
THE FORMULA FOR CHANGE OF VARIABLES IN
MULTIPLE INTEGRALS

D. A. EDWARDS

1. Introduction

The object of this note is to offer a reasonably self-contained proof of
the following well known theorem, which, despite its usefulness, is often
omitted from elementary accounts of Lebesgue integration. Lebesgue
measure in Rk is denoted by λ.

Theorem 1. Let U and V be open subsets of Euclidean k-dimensional
space Rk and let φ be a bijection of U onto V such that φ and its inverse
φ−1 are continuous and have continuous derivatives. Then, for every
measurable function f : V → R+, we have∫

V

f(x)λ(dx) =

∫
U

(f ◦ φ)(x)| detφ′(x)|λ(dx).

(The case in which both integrals are infinite is not excluded.)
If, on the other hand, a function f : V → R is given, then f ∈ L1(V )

if and only if (f ◦φ)| detφ′| ∈ L1(U), and in that case the above formula
remains valid.

The prerequisites for reading this paper are a first course in Lebesgue
integration theory, treated via the Carathéodory extension theorem,
and just a little linear algebra and multivariable analysis. No originality
is claimed for the demonstration given here, which has simply been
pieced together from a number of sources.

We first recall some matters that are not always treated in elementary
accounts of Lebesgue integration.

2. Regularity of Lebesgue measure

Given a set Ω and a family E of subsets of Ω, we denote by σ(E)
the smallest σ-algebra of subsets of Ω that contains E , and we say that
σ(E) is the σ-algebra of subsets of Ω generated by E . When Ω is
a topological space, we denote by B(Ω) the σ-algebra of subsets of
Ω generated by the family of all open subsets of Ω, or, equivalently,
by the family of all closed subsets of Ω. The members of B(Ω) are
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2 D. A. EDWARDS

termed Borel subsets of Ω, or simply Borel sets if there is no risk
of confusion.

By a cell in Rk we shall mean a set of the form

P :=
k∏
i=1

[ai, bi)

where a := (a1, . . . , ak) and b := (b1, . . . , bk) are points of Rk and
ai ≤ bi for all i. Note that if ai = bi for some i then P = ∅. The vol-
ume, vol (P ), of P is, by definition,

∏k
i=1(bi−ai). The Lebesgue outer

measure λ∗(E) of a set E ⊆ Rk can be defined as inf
∑∞

n=1 vol (Pn),
where the infimum is taken over all sequences (Pn) of cells such that
E ⊆

⋃∞
n=1 Pn. Lebesgue measure for Rk can then be obtained from

λ∗ by the usual Carathéodory procedure, in the course of which it is
shown that every cell is a measurable set. We prove below that that all
Borel subsets of Rk are measurable (with respect to λ). Suppose our

cell P is non-empty. Then it has interior P̊ =
∏k

i=1(ai, bi), and closure

P =
∏k

i=1[ai, bi]; and if also E is a set satisfying P̊ ⊆ E ⊆ P then E is
measurable and λ(E) = vol (P ).

Theorem 2 (Regularity theorem). Let E be a measurable subset of Rk

and suppose that ε > 0.

(a) Then there exist an open set G and a closed set F such that F ⊆
E ⊆ G, and λ(G \ F ) < ε.

(b) If λ(E) <∞ we can find an open set G and a compact set K such
that K ⊆ E ⊆ G and λ(G \K) < ε.

Proof. (a) Consider first the case of the cell P =
∏k

i=1[ai, bi). The
product

Gn :=
k∏
i=1

(ai − n−1, bi)

is an open set and (Gn \ P ) ↓ ∅ as n → ∞. Since λ(G1 \ P ) < ∞, it
follows that λ(Gn \ P ) ↓ 0 as n→∞.

