Part A Integration

Problem Sheet 4: Fubini's Theorem, L^p -spaces

1. (a) Let $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to [0, \infty)$ be Borel-measurable functions, and μ be a measure on $(\mathbb{R}, \mathcal{M}_{Bor})$. For $B \in \mathcal{M}_{Bor}$, let

$$(g_*\mu)(B) = \mu(g^{-1}(B)), \qquad (h \cdot \mu)(B) = \int_B h \, d\mu.$$

Show that $g_*\mu$ and $h \cdot \mu$ are measures on $(\mathbb{R}, \mathcal{M}_{Bor})$.

Let $f : \mathbb{R} \to [0, \infty]$ be Borel-measurable. Show that

$$\int_{\mathbb{R}} (f \circ g) \, d\mu = \int_{\mathbb{R}} f \, d(g_* \mu), \qquad \int_{\mathbb{R}} f h \, d\mu = \int_{\mathbb{R}} f \, d(h \cdot \mu).$$

[Consider first $f = \chi_B$, then consider simple functions, and then apply the MCT.]

(b) Let $g : \mathbb{R} \to \mathbb{R}$ be an increasing bijection with a continuous derivative. Show that the measure $g_*(g'.m)$ is Lebesgue measure m on \mathcal{M}_{Bor} . [You may assume that m is the unique measure μ on $(\mathbb{R}, \mathcal{M}_{Bor})$ such that $\mu(I) = b - a$ whenever I is an interval with endpoints a, b.]

Let $f : \mathbb{R} \to [-\infty, \infty]$ be Borel-measurable. Show that f is integrable (with respect to m) if and only if $(f \circ g)g'$ is integrable, and then their integrals are equal.

- 2. Evaluate $\int_0^1 \left(\int_0^x e^{-y} \, dy \right) \, dx$ and $\int_0^1 \left(\int_0^{x-x^2} (x+y) \, dy \right) \, dx$
 - (a) directly;
 - (b) by reversing the order of integration.
- 3. In each of the following cases, is f integrable over the given region? [Give careful justification.]
 - (i) $f(x,y) = e^{-xy}$ over $[0,\infty) \times [0,\infty)$; (ii) $f(x,y) = e^{-xy}$ over $\{(x,y) : 0 < x < y < x + x^2\}$; (iii) $f(x,y) = \frac{(\sin x)(\sin y)}{x^2 + y^2}$ over $(-\frac{\pi}{2}, \frac{\pi}{2}) \times (-\frac{\pi}{2}, \frac{\pi}{2})$.
- 4. [Applications of Tonelli or Fubini should be carefully justified.]

(a) Let
$$J_0(x) = \frac{2}{\pi} \int_0^{\pi/2} \cos(x \cos \theta) \, d\theta$$
. Show that $\int_0^\infty J_0(x) e^{-ax} \, dx = \frac{1}{\sqrt{1+a^2}}$ if $a > 0$.
(b) Take $b > a > 1$. By considering x^{-y} over $(1, \infty) \times (a, b)$, show that $\int_1^\infty \frac{x^{-a} - x^{-b}}{\log x} \, dx$ exists, and find its value.

- 5. (a) Let $\alpha > 1$ and $f(x,y) = (x^2 + y^2)^{-\alpha}$ and $g(x,y) = (1 + x^2 + y^2)^{-\alpha}$. Show that f is integrable over $[1,\infty) \times [0,\infty)$ [Hint: Change of variables y = ux may help]. Deduce that f is integrable over $[0,1] \times [1,\infty)$, and that g is integrable over \mathbb{R}^2 .
 - (b) Use polar coordinates to show that g is integrable over \mathbb{R}^2 .
- 6. The parabolas $x = -y^2$, $x = 2y y^2$, and $x = 2 y^2 2y$ divide the plane into 7 regions of which only one is bounded. Let this region be A. Find a change of variables such that the first two parabolas become u = 0 and v = 0. Evaluate the double integral $\int_A x \, d(x, y)$.
- 7. Consider the relation ~ on the space of measurable functions $f : \mathbb{R} \to \mathbb{R}$ given by: $f \sim g \iff f = g$ a.e.

State which properties of null sets are used to prove each of the following true statements (f, g, h, etc are measurable functions):

- (i) $f \sim f$,
- (ii) $f \sim g \implies g \sim f$,
- (iii) $f \sim g, g \sim h \implies f \sim h,$
- (iv) If $f_n \sim g_n$ for all $n \in \mathbb{N}$, then $\sup f_n \sim \sup g_n$,
- (v) If $f \sim g$, then $h \circ f \sim h \circ g$.

