

B4.2 Functional Analysis II Consultation Session 2

Luc Nguyen luc.nguyen@maths

University of Oxford

TT 2022

Given

- X: a complex Hilbert space.
- $A: X \to X$ a bounded linear operator.
- Im A is closed.

Goal: Which of the following statements are true or false?

- **(**) 0 is not an element of $\sigma_c(A)$.
- $If \ \lambda \in \sigma_{ap}(A) \setminus \sigma_p(A), \ then \ \lambda \in \sigma_c(A).$
- If A is isometric, then $\sigma(A)$ is a subset of the closed unit disk.
- **(**) True. $0 \in \sigma_c(A)$ means A is injective and Im A is a proper dense subspace of X. This latter case can't hold as Im A is closed.
- **(**) False. $\sigma_{ap}(A)$ may contain elements of $\sigma_r(A)$.
- **(a)** True. As ||A|| = 1, $rad(\sigma(A)) \le 1$.

Paper 2021–Q3(b)

Given

- $X = L^2(-\pi, \pi)$.
- $A: X \to X$ a bounded linear operator.
- Im A is closed.
- Af is a trigonometric polynomial for every $f \in X$.

Goal: Show that $\operatorname{Im} A$ is finite-dimensional.

- Let Y = Im A and V_N be the space of trigonometric polynomials of degree at most N. Then $Y = \bigcup_N (Y \cap V_N)$.
- Since Y is closed, the Baire category theorem gives an N so that $\overline{Y \cap V_N}$ has non-empty interior in Y.
- As Y and V_N are closed, this implies that $Y \cap V_N$ has non-empty interior in Y. Since $Y \cap V_N$ is a subspace of Y, this implies that $Y \cap V_N = Y$ (why?), i.e. $Y \subset V_N$. Hence dim $Y < \infty$.

Paper 2021–Q3(c)

Given

- $X = L^2(-\pi, \pi)$.
- $A: X \to X$ a bounded linear operator.
- Im A is closed.

• Af is a trigonometric polynomial for every $f \in X$. Goal: Show

- $0 \in \sigma_p(A)$.
- $\sigma_{ap}(A) \subset \sigma_p(A)$.
- $\sigma_p(A)$ contains at most d + 1 eigenvalues, where $d = \dim Y$.
- Let W be any finite dimensional subspace of X containing Y = Im A as a proper subspace, and let B = A|_W so that B maps W into Y ⊂ W. Since dim Y < dim W, we have by the rank-nullity theorem that B is not injective: there exists w ∈ W such that 0 = Bw = Aw. This shows that 0 ∈ σ_p(A).

- Pick λ ∈ σ_{ap}(A) and we need to show that λ ∈ σ_p(A). If λ = 0, we are done from the above. We assume henceforth that λ ≠ 0.
- By definition, there exists $(x_n) \subset X$ such that $||x_n|| = 1$ and $\lambda x_n Ax_n \to 0$.
- Note that (Ax_n) ⊂ Y is a bounded sequence in a finite dimensional vector space. Therefore, passing to a subsequence if necessary, we may assume that (Ax_n) is convergent.
- As λx_n − Ax_n → 0, we have that (λx_n) and so (x_n) are strongly convergent (since λ ≠ 0).
- The strong limit x of (x_n) satisfies ||x|| = 1 and λx − Ax = 0. We conclude that λ ∈ σ_p(A).

- Next, note that every eigenvector of A corresponding to a non-zero eigenvalue belongs to Y.
- Since eigenvectors corresponding to different eigenvalues are linearly independent, the number of <u>nontrivial</u> eigenvalues must be no larger than the dimension *d* of *Y*.
- So $\sigma_p(A)$ contains no more than d + 1 elements.

Paper 2021–Q3(d)

Given

- $X = L^2(-\pi, \pi)$.
- $A: X \to X$ a bounded linear operator.
- Im A is closed.
- Af is a trigonometric polynomial for every $f \in X$.
- $\sigma(A)$ contains exactly two elements.