Now let E be a measurable set with λ(E) < ∞, and suppose that
ε > 0. We can find a sequence of cells (Pn) such that E ⊆

⋃∞
n=1 Pn

and
∑∞

n=1 λ(Pn) < λ(E) + ε/22. Now choose open sets Gn such that
Pn ⊆ Gn and λ(Gn \ Pn) < ε/2n+2. Then G :=

⋃∞
n=1Gn is open,

E ⊆ G, and

λ(G) <
∞∑
n=1

λ(Gn) <
∞∑
n=1

(λ(Pn) + λ(Gn \ Pn)) < λ(E) + ε/2,
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and hence λ(G \ E) < ε/2.
Next, let E be a measurable set with λ(E) =∞ and for each integer

n ≥ 1 let En = E ∩Bn, where Bn is the Borel set {x ∈ Rk : (n− 1) ≤
‖x‖ < n }. For each n choose an open set Gn with En ⊆ Gn and
λ(Gn \ En) < ε/2n+1. Then G :=

⋃∞
n=1Gn is open, E ⊆ G and

λ(G \ E) < ε/2.
To approximate E from the inside by closed sets, first approximate
{E from outside by open sets, then pass to complements to obtain a
closed set F such that E ⊇ F and λ(E \F ) < ε/2. Then λ(G \F ) < ε.

(b) Now suppose that λ(E) < ∞ and let En = {x ∈ E : ‖x‖ <
n }. Then λ(E \ En) ↓ 0 as n → ∞. Hence λ(E \ EN) < ε/4 for
some N . And λ(EN \ K) < ε/4 for some closed and bounded (and
hence compact) subset K of EN . Hence λ(E \K) < ε/2. If now G is
constructed as in part (a) of this proof then we see that K ⊆ E ⊆ G
and λ(G \K) < ε. �

.

Corollary 3. If E is a measurable subset of Rk then

λ(E) = inf{λ(G) : G open, E ⊆ G }
= sup{λ(K) : K compact, K ⊆ E }.

Proof. (i) If λ(E) = ∞ then it is obvious that λ(E) = inf{λ(G) :
G is open, E ⊆ G }. Next, suppose that λ(E) < ∞ and that ε > 0.
Then we can find an open set G such that E ⊆ G and λ(G \ E) < ε.
But then

λ(E) ≤ λ(G \ E) + λ(E) < λ(E) + ε.

Hence λ(E) = inf{λ(G) : G open, E ⊆ G }.
(ii) Suppose that R 3 t < λ(E), and for each integer n ≥ 1 let

En = {x ∈ E : ‖x‖ ≤ n }. Then λ(EN) > t for large enough N . Now
choose a closed set K such that K ⊆ EN and λ(EN \K) < λ(EN)− t.
Then K, being both closed and bounded, is a compact subset of E and
λ(K) > t. �

Corollary 4. Let E be a subset of Rk. Then E is measurable if and
only if there exist Borel sets A and B such that A ⊆ E ⊆ B and
λ(B \ A) = 0.

Proof. Suppose that E is measurable. Then, for each integer n ≥ 1, we
can find an open set Gn such that E ⊆ Gn and λ(Gn \ E) < n−1. We
can arrange that the sequence (Gn) is decreasing. Let B be the Borel
set

⋂∞
n=1Gn. Then E ⊆ B, and (Gn\E) ↓ (B\E) as n→∞. It follows

that λ(B \ E) = limn→∞ λ(Gn \ E) = 0. Similarly, approximating E
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from the inside by closed sets, we obtain a Borel set A such that A ⊆ E
and λ(E \ A) = 0. Consequently λ(B \ A) = 0.

Suppose, conversely, that E is a subset of Rk for which there exist
Borel sets A and B such that A ⊆ E ⊆ B and λ(B \ A) = 0. Then,
by the completeness of Lebesgue measure, the set E \A is measurable
because it is a subset of the null set B \A. But A is a measurable set,
because it is Borel. Hence E = A ∪ (E \ A) is measurable. �

3. Borel sets

Let U be an open subset of Rk. The relation between B(U) and
B(Rk) is given by the following lemma.

Lemma 5. If U is an open subset of Rk then

B(U) = {B ∩ U : B ∈ B(Rk) } = {A ∈ B(Rk) : A ⊆ U }.

