Part A Integration

Problem Sheet 4: Fubini's Theorem, L^p -spaces

1. (a) Let $q : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to [0, \infty)$ be Borel-measurable functions, and μ be a measure on $(\mathbb{R}, \mathcal{M}_{\text{Bor}})$. For $B \in \mathcal{M}_{\text{Bor}}$, let

$$
(g_*\mu)(B) = \mu(g^{-1}(B)),
$$
 $(h \cdot \mu)(B) = \int_B h \, d\mu.$

Show that $g_*\mu$ and $h \cdot \mu$ are measures on ($\mathbb{R}, \mathcal{M}_{\text{Bor}}$).

Let $f : \mathbb{R} \to [0, \infty]$ be Borel-measurable. Show that

$$
\int_{\mathbb{R}} (f \circ g) d\mu = \int_{\mathbb{R}} f d(g_* \mu), \qquad \int_{\mathbb{R}} f h d\mu = \int_{\mathbb{R}} f d(h \cdot \mu).
$$

[*Consider first* $f = \chi_B$ *, then consider simple functions, and then apply the MCT.*]

(b) Let $q : \mathbb{R} \to \mathbb{R}$ be an increasing bijection with a continuous derivative. Show that the measure $g_*(g'.m)$ is Lebesgue measure m on \mathcal{M}_{Bor} . [*You may assume that* m *is the unique measure* μ *on* ($\mathbb{R}, \mathcal{M}_{\text{Bor}}$) *such that* $\mu(I) = b - a$ *whenever I is an interval with endpoints a, b.*]

Let $f : \mathbb{R} \to [-\infty, \infty]$ be Borel-measurable. Show that f is integrable (with respect to m) if and only if $(f \circ g)g'$ is integrable, and then their integrals are equal.

- 2. Evaluate $\int_0^1 \left(\int_0^x e^{-y} dy \right) dx$ and $\int_0^1 \left(\int_0^{x-x^2} dx \right)$ $\int_0^{x-x^2} (x+y) \, dy \bigg) \, dx$
	- (a) directly;
	- (b) by reversing the order of integration.
- 3. In each of the following cases, is *f* integrable over the given region? [Give careful justification.]

(i)
$$
f(x, y) = e^{-xy}
$$
 over $[0, \infty) \times [0, \infty)$;
\n(ii) $f(x, y) = e^{-xy}$ over $\{(x, y) : 0 < x < y < x + x^2\}$;
\n(iii) $f(x, y) = \frac{(\sin x)(\sin y)}{x^2 + y^2}$ over $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

4. [Applications of Tonelli or Fubini should be carefully justified.]

(a) Let
$$
J_0(x) = \frac{2}{\pi} \int_0^{\pi/2} \cos(x \cos \theta) d\theta
$$
. Show that $\int_0^{\infty} J_0(x) e^{-ax} dx = \frac{1}{\sqrt{1 + a^2}}$ if $a > 0$.
\n(b) Take $b > a > 1$. By considering x^{-y} over $(1, \infty) \times (a, b)$, show that $\int_1^{\infty} \frac{x^{-a} - x^{-b}}{\log x} dx$ exists, and find its value.

- 5. (a) Let $\alpha > 1$ and $f(x, y) = (x^2 + y^2)^{-\alpha}$ and $g(x, y) = (1 + x^2 + y^2)^{-\alpha}$. Show that f is integrable over $[1, \infty) \times [0, \infty)$ [Hint: Change of variables $y = ux$ may help]. Deduce that *f* is integrable over $[0,1] \times [1,\infty)$, and that *g* is integrable over \mathbb{R}^2 .
	- (b) Use polar coordinates to show that g is integrable over \mathbb{R}^2 .
- 6. The parabolas $x = -y^2$, $x = 2y y^2$, and $x = 2 y^2 2y$ divide the plane into 7 regions of which only one is bounded. Let this region be *A*. Find a change of variables such that the first two parabolas become $u = 0$ and $v = 0$. Evaluate the double integral $\int_A x d(x, y)$.
- 7. Consider the relation *∼* on the space of measurable functions *f* : R *→* R given by: *f* ∼ *g* \iff *f* = *g* a.e.

State which properties of null sets are used to prove each of the following true statements $(f, q, h, \text{ etc. are measurable functions):}$

- (i) *f ∼ f*,
- (ii) $f \sim g$ \implies $g \sim f$,
- (iii) *f ∼ g, g ∼ h* =*⇒ f ∼ h*,
- (iv) If $f_n \sim g_n$ for all $n \in \mathbb{N}$, then $\sup f_n \sim \sup g_n$,
- (v) If $f \sim q$, then $h \circ f \sim h \circ q$.