Goal:

- Show that if A is self-adjoint, then there is a constant
 c ∈ ℝ \ {0} such that (1/c)A is the orthogonal projection operator onto its range.
- If A is not self-adjoint, must A be a multiple of a (non-necessarily orthogonal) projection operator, i.e. must there be a c ∈ C \ {0} such that A² = cA? Give either a proof or a counter-example.

Paper 2021–Q3(d)

- If A is self-adjoint, then σ_r(A) is empty and σ(A) = σ_{ap}(A) is real. Together with (c), we have that all elements of σ(A) are real eigenvalues of A and one of which is 0. Since σ(A) contains exactly 2 elements, σ(A) = {0, λ} with λ ∈ ℝ \ {0}.
- Let $Z = Y^{\perp}$. Then $\operatorname{Ker} A = \operatorname{Im} A^{\perp} = Z$. It follows that $\hat{A} := A|_Y : Y \to Y$ is a bijection.
- Note that \hat{A} is self-adjoint on Y:

$$\langle \hat{A}x, y \rangle = \langle Ax, y \rangle = \langle x, Ay \rangle = \langle x, \hat{A}y \rangle$$
 for all $x, y \in X$.

As Y is finite dimensional, Y has a basis consisting of eigenvectors of \hat{A} , which are also eigenvectors of A.

• From the above, $\hat{A} = \lambda I|_Y$ and so A is a multiple of the orthogonal projection into Y.

Paper 2021–Q3(d)

- If A isn't self-adjoint, it is not necessary that A is a multiple of a projection operator.
- For example, consider the operator

$$A\Big(\sum_n c_n e^{inx}\Big) = 2c_0 + c_1 e^{-ix}.$$

It is clear that $Y = \text{Span}(1, e^{-ix})$, hence closed.

• A computation gives

$$A^2\left(\sum_n c_n e^{inx}\right) = 4c_0 \text{ and } A^3\left(\sum_n c_n e^{inx}\right) = 8c_0.$$

In particular, A satisfies $A^3 - 2A^2 = 0$, which implies $\sigma(A) \subset \{0, 2\}$.

Clearly A(1) = 2 and A(e^{2ix}) = 0, so σ(A) = {0,2}. But certainly A² is not a multiple of A.

Let X be a Hilbert space.

Prove that a subset *E* of *X* is norm-bounded if for each $x \in X$ there exists a constant M_x such that

 $|\langle x, y \rangle| \leq M_x$ for all $y \in E$.

- Let T : X → X be a bijective continuous linear operator. Prove that there is a constant m > 0 such that y ∈ X and ||T*y|| = 1 together imply ||y|| ≤ m. Hence prove that T has a continuous inverse.
- Deduce that a surjective bounded linear operator from X to X maps open sets to open sets.

Let X be a Hilbert space. Prove that a subset E of X is norm-bounded if for each $x \in X$ there exists a constant M_x such that

$$|\langle x, y \rangle| \le M_x \text{ for all } y \in E.$$
 (*)

- For y ∈ X, define a linear functional l_y ∈ X* by l_y(x) = ⟨x, y⟩. Note that ||l_y|| = ||y|| in view of the Cauchy-Schwarz inequality (why?).
- Let 𝒴 = {ℓ_y : y ∈ E}. Clearly E is bounded iff 𝒴 is bounded in X*.

On the other hand, by the principle of uniform boundedness, \mathscr{F} is bounded in X^* iff (*) holds. The conclusion follows.

Paper 2015–Q2(b)

Let X be a Hilbert space and $T: X \to X$ be a bijective continuous linear operator. Prove that there is a constant m > 0 such that $y \in X$ and $||T^*y|| = 1$ together imply $||y|| \le m$. Hence prove that T has a continuous inverse.

- Let $E = \{y : ||T^*y|| = 1\}$. We need to show that E is bounded.
- By (a), we need to show that for every $x \in X$, the set $\{\langle x, y \rangle : y \in E\}$ is bounded.
- Fix x ∈ X. To make T*y shows up, we write x = Tz which is possible as T is bijective. Then

$$|\langle x,y\rangle| = |\langle Tz,y\rangle| = |\langle z,T^*y\rangle$$

which by the Cauchy-Schwarz inequality is bounded from above by

$$\leq ||z|| ||T^*y|| = ||z||.$$

We conclude from (a) that E is bounded.