Proof. Denote by U the set of all open subsets of U and by G the set
of all open subsets of Rk. Observe that

U ⊆ {B ∩ U : B ∈ B(Rk) }.
It is easy to see that {B ∩ U : B ∈ B(Rk) } is a σ-algebra of subsets
of U , so it follows that

(1) B(U) ⊆ {B ∩ U : B ∈ B(Rk) }.
To obtain the reverse inclusion, consider E := {E : E ∩ U ∈ B(U) }.
This is a σ-algebra of subsets of Rk and, clearly, G ⊆ E . Hence B(Rk) ⊆
E . But that means that

{B ∩ U : B ∈ B(Rk) } ⊆ B(U),

so that, by (1), we in fact have equality. Finally, because U ∈ B(Rk),
the truth of the equation {B ∩ U : B ∈ B(Rk) } = {A ∈ B(Rk) : A ⊆
U } is obvious. �

Lemma 6. If X, Y are topological spaces and h : X → Y is a contin-
uous map then h−1(B(Y )) ⊆ B(X). If h is a homeomorphism of X
onto Y then h(B(X)) = B(Y ) and h−1(B(Y )) = B(X).

Proof. Let h : X → Y be continuous and let E = {E : E ⊆ Y, h−1(E) ∈
B(X) }. Then E is a σ-algebra of subsets of Y that contains the open
sets. Hence E ⊇ B(Y ) and therefore h−1(B(Y )) ⊆ B(X).

Now assume that h is a homeomrphism. Then, by what we have
proved, h(B(X)) ⊆ B(Y ). Hence

B(X) = h−1h(B(X)) ⊆ h−1(B(Y )) ⊆ B(X),

so h−1(B(Y )) ⊆ B(X). Similarly, h(B(X)) = B(Y ). �
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4. dyadic cubes

We shall denote by W the cell [0, 1)k. By a dyadic cube in Rk we
shall mean a cell of the form Q = 2−na + 2−nW , where n is a integer
≥ 0 and a ∈ Zk. The number n is called the order of the cube, the
number 2−n is termed the edge-length of Q, and the point 2−na will
be termed its vertex. Thus W is a dyadic cube of order zero, of edge-
length 1, and vertex the origin. Note that a cube of edge-length h has
diameter hk

√
k. For each n the set ∆n of all dyadic cubes of order n is

a disjoint cover of Rk. The set ∆n is countably infinite, and hence the
set ∆ :=

⋃∞
n=0 ∆n of all dyadic cubes is countably infinite.

Lemma 7. Let Q,Q′ be dyadic cubes of orders n, n′ respectively, and
suppose that n ≥ n′. Then the following statements are equivalent

(i) Q ⊆ Q′;
(ii) Q ∩Q′ 6= ∅;

(iii) v(Q) ∈ Q′, where v(Q) is the vertex of Q.

Proof. By translation and scaling we can suppose for the proof that
Q′ = W .
(i)⇒(ii): This implication is trivial.
(ii)⇒(iii): Suppose that Q ∩W 6= ∅, where Q = 2−na + 2−nW . Then
there exist u, v ∈ W such that 2−na+ 2−nu = v, or a = 2nv−u. Hence
−1 < ai < 2n with ai ∈ Z for each i. Therefore ai ∈ { 0, 1, . . . , 2n− 1 },
and hence v(Q) = 2−na ∈ W .
(iii)⇒(i): Suppose that v(Q) = 2−na = 2−n(a1, . . . ak) ∈ W . Then, for
each i, we have ai ∈ 2nW ∩ Z and so ai ∈ { 0, 1, . . . , 2n − 1 }. Hence
Q = 2−na+ 2−nW ⊆ W . �

Corollary 8. Let Q,Q′ be dyadic cubes. Then at least one of the
following assertions is true: (i) Q ⊆ Q′; (ii) Q′ ⊆ Q; (iii) Q ∩Q′ = ∅.
If two cubes are of the same order then they are either equal or disjoint.

Proof. Obvious, by the preceding Lemma. �

Theorem 9. Let G be a non-empty open subset of Rk. Then there
exists a disjoint (infinite) sequence (Qn) of dyadic cubes such that (a)
G =

⋃∞
n=1Qn and (b) Qn ⊆ G for all n.

