- By (a), we need to show that for every $x \in X$, the set $\{\langle x, y\rangle: y \in E\}$ is bounded.
- Fix $x \in X$. To make $T^{*} y$ shows up, we write $x=T z$ which is possible as T is bijective. Then

$$
|\langle x, y\rangle|=|\langle T z, y\rangle|=\mid\left\langle z, T^{*} y\right\rangle
$$

which by the Cauchy-Schwarz inequality is bounded from above by

$$
\leq\|z\|\left\|T^{*} y\right\|=\|z\|
$$

We conclude from (a) that E is bounded.

Paper 2015-Q2(b)

Let X be a Hilbert space and $T: X \rightarrow X$ be a bijective continuous linear operator. Prove that there is a constant $m>0$ such that $y \in X$ and $\left\|T^{*} y\right\|=1$ together imply $\|y\| \leq m$. Hence prove that T has a continuous inverse.

- From the above, we have that, for every $y \in X$, $\left\|T^{*}\left(y /\left\|T^{*} y\right\|\right)\right\|=1$ and so $\|y\| /\left\|T^{*} y\right\| \leq m$ i.e.

$$
\left\|T^{*} y\right\| \geq m^{-1}\|y\| \text { for all } y \in X
$$

- We knew that this implies $\operatorname{Im} T^{*}$ is closed. Since $\left(\operatorname{Im} T^{*}\right)^{\perp}=\operatorname{Ker} T=0$, we have that $\operatorname{Im} T^{*}=X$. Also $\operatorname{Ker} T^{*}=(\operatorname{Im} T)^{\perp}=0$. So T^{*} is invertible with bounded inverse (in view of (**)).
- Properties of adjoints imply that T has bounded inverse.

Paper 2015-Q2(c)

Let X be a Hilbert space and $T: X \rightarrow X$ be a surjective continuous linear operator. Prove that T maps open sets to open sets.

- We know (why?) that T is open if there exists $\delta_{0}>0$ such that

$$
T(B(0,1)) \supseteq B\left(0, \delta_{0}\right)
$$

- Let $Y=\operatorname{Ker} T$ and $Z=Y^{\perp}$. Both of these are Hilbert subspaces of X.
- Let $S=\left.T\right|_{z}: Z \rightarrow X$ which is a bijective bounded linear operator. Though the domain and target spaces are different, the same proof of (b) gives that S has a bounded inverse.
- This means that there exists $\delta>0$ so that $\|T z\|=\|S z\| \geq \delta\|z\|$ for all $z \in Z$.
- Now if $\|x\|<\delta$ and $x=T z$, then $\|z\| \leq \delta^{-1}\|x\|=1$, i.e. $B(0, \delta) \subseteq T(B(0,1))$.

Paper 2008 - Q8(a)

Given

- V : a complex Hilbert space.
- $T \in \mathscr{B}(V)$ is self-adjoint.
- $\lambda \in \mathbb{C} \backslash \mathbb{R}$.

Goal

- Prove that $\|\lambda v-T v\|=\left\|\bar{\lambda} v-T^{*} v\right\| \geq|\operatorname{Im} \lambda|\|v\|$.

Deduce that $\lambda I-T$ and $(\lambda I-T)^{*}$ are injective.

- Prove that $\operatorname{Im}(\lambda I-T)$ is closed in V, and by considering the orthogonal complement $[(\lambda I-T)(V)]^{\perp}$, show that $\lambda I-T$ is surjective.
- Show that $\lambda I-T$ has a bounded inverse $(\lambda I-T)^{-1}$ with $\left\|(\lambda I-T)^{-1}\right\| \leq|\operatorname{Im} \lambda|^{-1}$. Deduce that $\sigma(T) \subset \mathbb{R}$.

Paper 2008 - Q8(a)

- Suppose for the moment that (\star) has been shown. It is clear that (\star) implies that $\lambda I-T$ and $(\lambda I-T)^{*}$ are injective.
Furthermore, this coercivity implies that the range $\operatorname{Im}(\lambda I-T)$ is closed (see Session 1).
Since $[(\lambda I-T)(V)]^{\perp}=\operatorname{Ker}\left(\bar{\lambda} I-T^{*}\right)=0$, we thus have that $\lambda I-T$ is surjective and hence bijective.
Recalling (\star) again, we have $\left\|(\lambda I-T)^{-1}\right\| \leq|\operatorname{Im} \lambda|^{-1}$, and so $\lambda \notin \sigma(T)$.
Since $\lambda \in \mathbb{C} \backslash \mathbb{R}$ is arbitrary, we have $\sigma(T) \subset \mathbb{R}$.
So the main issue is to show (\star).

Paper 2008 - Q8(a)

- Switching the role of λ and $\bar{\lambda}$, it is enough to estimate $\|\lambda v-T v\|$.
- Write $\lambda=a+i b$. We compute

$$
\begin{aligned}
\|\lambda v-T v\|^{2}= & \|a v-T v+i b v\|^{2} \\
= & \|a v-T v\|^{2}+b^{2}\|v\|^{2} \\
& \underbrace{-i b\langle a v-T v, v\rangle+i b\langle v, a v-T v\rangle}_{=0 \text { as al- } T \text { is self-adjoint }} \\
= & \|a v-T v\|^{2}+b^{2}\|v\|^{2} \geq|I m \lambda|^{2}\|v\|^{2},
\end{aligned}
$$

which proves (\star).

