RINGS AND MODULES HT19 - SHEET THREE

UFDs. Gauss's Lemma and Eisenstein's Criterion. Introduction to Modules.

1. (i) Let K : F be a field extension of finite degree. Show that every element of K is algebraic over F.
(ii) Let \mathbb{A} denote the set of elements in \mathbb{C} which are algebraic over \mathbb{Q}. Show \mathbb{A} is a subfield of \mathbb{C}. [Use the tower law.]
(iii) Show that \mathbb{A} is the union of all the subfields L of \mathbb{C} which are finite degree extensions of \mathbb{Q}.
(iv) By considering roots of the equation $x^{n}=2$ for $n \geqslant 1$, or otherwise, prove that $\mathbb{A}: \mathbb{Q}$ does not have finite degree.
2. In each of the following UFDs, factorize the given elements into irreducible elements.
(i) $36 x^{3}-24 x^{2}-18 x+12$ in $\mathbb{Z}[x]$.
(ii) $x^{6}-1$ in $\mathbb{Z}_{7}[x]$.
(iii) $32+9 i$ in $\mathbb{Z}[i]$.
(iv) $x^{3}+y^{3}$ in $\mathbb{Q}[x, y]$.
(v) $2 \pi^{2}+3 \pi+1$ in $\mathbb{Q}[\pi]$.
3. Investigate the irreducibility of the following polynomials over \mathbb{Q}.
(i) $x^{3}-3$,
(ii) $x^{17}+7 x^{11}+14 x^{2}+21$,
(iii) $x^{4}+4 x^{3}+12 x^{2}+16 x+15$,
(iv) $x^{6}+x^{3}+1$.
4. A Bézout domain is an integral domain in which the sum of two principal ideals is principal.
(i) Give an example of a UFD which is not a Bézout domain.
(ii) Show that a Bézout domain which is a UFD is a PID.
(iii) Show that the ring of holomorphic functions on \mathbb{C} is not a UFD.
(iv) [Optional and harder] Show that the ring of holomorphic functions on \mathbb{C} is a Bézout domain. [You may assume that, given a sequence $\left(z_{n}\right)$ of complex numbers with no limit point and a specification of the Taylor coefficients at z_{n} up to some finite degree, there is a holomorphic function f on \mathbb{C} with, for each z_{n}, the specified Taylor coefficients and no further zeros than already specified.]
5. (i) Given a ring R, thought of as an R-module, what are the submodules of R ? Justify your answer.
(ii) Show that \mathbb{Q}, as a module over \mathbb{Z}, is not finitely-generated (i.e. is not generated by any finite set).
(iii) Show that $M_{1}=\mathbb{R}[x] /\langle x\rangle$ and $M_{2}=\mathbb{R}[x] /\langle x-1\rangle$ are isomorphic as rings but are not isomorphic as $\mathbb{R}[x]$-modules.
6. (i) Show that the set $\{6,10,15\}$ generates \mathbb{Z} as a \mathbb{Z}-module, but that no proper subset of $\{6,10,15\}$ generates \mathbb{Z}.
(ii) For what values of a in the Gaussian integers $\mathbb{Z}[i]$ do $(2,1)$ and $(2+i, a)$ form a basis for $\mathbb{Z}[i]^{2}$?
7. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(i) Show that $\mathbb{R}[A]$ and $\mathbb{R}[B]$ are isomorphic as $\mathbb{R}[x]$-modules. What is the dimension of $\mathbb{R}[A]$ as a real vector space?
(ii) Given a vector space over F and a linear map $T: V \rightarrow V$, explain how T defines V as a $F[x]$-module.
(iii) Given a $F[x]$-module V, explain why V is a vector space over F and show that there is a linear map $T: V \rightarrow V$ defining V as a $F[x]$-module.
(iv) With $V=\mathbb{R}^{3}$, let M and N respectively denote the $\mathbb{R}[x]$-modules defined by A and B. Are M and N isomorphic as $\mathbb{R}[x]$-modules?
(v) What are submodules of M ?
8. Consider the quotient \mathbb{Z}-module

$$
M=\frac{\mathbb{Z}^{3}}{\langle(3,3,1),(2,2,2)\rangle}
$$

(i) Is M free?
(ii) Show that $\langle(3,3,1),(2,2,2)\rangle=\langle(1,1,-1),(0,0,4)\rangle$.
(iii) Find an element of infinite order in M. Justify your answer.
(iv) Find a non-zero element of finite order in M. Justify your answer.
(v) Show that M is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}_{4}$.
9. (Optional) (i) Let A be an abelian group. Show that the endomorphisms of A (the homomorphisms $A \rightarrow A$) form a ring with an identity under addition and composition.
(ii) Let M be an R-module. Show how this induces a ring homomorphism $\rho: R \rightarrow \operatorname{End}(M)$ such that $\rho\left(1_{R}\right)=i d$.
(iii) Show, conversely, given an abelian group M and a ring homomorphism $\rho: R \rightarrow \operatorname{End}(M)$ with $\rho\left(1_{R}\right)=i d$, how to give M the structure of an R-module.