Proof. For each n ≥ 0 let Cn denote the set of all dyadic cubes of order
n whose closures are subsets of G. Let A0 = C0. and let A0 =

⋃
{Q :

Q ∈ A0 }. Next, let A1 be the set of all the cubes in C1 that have
empty intersection with A0, and let A1 =

⋃
{Q : Q ∈ A1 }. And for

n > 1 let An be the set of all cubes in Cn that have empty intersection
with A1 ∪ · · · ∪ An−1, and let An :=

⋃
{Q : Q ∈ An }. For each n let

Bn = A1 ∪ · · · ∪ An.
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I claim that
⋃∞
n=0An is a disjoint covering of G by dyadic cubes.

Disjointness is clear, so it will suffice to show that
⋃∞
n=0Bn = G. To

see this, let x ∈ G. The distance of x from {G is > 0, so we can find
a dyadic cube Q such that x ∈ Q ⊆ Q ⊆ G, and we can suppose that
Q has order n ≥ 1. If Q ∩ Bn−1 = ∅ then, by definition, Q ∈ An, so
Q ⊆ An ⊆ Bn. If Q ∩ Bn−1 6= ∅ then Q has non-empty intersection
with some larger cube Q′ belonging to the family A0 ∪ · · · ∪An−1. But
then we have Q ⊆ Q′ ⊆ Bn−1 ⊆ Bn. Thus in any case x ∈ Q ⊆ Bn.
Since Bn ⊆ G for all n, we have thus shown that

⋃∞
n=0Bn = G.

The family of cubes
⋃∞
n=0An is countably infinite, since otherwise G

could be expressed as a finite union
⋃N
n=0Cn in which each term is a

dyadic cube whose closure is a subset of G. But that would imply that⋃N
n=0Cn = G, and hence that G is both open and compact. But that

is impossible, because Rk is connected and G 6= ∅.
Taking (Qn) now to be any sequence that enumerates the elements

of
⋃∞
n=0An, we obtain a disjoint infinite sequence of dyadic cubes with

the desired properties (a) and (b). �

Given an open subset G of Rk, we denote by ∆(G) the set of all
dyadic cubes Q such that Q ⊆ G.

Theorem 10. (i) If C denotes the set of all cells in Rk, then B(Rk) =
σ(C) = σ(∆). Hence all Borel subsets of Rk are measurable. (ii) Let U
be an non-empty open subset of Rk. Then the σ-algebra of subsets of
U generated by ∆(U) is B(U).

Proof. (i) Let P be the cell
∏k

i=1[ai, bi) 6= ∅. Then P is σ-compact,
and hence Borel, because P =

⋃∞
n=N [ai, bi − n−1] for large N . Thus

∆ ⊆ C ⊆ B(Rk) and hence σ(∆) ⊆ σ(C) ⊆ B(Rk).
On the other hand, if G denotes the set of all open subsets of Rk, then

by the preceding theorem σ(∆) ⊇ G. Hence σ(∆) ⊇ σ(G) = B(Rk).
Putting together these inclusions, we have B(Rk) = σ(C) = σ(∆).

It follows that all Borel subsets of Rk are measurable since, as we
noted in §2, all sets belonging to σ(C) are measurable.

(ii) Let A be the σ-algebra of subsets of U generated by ∆(U) and
let U be the set of open subsets of U . By Theorem 9 we have A ⊇ U ,
and hence A ⊇ B(U). On the other hand ∆(U) ⊆ B(U) so A ⊆ U .
Therefore A = U .

�

5. Linear transformations

By an elementary transformation in Rk we shall mean an invert-
ible linear map T : Rk → Rk of one of the following three types:
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(i) T is a permutation of coordinates. That is to say

T (x1, . . . , xk) = (xπ1, . . . , xπk),

where π is a permutation of the set { 1, 2, . . . , k }.
(ii) T is of the form

T (x1, . . . , xk) = (αx1, x2, . . . , xk),

where α is a non-zero scalar.
(iii) T adds the second coordinate to the first, leaving all others un-
changed, thus

T (x1, . . . , xk) = (x1 + x2, x2, . . . , xk).

Lemma 11. If T : Rk → Rk is an elementary transformation and Q
is a dyadic cube, then Q and TQ are Borel sets and

λ(TQ) = | detT |λ(Q).

Proof. Since T : Rk → Rk is continuous and Q, being a cell, is σ-
compact, the image TQ is σ-compact. Hence both Q and TQ are
Borel sets.

We first prove the theorem for the case Q = W , taking the three
types of elementary transformation in turn. Note that λ(W ) = 1.