- A related (but easier) inequality: If U is isometric, then $\left\|\lambda v-U_{v}\right\| \geq||\lambda|-1|\|v\|$.

Paper 2014-Q2(c)

Let X be a Banach space.
(1) Bookwork: Boundedness of projection map.
(1) For $n \geq 1$, let Y_{n} and Z_{n} be closed subspaces of X such that

$$
Y_{n} \subseteq Y_{n+1}, \quad Z_{n} \supseteq Z_{n+1}, \quad X=Y_{n} \oplus Z_{n}
$$

Let P_{n} be given by $P_{n}\left(y_{n}+z_{n}\right)=y_{n}$ for $y_{n} \in Y_{n}$ and $z_{n} \in Z_{N}$. Assume that for each $x \in X$, the limit $\lim _{n \rightarrow \infty} P_{n} x$ exists and denote this limit by $P x$. Prove that P is a bounded projection and that

$$
\operatorname{Im} P=\overline{\bigcup_{n \geq 1} Y_{n}} \quad \text { and } \quad \operatorname{Ker} P=\bigcap_{n \geq 1} Z_{n} .
$$

Paper 2014-Q2(c)

- It is straightforward to check that P is linear.
- For each $x,\left\{P_{n} x\right\}$ is bounded (since it's convergent), we have by the principle of uniform boundedness that $\left\{P_{n}\right\}$ is bounded in $\mathscr{B}(X)$, i.e. there exists $M \geq 0$ such that $\left\|P_{n}\right\| \leq M$ for all n.
- Using $P_{n}^{2}=P_{n}$ and

$$
\left\|P_{n}\left(P_{n} x-P x\right)\right\| \leq M\left\|P_{n} x-P x\right\| \rightarrow 0
$$

we have $P^{2}=P$.

- Next,

$$
\|P x\| \leq \underbrace{\left\|\left(P_{n} x-P x\right)\right\|}_{\rightarrow 0}+\underbrace{\left\|P_{n} x\right\|}_{\leq M\|x\|} \quad \text { and so } \quad\|P x\| \leq M\|x\| \text {. }
$$

This means P is bounded.

- Now let $Y=\overline{\cup Y_{n}}$ and $Z=\cap Z_{n}$ which are closed subspaces of X. We need to show $\operatorname{Im} P=Y$ and $\operatorname{Ker} P=Z$.

Paper 2014-Q2(c)

- Let us show that $\operatorname{Ker} P=Z$. For each $z \in Z$, we have $z \in Z_{n}$ for all n and so $P_{n} z=0$ for all n. In particular,
$P z=\lim P_{n} z=0$.
Conversely, suppose $P z=0$. Then $z=\lim \left(I-P_{n}\right) z$. Note that $\left(I-P_{n}\right) z \in Z_{n} \subseteq Z_{m}$ if $n \geq m$. It follows that the sequence $\left(\left(I-P_{n}\right) z\right)$ eventually belongs to Z_{m} for each m. Since Z_{m} are closed, we have that $z=\lim \left(I-P_{n}\right) z$ belongs to all Z_{m}, i.e. $z \in Z$.
- Next, we show $\operatorname{Im} P=Y$.

If $y=P x=\lim P_{n} x$, then since $\left(P_{n} x\right) \subset \cup Y_{n}$ we have $y \in Y$.
So $\operatorname{Im} P \subseteq Y$.
Take $y \in \cup Y_{n}$ so that $y \in Y_{m}$ for some m. Then $y \in Y_{n}$ for all $n \geq m$. It follows that $P_{n} y=y$ for $n \geq m$ and so $P y=y$. By continuity, we have $P y=y$ for all $y \in Y$ and so $Y \subseteq \operatorname{Im} P$.

Paper 2017-Q2

(a) (1) Let $X=C([0,1])$. Define $A_{n}: X \rightarrow X$ so that $\left(A_{n} x\right)(t)=x\left(t^{1+\frac{1}{n}}\right)$. Show that A_{n} converges strongly to the identity operator on X (i.e. $A_{n} x \rightarrow x$ for all $x \in X$.)
(D) (1) Let X be a Banach space, Y be a normed space, $T \in \mathscr{B}(X, Y)$. Assume $\overline{T\left(B_{X}(0,1)\right)} \supseteq B_{Y}(0, \varepsilon)$ for some $\varepsilon>0$. Prove that there exists $\delta>0$ such that $T\left(B_{X}(0,1)\right) \supseteq B_{Y}(0, \delta)$.
(i) Let X and Y be Banach spaces and $T \in \mathscr{B}(X, Y)$. Prove that if $T(X)$ is not closed in Y, then $T(X)$ is a countable union of nowhere dense subsets of Y.
(a) Show that $C([0,1])$ is a countable union of nowhere dense subsets of $L^{2}(0,1)$.