*Give an example where h is injective, $f \sim g$, but $f \circ h \not\sim g \circ h$.

- 8. For p > 0, calculate $||f||_p$ when f is (i) $\chi_{(0,1)}$, (ii) $\chi_{(1,2)}$, (iii) $\chi_{(0,2)}$. What does this tell you about $|| \cdot ||_p$ when 0 ?
- 9. Let p > 1. Give examples of sequences (f_n) and (g_n) in $L^p(0,1)$ such that
 - (i) $\lim_{n\to\infty} f_n(x) = 0$ a.e. but $\lim_{n\to\infty} ||f_n||_p \neq 0$;
 - (ii) $\lim_{n\to\infty} ||g_n||_p = 0$ but $\lim_{n\to\infty} g_n(x)$ does not exist for any $x \in (0,1)$.

For each $\varepsilon > 0$ find a measurable subset E_{ε} of [0, 1] such that $m(E_{\varepsilon}) < \varepsilon$ and $f_n(x) \to 0$ uniformly on $[0, 1] \setminus E_{\varepsilon}$.

Find a subsequence (g_{n_r}) such that $\lim_{r\to\infty} g_{n_r}(x) = 0$ a.e.

10. A function $g:[0,\infty) \to \mathbb{R}$ is convex if

$$g(x) = \sup\{\alpha x + \beta : \alpha y + \beta \le g(y) \text{ for all } y \in [0, \infty)\}$$

If g is continuous on $[0,\infty)$ with non-negative second derivative on $(0,\infty)$, then g is convex.

Let $f: [0,1] \to [0,\infty)$ be bounded, measurable, and $M_n = \int_0^1 f^n dx = ||f||_{L^n}^n$. Show that

- (i) $g\left(\int_0^1 f(x) \, dx\right) \leq \int_0^1 g(f(x)) \, dx$ for every convex function g;
- (ii) $M_n^2 \le M_{n+1} M_{n-1};$
- (iii) $||f||_{L^n} \le M_{n+1}/M_n \le ||f||_{L^{\infty}};$
- (iv) $\lim_{n \to \infty} M_{n+1}/M_n = ||f||_{L^{\infty}}.$

*11. Let $f \in \mathcal{L}^1(\mathbb{R})$ be non-negative with $\int_{-\infty}^{\infty} f(x) dx = 1$, and let $F(x) = \int_{-\infty}^{x} f(y) dy$. Assume that $xf(x) \in \mathcal{L}^1(\mathbb{R})$. Use Fubini's Theorem to prove that

$$\int_0^\infty (1 - F(x)) \, dx = \int_0^\infty x f(x) \, dx, \qquad \int_{-\infty}^0 F(x) \, dx = -\int_{-\infty}^0 x f(x) \, dx.$$

Now let g be a bounded measurable function, and let

$$G(y) = \int_{\{g(x) \le y\}} f(x) \, dx$$

Prove that

$$\int_0^\infty (1 - G(y) - G(-y)) \, dy = \int_{-\infty}^\infty f(x)g(x) \, dx.$$

[Remark (not a hint): Imagine that f is the probability density function of a random variable X. The first part of the question then says that $\mathbb{E}(X) = \int_0^\infty (\mathbb{P}[X > x] - \mathbb{P}[X \le -x]) dx$. This formula holds for all random variables (discrete, continuous, etc) with $\mathbb{E}(|X|) < \infty$. In particular it holds for g(X). Then the last part proves that $\mathbb{E}[g(X)] = \int_{-\infty}^\infty f(x)g(x) dx$, a fact sometimes known as the Law of the Unconscious Statistician.]

*12. Let E_n be measurable subsets of \mathbb{R} with $m(E_n) \leq 2^{-n}$ for $n = 1, 2, \ldots$ Show that $\lim_{n \to \infty} \chi_{E_n}(x) = 0$ a.e.

Let $f \in \mathcal{L}^1(\mathbb{R})$. Show that $\lim_{n\to\infty} \int_{E_n} |f| = 0$. Deduce that for any $\varepsilon > 0$ there exists $\delta > 0$ such that $\int_E |f| < \varepsilon$ for all measurable sets E with $m(E) < \delta$.

Let $F(x) = \int_{-\infty}^{x} f(y) dy$. Show that F is absolutely continuous.

20.2.2019

CJKB