(i) In this case detT = ±1, TW = W , and so λ(TW ) = λ(W ) =
| detT |.

(ii) Here

TW = {x : x1 ∈ J, 0 ≤ xi < 1 for i = 2, . . . , k },
where J = [0, α) if α > 0, and J = (α, 0] if α < 0. In both cases
λ(TW ) = |α| = | detT |.

(iii) Here

TW = {x : 0 ≤ x2 ≤ x1 < x2 + 1, 0 ≤ xi < 1 for i = 2, . . . , k }.
Let A1 = {x ∈ TW : x1 < 1 }, A2 = TW \ A1. Denote by e1 the first
vector in the standard basis for Rk:

e1 = (1, 0, . . . , 0).

Then W is the disjoint union A1 ∪ (A2 − e1) and

λ(TW ) = λ(A1 ∪ A2) = λ(A1) + λ(A2)

= λ(A1) + λ(A2 − e1)
= λ(A1 ∪ (A2 − e1)) = λ(W ) = 1.

Here we have assumed that the sets in play are measurable. But that is
easily proved. For A1 is the intersection of the two Borel sets TW and
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{x : x1 < 1 } and hence it is Borel. Consequently, A2 is also a Borel
set; and finally (A2 − e1) is a Borel set because it is equal to W \ A1.

Since detT = 1 in this case, we again have λ(TW ) = | detT |.

Now let Q = 2−nW and let T be an elementary transformation of
any one of the three types defined above.. Then W is the disjoint
union of 2nk translates of Q, so, by the translation-invariance of λ,
2nkλ(Q) = λ(W ) = 1, hence λ(Q) = 2−nk. For all v ∈ Rk, λ(T (v +
Q)) = λ(TQ). Now TW is the disjoint union of 2nk sets of the form
T (v +Q). Therefore 2nkλ(TQ) = λ(TW ) = | detT |, so

λ(TQ) = | detT | 2−nk = | detT |λ(Q).

By the translation-invariance of λ, this formula remains valid if we have
Q = v + 2−nW instead of Q = 2−nW . �

We pass now to consideration of an arbitrary invertible linear trans-
formation T : Rk → Rk. Note that such a T is a homeomorphism of
Rk, and hence it preserves open sets, and, by Lemma 6, also Borel sets.

Theorem 12. Let B be a Borel set in Rk and T : Rk → Rk an invert-
ible linear transformation. Then TB is a Borel set and

λ(TB) = | detT |λ(B).

Proof. We prove first that if T is an elementary linear transformation
and G an open set in Rk then λ(TG) = | detT |λ(G).

Dismissing the trivial case where G = ∅, we suppose that G 6= ∅.
Then there exists a disjoint sequence of dyadic cubes (Qn) whose union
is G. Then, by the preceding lemma,

λ(TG) =
∞∑
n=1

λ(TQn) =
∞∑
n=1

| detT |λ(Qn) = | detT |λ(G).

Suppose next that T1, T2 are invertible linear transformations such that
λ(TrG) = | detTr|λ(G) for open G and r = 1, 2. Noting that T2G is an
open set, we see that

λ(T1T2G) = | detT1|λ(T2G)

= | detT1|| detT2|λ(G) = | det(T1T2)|λ(G).

This reasoning can be extended to finite products. But a theorem of
elementary algebra states that an arbitrary invertible linear transfor-
mation can be represented as the product of a finite sequence of ele-
mentary transformations. Thus, if T = T1T2 . . . Tn is such a product,
we shall have

λ(TG) = | det(T1| × · · · × | detTn)|λ(G) = | detT |λ(G)
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for all open G. We have already noted that if T : Rk → Rk an invertible
linear transformation then TB ∈ B(Rk) for all B ∈ B(Rk). For such
B we have, by the regularity of λ,

λ(B) = inf{λ(G) : G open, G ⊇ B }

and

λ(TB) = inf{λ(O) : O open, O ⊇ TB }.
But T is a homeomorphism of Rk, so

{O : O open, O ⊇ TB } = {TG : G open, G ⊇ B }

and hence

λ(TB) = inf{λ(TG) : G open, G ⊇ B }
= inf{ | detT |λ(G) : G open, G ⊇ B }
= | detT | × inf{λ(G) : G open, G ⊇ B }
= | detT |λ(B) �

6. Some important estimates

Theorem 13. Suppose that x0 ∈ U and ε > 0 Then there exists δ > 0
such that, for every cube Q for which x0 ∈ Q ⊆ U and e(Q) < δ, we
have

λ(φ(Q))

λ(Q)
< | detφ′(x0)|+ ε.

