Part A Integration: HT 2019

Problem Sheet 1: Lebesgue measure

An asterisk before the number of a question, or a part of a question, indicates that it is optional. Such questions may cover proofs omitted from the lectures or other topics related to the course, and some may be a bit harder. Strong students should be encouraged to do some of them, but I would expect only a few to attempt all parts of all questions.

- 1. Let $f_n(x) = n^2 x^n (1-x)$ (0 \le x \le 1). Show that
 - (i) $\lim_{n\to\infty} f_n(x) dx = 0$ for each $x \in [0,1]$.
 - (ii) $\lim_{n\to\infty} \int_0^1 f_n(x) \, dx = 1$.
- 2. Show that $\int_0^1 \left(\int_0^1 \frac{x-y}{(x+y)^3} \, dx \right) \, dy = -\frac{1}{2}$.

Deduce that $\int_0^1 \left(\int_0^1 \frac{x - y}{(x + y)^3} \, dy \right) \, dx \neq \int_0^1 \left(\int_0^1 \frac{x - y}{(x + y)^3} \, dx \right) \, dy.$

3. (a) Let $E = \mathbb{Q} \cap [0,1]$. Show that there exists a sequence $(x_n)_{n\geq 1}$ in [0,1] such that the sets $E + x_n := \{y + x_n : y \in E\}$ (n = 1, 2, ...) are disjoint. Show that

$$0 \le \sum_{n=1}^{k} \chi_E(x - x_n) \le \chi_{[0,2]}(x) \qquad (x \in \mathbb{R}, k \in \mathbb{N}).$$

- (b) Let V be a vector space of functions from \mathbb{R} to \mathbb{R} , and $\phi: V \to \mathbb{R}$ be a linear functional with the following properties:
 - (i) For any bounded interval $I \subseteq \mathbb{R}$ with endpoints a and b, $\chi_I \in V$ and $\phi(\chi_I) = b a$.
 - (ii) If $f \in V$ and $f(x) \ge 0$ for all $x \in \mathbb{R}$, then $\phi(f) \ge 0$.
 - (iii) If $f \in V$, $a \in \mathbb{R}$ and $f_a(x) = f(x a)$, then $f_a \in V$ and $\phi(f_a) = \phi(f)$.

If $\chi_E \in V$, show that $\phi(\chi_E) = 0$.

- 4. Find $\liminf_{n\to\infty} a_n$ and $\limsup_{n\to\infty} a_n$ when
 - (i) $a_n = \exp(-\cos n)$,
 - (ii) $a_n = \exp\left(n\sin\left(\frac{n\pi}{2}\right)\right) + \exp\left(\frac{1}{n}\cos\left(\frac{n\pi}{2}\right)\right)$,
 - (iii) $a_n = \cosh\left(n\sin\left(\left(\frac{n^2+1}{n}\right)\frac{\pi}{2}\right)\right)$.
- 5. Let (a_n) and (b_n) be bounded real sequences. Prove that
 - (i) If $a_n \leq b_n$ for all n then $\limsup_{n \to \infty} a_n \leq \limsup_{n \to \infty} b_n$.
 - (ii) $\limsup_{n\to\infty} (a_n + b_n) \le \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n$.
 - *(iii) There is a subsequence $(a_{n_r})_{r\geq 1}$ of (a_n) such that $\lim_{r\to\infty} a_{n_r} = \limsup_{n\to\infty} a_n$.
 - *(iv) If $(a_{k_r})_{r\geq 1}$ is any convergent subsequence of (a_n) , then $\lim_{r\to\infty} a_{k_r} \leq \limsup_{n\to\infty} a_n$.

6. Let C be the Cantor set. Explain, in as much detail as you think is appropriate, why

$$C = \left\{ \sum_{n=1}^{\infty} a_n 3^{-n} : a_n = 0 \text{ or } 2 \right\}.$$

Prove that C is uncountable, for example by either (or both) of the following methods:

- (a) adapting Cantor's proof, via decimal expansions, that [0, 1] is uncountable,
- (b) constructing a surjection of C onto [0,1]—think about binary expansions in [0,1].
- *Prove that C + C = [0, 2] and deduce that C is uncountable.
- 7. Show that the set of all real numbers which have a decimal expansion not containing the digit 4 is null. [Consider first numbers between 0 and 1.]

Show that if A is null and B is countable, then A + B is null.

Show that if A is null and $f : \mathbb{R} \to \mathbb{R}$ has a continuous derivative, then f(A) is null. [Consider first the case when $A \subseteq [0,1]$ and use the fact that f' is bounded on [0,1].]

- 8. Let A, B and A_n be subsets of \mathbb{R} , $x, \alpha \in \mathbb{R}$. Prove the following
 - (i) $m^*(A+x) = m^*(A)$,
 - (ii) $m^*(\alpha A) = |\alpha| m^*(A)$,
 - (iii) $m^*(A \cup B) \le m^*(A) + m^*(B)$,
 - *(iv) $m^* (\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} m^* (A_n)$.
- *9. Prove the following:
 - (i) Any null set is (Lebesgue) measurable.
 - (ii) Any interval is measurable.
 - (iii) If E and F are measurable and $x, \alpha \in \mathbb{R}$, then E + x, αE and $E \cup F$ are measurable.
 - (iv) If E_n are disjoint measurable subsets of \mathbb{R} , then $\bigcup_{n=1}^{\infty} E_n$ is measurable and $m^* (\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m^*(E_n)$.
- *10. Let G be an open subset of \mathbb{R} . For $x, y \in G$, let $I_{x,y}$ be the closed (or open, if you prefer) interval between x and y, so $I_{x,x} = \{x\}$ (or \emptyset). Define a relation \sim on G by $x \sim y$ if and only if $I_{x,y} \subseteq G$.
 - (i) Show that \sim is an equivalence relation on G.
 - (ii) Show that each equivalence class is an open interval. [To show that A is an interval, it is sufficient to check that, if $x, y \in A$ then $I_{x,y} \subseteq A$.]
 - (iii) Show that there are (at most) countably many equivalence classes. [Think about rational numbers.]
 - (iv) Deduce that G is the union of (at most) countably many, disjoint open intervals.

9.1.2019 CJKB