Paper 2015–Q2(b)

Let X be a Hilbert space and $T : X \to X$ be a bijective continuous linear operator. Prove that there is a constant m > 0 such that $y \in X$ and $||T^*y|| = 1$ together imply $||y|| \le m$. Hence prove that T has a continuous inverse.

• From the above, we have that, for every $y \in X$, $||T^*(y/||T^*y||)|| = 1$ and so $||y||/||T^*y|| \le m$ i.e.

$$\|T^*y\| \ge m^{-1}\|y\|$$
 for all $y \in X$. (**)

- We knew that this implies Im T* is closed. Since (Im T*)[⊥] = Ker T = 0, we have that Im T* = X. Also Ker T* = (Im T)[⊥] = 0. So T* is invertible with bounded inverse (in view of (**)).
- Properties of adjoints imply that T has bounded inverse.

Paper 2015–Q2(c)

Let X be a Hilbert space and $T : X \to X$ be a surjective continuous linear operator. Prove that T maps open sets to open sets.

• We know (why?) that T is open if there exists $\delta_0 > 0$ such that

$$T(B(0,1)) \supseteq B(0,\delta_0).$$

- Let Y = Ker T and $Z = Y^{\perp}$. Both of these are Hilbert subspaces of X.
- Let S = T|_Z : Z → X which is a bijective bounded linear operator. Though the domain and target spaces are different, the same proof of (b) gives that S has a bounded inverse.
- This means that there exists $\delta > 0$ so that $||Tz|| = ||Sz|| \ge \delta ||z||$ for all $z \in Z$.
- Now if $||x|| < \delta$ and x = Tz, then $||z|| \le \delta^{-1} ||x|| = 1$, i.e. $B(0, \delta) \subseteq T(B(0, 1))$.

Given

- V: a complex Hilbert space.
- $T \in \mathscr{B}(V)$ is self-adjoint.
- $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

Goal

- Prove that $\|\lambda v Tv\| = \|\overline{\lambda}v T^*v\| \ge |\text{Im}\lambda| \|v\|$. (*) Deduce that $\lambda I - T$ and $(\lambda I - T)^*$ are injective.
- Prove that Im (λ*I* − *T*) is closed in *V*, and by considering the orthogonal complement [(λ*I* − *T*)(*V*)][⊥], show that λ*I* − *T* is surjective.
- Show that $\lambda I T$ has a bounded inverse $(\lambda I T)^{-1}$ with $\|(\lambda I T)^{-1}\| \le |\text{Im}\lambda|^{-1}$. Deduce that $\sigma(T) \subset \mathbb{R}$.

Suppose for the moment that (*) has been shown.
 It is clear that (*) implies that λI – T and (λI – T)* are injective.

Furthermore, this coercivity implies that the range $\text{Im}(\lambda I - T)$ is closed (see Session 1).

Since $[(\lambda I - T)(V)]^{\perp} = \text{Ker}(\overline{\lambda}I - T^*) = 0$, we thus have that $\lambda I - T$ is surjective and hence bijective.

Recalling (*) again, we have $\|(\lambda I - T)^{-1}\| \le |\text{Im}\lambda|^{-1}$, and so $\lambda \notin \sigma(T)$.

Since $\lambda \in \mathbb{C} \setminus \mathbb{R}$ is arbitrary, we have $\sigma(T) \subset \mathbb{R}$. So the main issue is to show (*).

Paper 2008 – Q8(a)

- Switching the role of λ and $\overline{\lambda}$, it is enough to estimate $\|\lambda v Tv\|$.
- Write $\lambda = a + ib$. We compute

$$\begin{aligned} \|\lambda v - Tv\|^2 &= \|av - Tv + ibv\|^2 \\ &= \|av - Tv\|^2 + b^2 \|v\|^2 \\ \underbrace{-ib\langle av - Tv, v \rangle + ib\langle v, av - Tv \rangle}_{= 0 \text{ as } al - T \text{ is self-adjoint}} \\ &= \|av - Tv\|^2 + b^2 \|v\|^2 \ge |Im\lambda|^2 \|v\|^2, \end{aligned}$$

which proves (\star) .