Proof. In this proof the norm in Rk, denoted simply by ‖ · ‖, will be
‖ · ‖∞.

Case (i). Suppose that x0 = 0, φ(x0) = 0, and φ′(x0) = I. So, for
small x,

φ(x) = x+ ‖x‖ρ(x),

where ρ(x) → 0 as x → 0. For r > 0 and y ∈ U let C(y, r) be the
closed cube {x : ‖x− y‖ ≤ r }. Choose η > 0 to satisfy

(1 + 2η)k < 1 + ε,

and let δ > 0 be such that x ∈ U and ‖ρ(x)‖ < η, whenever ‖x‖ < δ.
Let Q be a cube for which 0 ∈ Q ⊆ U and s := e(Q) < δ, and let a

denote the centre of Q. Then Q = C(a; s
2
). Since 0 ∈ C(a; s

2
) we have

‖a‖ = ‖0− a‖ ≤ s
2
. Hence, for x ∈ Q,

‖x‖ = ‖x− a‖+ ‖a‖ ≤ s

2
+
s

2
= s < δ,

and therefore ‖ρ(x)‖ < η.
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Thus for x ∈ Q we have

‖φ(x)− a‖ ≤ ‖x− a‖+ ‖x‖‖ρ(x)‖
< s

2
+ sη = s

2
(1 + 2η).

Consequently, φ(x) ∈ C(a, s
2
(1 + 2η)).

So we have proved that

φ(Q) ⊆ C(a, s
2
(1 + 2η))

Comparing the Lebesgue measures of these terms we see that

λ(φ(Q)) ≤ sk(1 + 2η)k.

But λ(Q) = sk, so

λ(φ(Q))

λ(Q)
≤ (1 + 2η)k < 1 + ε,

as desired.
Case (ii). Assume now that x0 = 0, φ(x0) = 0, and let T = φ′(x0)

and let χ = T−1φ. Then χ is a C1 diffeomorphism of U onto T−1V
and χ′(x0) = I. By our proof for Case (i) there exists δ > 0 such that,
for every cube Q such that x0 ∈ Q with e(Q) < δ, we have Q ⊆ U and

λ(χ(Q))

λ(Q)
< 1 +

ε

| detT |
.

But

λ(χ(Q)) = λ(T−1φ(Q))

= | detT−1|λ(φ(Q)) =
λ(φ(Q))

| detT |
.

Therefore
λ(φ(Q))

λ(Q)
< | detT |+ ε.

Case (iii). Now we consider the general case. So assume that x0 ∈
Q ⊆ U and, as above, denote by T the linear operator φ′(x0). For
x ∈ U−x0 let σ(x) := φ(x+x0)−φ(x0). Then σ is a C1 diffeomorphism
of U0 := U −x0 onto V0 := V −φ(x0), 0 ∈ U0, σ(0) = 0, and σ′(0) = T .

Now write Q0 := Q− x0. Then 0 ∈ Q0 ⊆ U0, and by Case (ii) there
exists δ > 0 such that when e(Q0) < δ we have

λ(σ(Q0))

λ(Q0)
< | detT |+ ε.
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Now e(Q) = e(Q0), and λ(Q) = λ(Q0). Moreover σ(Q0) = φ(Q) −
φ(x0), so λ(σ(Q0)) = λ(φ(Q)). Thus, for e(Q) < δ, the preceding
inequality yields

λ(φ(Q))

λ(Q)
< | detφ′(x0)|+ ε,

as desired. �

Corollary 14. Let (Qn) be a decreasing sequence of cubes in Rk such
that Qn ⊆ U for all n, and and suppose that e(Qn) → 0 as n → ∞.
Let x0 be the unique point that belongs to every Qn. Then

lim sup
n→∞

λ(φ(Qn))

λ(Qn)
≤ | detφ′(x0)|.

