Part A Integration: HT 2019

Problem Sheet 1: Lebesgue measure

An asterisk before the number of a question, or a part of a question, indicates that it is optional. Such questions may cover proofs omitted from the lectures or other topics related to the course, and some may be a bit harder. Strong students should be encouraged to do some of them, but I would expect only a few to attempt all parts of all questions.

- 1. Let $f_n(x) = n^2 x^n (1-x) (0 \le x \le 1)$. Show that
	- (i) $\lim_{n\to\infty} f_n(x) dx = 0$ for each $x \in [0,1].$
	- (ii) $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 1.$
- 2. Show that \int_1^1 0 \int_0^1 0 *x − y* $\int \frac{x-y}{(x+y)^3} dx$ *dy* = − 1 2 . Deduce that \int_0^1 0 \int_0^1 $\boldsymbol{0}$ *x − y* $\frac{x-y}{(x+y)^3} dy$ $dx \neq$ \int_0^1 $\mathbf{0}$ \int_0^1 $\mathbf{0}$ *x − y* $\frac{x-y}{(x+y)^3} dx$ dy.
- 3. (a) Let $E = \mathbb{Q} \cap [0,1]$. Show that there exists a sequence $(x_n)_{n\geq 1}$ in [0, 1] such that the sets $E + x_n := \{y + x_n : y \in E\}$ $(n = 1, 2, ...)$ are disjoint. Show that

$$
0 \leq \sum_{n=1}^{k} \chi_E(x - x_n) \leq \chi_{[0,2]}(x) \qquad (x \in \mathbb{R}, k \in \mathbb{N}).
$$

(b) Let *V* be a vector space of functions from $\mathbb R$ to $\mathbb R$, and $\phi: V \to \mathbb R$ be a linear functional with the following properties:

- (i) For any bounded interval $I \subseteq \mathbb{R}$ with endpoints *a* and *b*, $\chi_I \in V$ and $\phi(\chi_I) = b a$.
- (ii) If $f \in V$ and $f(x) \geq 0$ for all $x \in \mathbb{R}$, then $\phi(f) \geq 0$.
- (iii) If $f \in V$, $a \in \mathbb{R}$ and $f_a(x) = f(x a)$, then $f_a \in V$ and $\phi(f_a) = \phi(f)$.

If $\chi_E \in V$, show that $\phi(\chi_E) = 0$.

4. Find $\liminf_{n\to\infty} a_n$ and $\limsup_{n\to\infty} a_n$ when

- (i) $a_n = \exp(-\cos n),$ (ii) $a_n = \exp\left(n \sin\left(\frac{n\pi}{2}\right)\right)$ $\left(\frac{n\pi}{2}\right)\right) + \exp\left(\frac{1}{n}\right)$ $\frac{1}{n}$ cos $\left(\frac{n\pi}{2}\right)$ $\frac{i\pi}{2})$), (iii) $a_n = \cosh\left(n \sin\left(\frac{n^2+1}{n}\right)\right)$ *n*) *π* $\frac{\pi}{2}$).
- 5. Let (a_n) and (b_n) be bounded real sequences. Prove that
	- (i) If $a_n \leq b_n$ for all *n* then $\limsup_{n\to\infty} a_n \leq \limsup_{n\to\infty} b_n$.
	- (ii) $\limsup_{n\to\infty} (a_n + b_n) \leq \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$.
	- *(iii) There is a subsequence $(a_{n_r})_{r\geq 1}$ of (a_n) such that $\lim_{r\to\infty} a_{n_r} = \limsup_{n\to\infty} a_n$ *n→∞ an*.

^{*}(iv) If $(a_{k_r})_{r \geq 1}$ is any convergent subsequence of (a_n) , then $\lim_{r \to \infty} a_{k_r} \leq \limsup_{n \to \infty} a_n$ *n→∞ an*. 6. Let *C* be the Cantor set. Explain, in as much detail as you think is appropriate, why

$$
C = \left\{ \sum_{n=1}^{\infty} a_n 3^{-n} : a_n = 0 \text{ or } 2 \right\}.
$$

Prove that *C* is uncountable, for example by either (or both) of the following methods:

- (a) adapting Cantor's proof, via decimal expansions, that [0*,* 1] is uncountable,
- (b) constructing a surjection of *C* onto $[0, 1]$ —think about binary expansions in $[0, 1]$.

*Prove that $C + C = [0, 2]$ and deduce that *C* is uncountable.

7. Show that the set of all real numbers which have a decimal expansion not containing the digit 4 is null. [Consider first numbers between 0 and 1.]

Show that if *A* is null and *B* is countable, then $A + B$ is null.

Show that if *A* is null and $f : \mathbb{R} \to \mathbb{R}$ has a continuous derivative, then $f(A)$ is null. [Consider first the case when $A \subseteq [0,1]$ and use the fact that f' is bounded on [0, 1].]

8. Let *A*, *B* and A_n be subsets of $\mathbb{R}, x, \alpha \in \mathbb{R}$. Prove the following

(i)
$$
m^*(A+x) = m^*(A),
$$

- (ii) $m^*(\alpha A) = |\alpha|m^*(A),$
- (iii) $m^*(A \cup B) \leq m^*(A) + m^*(B)$,
- $*(iv)$ m^* $(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} m^*(A_n).$
- *9. Prove the following:
	- (i) Any null set is (Lebesgue) measurable.
	- (ii) Any interval is measurable.
	- (iii) If *E* and *F* are measurable and $x, \alpha \in \mathbb{R}$, then $E+x, \alpha E$ and $E \cup F$ are measurable.
	- (iv) If E_n are disjoint measurable subsets of R, then $\bigcup_{n=1}^{\infty} E_n$ is measurable and m^* ($\bigcup_{n=1}^{\infty} E_n$) = $\sum_{n=1}^{\infty} m^*(E_n)$.
- *10. Let *G* be an open subset of R. For $x, y \in G$, let $I_{x,y}$ be the closed (or open, if you prefer) interval between *x* and *y*, so $I_{x,x} = \{x\}$ (or \emptyset). Define a relation \sim on *G* by $x \sim y$ if and only if $I_{x,y} \subseteq G$.
	- (i) Show that *∼* is an equivalence relation on *G*.
	- (ii) Show that each equivalence class is an open interval. [To show that *A* is an interval, it is sufficient to check that, if $x, y \in A$ then $I_{x,y} \subseteq A$.]
	- (iii) Show that there are (at most) countably many equivalence classes. [Think about rational numbers.]
	- (iv) Deduce that *G* is the union of (at most) countably many, disjoint open intervals.