• A related (but easier) inequality: If U is isometric, then $\|\lambda v - Uv\| \ge ||\lambda| - 1|\|v\|$.

Paper 2014–Q2(c)

Let X be a Banach space.

- Bookwork: Boundedness of projection map.
- **(**) For $n \ge 1$, let Y_n and Z_n be closed subspaces of X such that

$$Y_n \subseteq Y_{n+1}, \quad Z_n \supseteq Z_{n+1}, \quad X = Y_n \oplus Z_n$$

Let P_n be given by $P_n(y_n + z_n) = y_n$ for $y_n \in Y_n$ and $z_n \in Z_N$. Assume that for each $x \in X$, the limit $\lim_{n\to\infty} P_n x$ exists and denote this limit by Px. Prove that P is a bounded projection and that

$$\operatorname{Im} P = \overline{\bigcup_{n \ge 1} Y_n}$$
 and $\operatorname{Ker} P = \bigcap_{n \ge 1} Z_n$.

Paper 2014–Q2(c)

- It is straightforward to check that *P* is linear.
- For each x, $\{P_nx\}$ is bounded (since it's convergent), we have by the principle of uniform boundedness that $\{P_n\}$ is bounded in $\mathscr{B}(X)$, i.e. there exists $M \ge 0$ such that $||P_n|| \le M$ for all n.
- Using $P_n^2 = P_n$ and

$$\|P_n(P_nx-Px)\|\leq M\|P_nx-Px\|\to 0,$$

we have $P^2 = P$.

Next,

$$\|Px\| \leq \underbrace{\|(P_nx - Px)\|}_{\to 0} + \underbrace{\|P_nx\|}_{\leq M\|x\|}$$
 and so $\|Px\| \leq M\|x\|$.

This means P is bounded.

Now let Y = UY_n and Z = ∩Z_n which are closed subspaces of X. We need to show Im P = Y and Ker P = Z.

Paper 2014–Q2(c)

• Let us show that Ker P = Z. For each $z \in Z$, we have $z \in Z_n$ for all n and so $P_n z = 0$ for all n. In particular, $Pz = \lim P_n z = 0$. Conversely, suppose Pz = 0. Then $z = \lim (I - P_n) z$. Note that

Conversely, suppose Pz = 0. Then $z = \lim(I - P_n)z$. Note that $(I - P_n)z \in Z_n \subseteq Z_m$ if $n \ge m$. It follows that the sequence $((I - P_n)z)$ eventually belongs to Z_m for each m. Since Z_m are closed, we have that $z = \lim(I - P_n)z$ belongs to all Z_m , i.e. $z \in Z$.

Next, we show Im P = Y.
If y = Px = lim P_nx, then since (P_nx) ⊂ ∪Y_n we have y ∈ Y.
So Im P ⊆ Y.
Take y ∈ ∪Y_n so that y ∈ Y_m for some m. Then y ∈ Y_n for all n ≥ m. It follows that P_ny = y for n ≥ m and so Py = y.
By continuity, we have Py = y for all y ∈ Y and so Y ⊆ Im P.

Paper 2017–Q2

- ▶ () Let X = C([0,1]). Define $A_n : X \to X$ so that $(A_n x)(t) = x(t^{1+\frac{1}{n}})$. Show that A_n converges strongly to the identity operator on X (i.e. $A_n x \to x$ for all $x \in X$.)
 - () Let X be a Banach space, Y be a normed space, $T \in \mathscr{B}(X, Y)$. Assume $\overline{T(B_X(0,1))} \supseteq B_Y(0,\varepsilon)$ for some $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that $T(B_X(0,1)) \supseteq B_Y(0,\delta)$.
 - [●] Let X and Y be Banach spaces and $T \in \mathscr{B}(X, Y)$. Prove that if T(X) is not closed in Y, then T(X) is a countable union of nowhere dense subsets of Y.
 - Show that C([0,1]) is a countable union of nowhere dense subsets of $L^2(0,1)$.

Paper 2017–Q2(a)(ii)

Let X = C([0,1]). Define $A_n : X \to X$ so that $(A_n x)(t) = x(t^{1+\frac{1}{n}})$. Show that A_n converges strongly to the identity operator on X (i.e. $A_n x \to x$ for all $x \in X$.)