Proof. By Theorem 13 we have, for all ε > 0,

lim sup
n→∞

λ(φ(Qn))

λ(Qn)
≤ | detφ′(x0)|+ ε.

�

7. An upper bound for λ(φ(E))

Lemma 15. If Q is a dyadic cube such that Q ⊆ U then

(2) λ(φ(Q)) ≤
∫
Q

| detφ′(x)|λ(dx).

Proof. Suppose that there is a dyadic cube Q such that Q ⊆ U and for
which the equation (2) is false. Then for some ε > 0 we shall have

(3) λ(φ(Q)) >

∫
Q

| detφ′(x)|λ(dx) + ελ(Q).

Divide Q into a disjoint family {Qi} of 2k congruent little dyadic cubes
with e(Qi) = 2−1e(Q). I claim that for at least one of these, Q1 say,
we shall then have

λ(φ(Q1)) >

∫
Q1

| detφ′(x)|λ(dx) + ελ(Q1)

For otherwise each little cube Qi would satisfy

λ(φ(Qi)) ≤
∫
Qi

| detφ′(x)|λ(dx) + ελ(Qi).

By summation that would lead to

λ(φ(Q)) ≤
∫
Q

| detφ′(x)|λ(dx) + ελ(Q),

which contradicts the inequality (3).
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Now write C1 := Q, C2 = Q1. Continue thus to obtain, by suc-
cessively subdividing, a decreasing sequence C1 ⊇ C2 ⊇ C3 ⊇ . . . of
dyadic cubes such that e(Cn+1) = 2−1e(Cn) for all n ≥ 1 and for which

(4)
λ(φ(Cn))

λ(Cn)
>

1

λ(Cn)

∫
Cn

| detφ′(x)|λ(dx) + ε

for all n. By the continuity of | detφ′| we have

lim
n→∞

1

λ(Cn)

∫
Cn

| detφ′(x)|λ(dx) = | detφ′(x0)|.

where {x0} =
⋂∞
n=1Cn. And, by Corollary 14,

lim sup
n→∞

λ(φ(Cn))

λ(Cn)
≤ | detφ′(x0)|.

These two limits lead, via the inequality (4), to the impossible conclu-
sion that

| detφ′(x0)| ≥ | detφ′(x0)|+ ε.

We conclude that every dyadic cube Q such that Q ⊆ U satisfies the
equation (2). �

Lemma 16. If G is a open subset of U then φ(G) is a open subset of
V and

λ(φ(G)) ≤
∫
G

| detφ′(x)|λ(dx).

(The case in which both terms are infinite is not excluded.)

Proof. Let G be a non-empty open subset of U . Then we can find a
disjoint sequence (Qn) of cubes whose union is G and which satisfy
Qn ⊆ G for all n. Then

λ(φ(Qn)) ≤
∫
Qn

| detφ′(x)|λ(dx).

Summing, we see that

λ(φ(G)) ≤
∫
G

| detφ′(x)|λ(dx).

�

Lemma 17. There exists a sequence (Kn) of compact subsets of U such

that
⋃∞
n=1Kn = U and Kn ⊆ K̊n+1 for all n.

Proof. It suffices to take

Kn := {x ∈ U : d(x, {U) ≥ 1/n, ‖x‖ ≤ n },
where d(x, {U) denotes the distance of x from {U . �
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Theorem 18. If E is a measurable subset of U then φ(E) is a mea-
surable subset of V and

λ(φ(E)) ≤
∫
E

| detφ′(x)|λ(dx).

Proof. Consider first the case in which E is a Borel set such that E ⊂⊂
U . Then E is a compact subset of U =

⋃∞
n=1 K̊n, so there exists an

integer N such that E ⊆ K̊N . By the outer regularity of λ there exists
a decreasing sequence (Gn) of open sets such that E ⊆ Gn ⊆ K̊N for
all n, with λ(Gn) ↓ λ(E) as n → ∞. Then λ(G1) ≤ λ(KN) < ∞,
so λ(Gn) ↓ λ(F ) as n → ∞, where F =

⋂∞
n=1Gn. Thus E ⊆ F with

λ(E) = λ(F ) <∞, so λ(F \E) = 0, and therefore µ(E) = µ(F ), where

µ(S) =

∫
S

| detφ′(x)|λ(dx)

for each measurable subset S of U .
Observe now that µ(G1) ≤ µ(KN) < ∞. Hence, by the countable

additivity of the indefinite integral, µ(Gn) ↓ µ(F ) = µ(E) as n → ∞.
But, by Lemma 6, φ(E) ∈ B(V ) and by Lemma 16 we have λ(φ(E)) ≤
λ(φ(Gn)) ≤ µ(Gn). and therefore λ(φ(E)) ≤ limn µ(Gn) = µ(E).