*Give an example where *h* is injective, $f \sim g$, but $f \circ h \not\sim g \circ h$.

- 8. For $p > 0$, calculate $||f||_p$ when *f* is (i) $\chi_{(0,1)}$, (ii) $\chi_{(1,2)}$, (iii) $\chi_{(0,2)}$. What does this tell you about $\|\cdot\|_p$ when $0 < p < 1$?
- 9. Let $p > 1$. Give examples of sequences (f_n) and (g_n) in $L^p(0,1)$ such that
	- (i) $\lim_{n\to\infty} f_n(x) = 0$ a.e. but $\lim_{n\to\infty} ||f_n||_p \neq 0;$
	- (ii) $\lim_{n\to\infty} \|g_n\|_p = 0$ but $\lim_{n\to\infty} g_n(x)$ does not exist for any $x \in (0,1)$.

For each $\varepsilon > 0$ find a measurable subset E_{ε} of [0, 1] such that $m(E_{\varepsilon}) < \varepsilon$ and $f_n(x) \to 0$ uniformly on $[0, 1] \setminus E_{\varepsilon}$.

Find a subsequence (g_{n_r}) such that $\lim_{r \to \infty} g_{n_r}(x) = 0$ a.e.

10. A function $q : [0, \infty) \to \mathbb{R}$ is *convex* if

$$
g(x) = \sup \{ \alpha x + \beta : \alpha y + \beta \le g(y) \text{ for all } y \in [0, \infty) \}.
$$

If *g* is continuous on $[0, \infty)$ with non-negative second derivative on $(0, \infty)$, then *g* is convex.

Let $f : [0, 1] \to [0, \infty)$ be bounded, measurable, and $M_n = \int_0^1 f^n dx = ||f||_{L^n}^n$. Show that (i) $g\left(\int_0^1 f(x) dx\right) \leq \int_0^1 g(f(x)) dx$ for every convex function *g*;

- (ii) $M_n^2 \leq M_{n+1}M_{n-1};$
- $(|iiii)$ $||f||_{L^n} \leq M_{n+1}/M_n \leq ||f||_{L^{\infty}};$
- (iv) $\lim_{n\to\infty} M_{n+1}/M_n = ||f||_{L^{\infty}}$.

*11. Let $f \in \mathcal{L}^1(\mathbb{R})$ be non-negative with $\int_{-\infty}^{\infty} f(x) dx = 1$, and let $F(x) = \int_{-\infty}^x f(y) dy$. Assume that $xf(x) \in \mathcal{L}^1(\mathbb{R})$. Use Fubini's Theorem to prove that

$$
\int_0^{\infty} (1 - F(x)) dx = \int_0^{\infty} x f(x) dx, \qquad \int_{-\infty}^0 F(x) dx = - \int_{-\infty}^0 x f(x) dx.
$$

Now let *g* be a bounded measurable function, and let

$$
G(y) = \int_{\{g(x) \le y\}} f(x) dx.
$$

Prove that

$$
\int_0^\infty (1 - G(y) - G(-y)) dy = \int_{-\infty}^\infty f(x)g(x) dx.
$$

[*Remark (not a hint): Imagine that f is the probability density function of a random vari* a ble *X.* The first part of the question then says that $\mathbb{E}(X) = \int_0^\infty (\mathbb{P}[X > x] - \mathbb{P}[X \leq -x]) dx$. *This formula holds for all random variables (discrete, continuous, etc) with* $\mathbb{E}(|X|) < \infty$. *In particular it holds for* $g(X)$ *. Then the last part proves that* $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} \hat{f}(x)g(x) dx$, *a fact sometimes known as the Law of the Unconscious Statistician*.]

*12. Let E_n be measurable subsets of R with $m(E_n) \leq 2^{-n}$ for $n = 1, 2, \ldots$. Show that $\lim_{n\to\infty} \chi_{E_n}(x) = 0$ a.e.

Let $f \in \mathcal{L}^1(\mathbb{R})$. Show that $\lim_{n\to\infty} \int_{E_n} |f| = 0$. Deduce that for any $\varepsilon > 0$ there exists $\delta > 0$ such that $\int_E |f| < \varepsilon$ for all measurable sets *E* with $m(E) < \delta$.

Let $F(x) = \int_{-\infty}^{x} f(y) dy$. Show that *F* is absolutely continuous.

20.2.2019 CJKB