Paper 2017-Q2(a)(ii)

Let $X=C([0,1])$. Define $A_{n}: X \rightarrow X$ so that $\left(A_{n} x\right)(t)=x\left(t^{1+\frac{1}{n}}\right)$. Show that A_{n} converges strongly to the identity operator on X (i.e. $A_{n} x \rightarrow x$ for all $x \in X$.)

- Fix $x \in X$. We need to show

$$
\sup _{t \in[0,1]}\left|x\left(t^{1+\frac{1}{n}}\right)-x(t)\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

- By uniform continuity of x, it suffices to show

$$
\sup _{t \in[0,1]}\left|t^{1+\frac{1}{n}}-t\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

- Fix some small $\epsilon>0$.
+ If $t \leq \epsilon$, then $\left|t^{1+\frac{1}{n}}-t\right|<\epsilon$ for all n.
+ If $t>\epsilon$, then $\left|t^{1+\frac{1}{n}}-t\right| \leq\left|t^{\frac{1}{n}}-1\right| \leq 1-\epsilon^{\frac{1}{n}}<\epsilon$ for all large n.

Paper 2017-Q2(b)(i)

Let X be a Banach space, Y be a normed space, $T \in \mathscr{B}(X, Y)$. Assume $\overline{T\left(B_{X}(0,1)\right)} \supseteq B_{Y}(0, \varepsilon)$ for some $\varepsilon>0$. Prove that there exists $\delta>0$ such that $T\left(B_{X}(0,1)\right) \supseteq B_{Y}(0, \delta)$.

- We prove the statement with $\delta=\varepsilon / 2$.
- As $\overline{T\left(B_{X}(0,1)\right)} \supset B_{Y}(0, \varepsilon)$, we have $\overline{T\left(B_{X}(0, r)\right)} \supset B_{Y}(0, \varepsilon r)$.
- Take $y \in B_{Y}(0, \varepsilon / 2) \subset \overline{T\left(B_{X}(0,1 / 2)\right)}$.
- Take $x_{1} \in B_{X}(0,1 / 2)$ such that $\left\|y-T x_{1}\right\|<\varepsilon / 4$. Then

$$
y-T x_{1} \in B_{Y}(0, \varepsilon / 4) \subset \overline{T\left(B_{X}(0,1 / 4)\right)} .
$$

- Take $x_{2} \in B_{X}(0,1 / 4)$ such that $\left\|\left(y-T x_{1}\right)-T_{x_{2}}\right\|<\varepsilon / 8$.

Paper 2017-Q2(b)(i)

- Inductively, we obtain $x_{k} \in B_{X}\left(0,2^{-k}\right)$ such that

$$
\left\|y-T\left(x_{1}+\ldots+x_{k}\right)\right\|<\varepsilon 2^{-k-1}
$$

- Easy to check: The series $\sum x_{k}$ converges to some s satisfying $y=T s$ and

$$
\|s\|<\sum_{k=1}^{\infty}\left\|x_{k}\right\| \leq \sum_{k=1}^{\infty} 2^{-k}=1, \text { i.e. } s \in B_{X}(0,1)
$$

We have thus shown that $B_{Y}(0, \varepsilon / 2) \subset T\left(B_{X}(0,1)\right)$.

Paper 2017-Q2(b)(iii)

Let X and Y be Banach spaces and $T \in \mathscr{B}(X, Y)$. Prove that if $T(X)$ is not closed in Y, then $T(X)$ is a countable union of nowhere dense subsets of Y.

- As $T X=\cup_{n} T\left(B_{X}(0, n)\right)$, it suffices to show that $T\left(B_{X}(0,1)\right)$ is nowhere dense.
- Suppose by contradiction that $\overline{T\left(B_{X}(0,1)\right)}$ has non-empty interior, i.e. $\overline{T\left(B_{X}(0,1)\right)} \supset B_{Y}\left(y_{0}, r_{0}\right)$ for some $r_{0}>0$.
- Then we also have that $\overline{T(B(0,1))} \supset B_{Y}\left(-y_{0}, r_{0}\right)$, which in turns implies that

$$
\overline{T\left(B_{X}(0,1)\right)} \supset B_{Y}\left(0, r_{0}\right)=\frac{1}{2}\left(B_{Y}\left(y_{0}, r_{0}\right)+B_{Y}\left(-y_{0}, r_{0}\right)\right)
$$

- By (i), we then have $T\left(B_{X}(0,1)\right) \supset B_{Y}(0, \delta)$ for some $\delta>0$.
- This implies that $T\left(B_{X}(0, n)\right) \supset B_{Y}(0, \delta n)$ and so $T X=Y$, contradicting the fact that $T X$ is not closed.

Paper 2017-Q2(b)(iv)

Show that $C([0,1])$ is a countable union of nowhere dense subsets of $L^{2}(0,1)$.

- Let $X=C[0,1]$ and $Y=L^{2}(0,1)$ and equip them with their standard norms to make them Banach spaces.
- Let $T: X \rightarrow Y$ be the natural injection, which is clearly bounded linear.
- Clearly T is not surjective and so, by (iii), $X=T X$ is a countable union of nowhere dense sets in $L^{2}(0,1)$.