Now let E an arbitrary Borel subset of U . Writing En = E ∩ Kn,
we see that En is a Borel set and that En ⊂⊂ U , and thus λ(φ(En)) ≤
µ(En) for all n. Passing to the limit as n→∞, we see that λ(φ(E)) ≤
µ(E), as claimed. Note the consequence that if E ∈ B(U) and λ(E) =
0 then λ(φ(E)) = 0.

Now suppose that E is a measurable subset of Rk. Then, by Lemma
4, there exist A,B ∈ B(Rk) such that A ⊆ E ⊆ B and λ(B \ A) = 0.
If also E ⊆ U then, replacing B by B ∩U if necessary, we can suppose
that B ⊆ U . But then, by Lemma 5, A,B ∈ {S ∈ B(Rk) : S ⊆ U } =
B(U). Consequently, by Lemma 6, φ(A), φ(B) ∈ B(V ) ⊆ B(Rk).
Moreover, φ(A) ⊆ φ(E) ⊆ φ(B) and λ(φ(B)\φ(A)) = λ(φ(B\A)) = 0.
Hence, by Lemma 4, the set φ(E) is measurable and we have

λ(φ(E)) = λ(φ(A)) ≤ µ(A) = µ(E). �

8. Proof of Theorem 1

Now let F be a measurable subset of V . Reversing the roles of U
and V we see, by Theorem 16, that E := ψ(F ) is a measurable subset
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of U . Since 1E = 1F ◦ φ, we have∫
V

1F (x)λ(dx) = λ(φ(E)) ≤
∫
U

1E(x)| detφ′(x)|dx

=

∫
U

(1F ◦ φ(x))| detφ′(x)|dx.

We deduce immediately that

(5)

∫
V

f(x)λ(dx) ≤
∫
U

(f ◦ φ)(x)| detφ′(x)|λ(dx)

for every simple measurable function f ≥ 0 on V . Then, by passing
to the limit via an increasing sequence of simple measurable functions,
we conclude that the equation (5) is true for every measurable function
f : V → R+. Now write g(y) = (f ◦ φ(y))| detφ′(y)|. Then, reversing
again the roles of U and V we have∫

V

f(x)λ(dx) ≤
∫
U

(f ◦ φ)(x)| detφ′(x)|λ(dx)

=

∫
U

g(x)λ(dx)

≤
∫
V

(g ◦ ψ)(x)| detψ′(x)|λ(dx)

=

∫
V

(f ◦ φ ◦ ψ)(x)| detφ′ ◦ (ψ)|| detψ′(x)|λ(dx)

=

∫
V

f(x)λ(dx)

If f is integrable then so, obviously, is the function (f ◦φ) |detφ′| over
U . The case of a function f : U → R now follows by consideration of
its positive and negative parts. We have thus proved Theorem 1.

9. Concluding remarks

The present subject has a large literature, and the references that
follow are only a representative sample. Various proofs of Therem 1 or
variants thereof can be found in [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19]. Some of these authors obtain variants of Theorem
1 that are valid under weaker conditions than those studied here. For
the argument of the present note I have drawn particularly on passages
in [4, 6, 11, 12].

It should perhaps be mentioned that some of the terminology in this
note is not standard. It should also be noted that, whereas we have
defined a cell as a product of the form

∏k
i=1[ai, bi), many authors,
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especially in probability theory, prefer to work with products of the
form

∏k
i=1(ai, bi].
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2008.

[2] E. Asplund and L. Bungart, A First Course in Integration, Holt, Rinehart and
Winston, New York, 1966.

[3] H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, W. de
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