• Fix $x \in X$. We need to show

$$\sup_{t\in [0,1]} |x(t^{1+rac{1}{n}})-x(t)| o 0$$
 as $n o\infty.$

• By uniform continuity of x, it suffices to show

$$\sup_{t\in[0,1]}|t^{1+\frac{1}{n}}-t|\to 0 \text{ as } n\to\infty.$$

• Fix some small
$$\epsilon > 0$$
.
+ If $t \le \epsilon$, then $|t^{1+\frac{1}{n}} - t| < \epsilon$ for all n .
+ If $t > \epsilon$, then $|t^{1+\frac{1}{n}} - t| \le |t^{\frac{1}{n}} - 1| \le 1 - \epsilon^{\frac{1}{n}} < \epsilon$ for all large n .

Let X be a Banach space, Y be a normed space, $T \in \mathscr{B}(X, Y)$. Assume $\overline{T(B_X(0,1))} \supseteq B_Y(0,\varepsilon)$ for some $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that $T(B_X(0,1)) \supseteq B_Y(0,\delta)$.

• We prove the statement with $\delta=\varepsilon/2.$

- As $\overline{T(B_X(0,1))} \supset B_Y(0,\varepsilon)$, we have $\overline{T(B_X(0,r))} \supset B_Y(0,\varepsilon r)$.
- Take $y \in B_Y(0, \epsilon/2) \subset T(B_X(0, 1/2))$.

• Take $x_1 \in B_X(0,1/2)$ such that $\|y - Tx_1\| < \varepsilon/4$. Then

$$y - Tx_1 \in B_Y(0, \varepsilon/4) \subset \overline{T(B_X(0, 1/4))}.$$

• Take $x_2 \in B_X(0, 1/4)$ such that $||(y - Tx_1) - Tx_2|| < \varepsilon/8$.

• Inductively, we obtain $x_k \in B_X(0, 2^{-k})$ such that

$$\|y-T(x_1+\ldots+x_k)\|<\varepsilon\,2^{-k-1}$$

• Easy to check: The series $\sum x_k$ converges to some *s* satisfying y = Ts and

$$\|s\| < \sum_{k=1}^{\infty} \|x_k\| \le \sum_{k=1}^{\infty} 2^{-k} = 1, \text{ i.e. } s \in B_X(0,1).$$

We have thus shown that $B_Y(0, \varepsilon/2) \subset T(B_X(0, 1))$.

Paper 2017–Q2(b)(iii)

Let X and Y be Banach spaces and $T \in \mathscr{B}(X, Y)$. Prove that if T(X) is not closed in Y, then T(X) is a countable union of nowhere dense subsets of Y.

- As $TX = \bigcup_n T(B_X(0, n))$, it suffices to show that $T(B_X(0, 1))$ is nowhere dense.
- Suppose by contradiction that $\overline{T(B_X(0,1))}$ has non-empty interior, i.e. $\overline{T(B_X(0,1))} \supset B_Y(y_0, r_0)$ for some $r_0 > 0$.
- Then we also have that $\overline{T(B(0,1))} \supset B_Y(-y_0,r_0)$, which in turns implies that

$$\overline{T(B_X(0,1))} \supset B_Y(0,r_0) = \frac{1}{2}(B_Y(y_0,r_0) + B_Y(-y_0,r_0)).$$

- By (i), we then have $T(B_X(0,1)) \supset B_Y(0,\delta)$ for some $\delta > 0$.
- This implies that $T(B_X(0, n)) \supset B_Y(0, \delta n)$ and so TX = Y, contradicting the fact that TX is not closed.

Show that C([0, 1]) is a countable union of nowhere dense subsets of $L^2(0, 1)$.

- Let X = C[0, 1] and $Y = L^2(0, 1)$ and equip them with their standard norms to make them Banach spaces.
- Let $T : X \to Y$ be the natural injection, which is clearly bounded linear.
- Clearly T is not surjective and so, by (iii), X = TX is a countable union of nowhere dense sets in $L^2(0, 1)$.