RINGS AND MODULES HT19 – SHEET THREE

UFDs. Gauss's Lemma and Eisenstein's Criterion. Introduction to Modules.

- 1. (i) Let K: F be a field extension of finite degree. Show that every element of K is algebraic over F.
- (ii) Let \mathbb{A} denote the set of elements in \mathbb{C} which are algebraic over \mathbb{Q} . Show \mathbb{A} is a subfield of \mathbb{C} . [Use the tower law.] (iii) Show that \mathbb{A} is the union of all the subfields L of \mathbb{C} which are finite degree extensions of \mathbb{Q} .
- (iv) By considering roots of the equation $x^n = 2$ for $n \ge 1$, or otherwise, prove that $\mathbb{A}: \mathbb{Q}$ does not have finite degree.

2. In each of the following UFDs, factorize the given elements into irreducible elements.

(i) $36x^3 - 24x^2 - 18x + 12$ in $\mathbb{Z}[x]$.

(ii) $x^6 - 1$ in $\mathbb{Z}_7[x]$.

(iii) 32 + 9i in $\mathbb{Z}[i]$.

- (iv) $x^3 + y^3$ in $\mathbb{Q}[x, y]$.
- (v) $2\pi^2 + 3\pi + 1$ in $\mathbb{Q}[\pi]$.

3. Investigate the irreducibility of the following polynomials over \mathbb{Q} .

(i) $x^3 - 3$, (ii) $x^{17} + 7x^{11} + 14x^2 + 21$, (iii) $x^4 + 4x^3 + 12x^2 + 16x + 15$, (iv) $x^6 + x^3 + 1$.

4. A Bézout domain is an integral domain in which the sum of two principal ideals is principal.

(i) Give an example of a UFD which is not a Bézout domain.

(ii) Show that a Bézout domain which is a UFD is a PID.

(iii) Show that the ring of holomorphic functions on $\mathbb C$ is not a UFD.

(iv) [Optional and harder] Show that the ring of holomorphic functions on \mathbb{C} is a Bézout domain. [You may assume that, given a sequence (z_n) of complex numbers with no limit point and a specification of the Taylor coefficients at z_n up to some finite degree, there is a holomorphic function f on \mathbb{C} with, for each z_n , the specified Taylor coefficients and no further zeros than already specified.]

5. (i) Given a ring R, thought of as an R-module, what are the submodules of R? Justify your answer.

(ii) Show that \mathbb{Q} , as a module over \mathbb{Z} , is not finitely-generated (i.e. is not generated by any finite set).

(iii) Show that $M_1 = \mathbb{R}[x]/\langle x \rangle$ and $M_2 = \mathbb{R}[x]/\langle x-1 \rangle$ are isomorphic as rings but are not isomorphic as $\mathbb{R}[x]$ -modules.

6. (i) Show that the set $\{6, 10, 15\}$ generates \mathbb{Z} as a \mathbb{Z} -module, but that no proper subset of $\{6, 10, 15\}$ generates \mathbb{Z} .

(ii) For what values of a in the Gaussian integers $\mathbb{Z}[i]$ do (2,1) and (2+i,a) form a basis for $\mathbb{Z}[i]^2$?

7. Let

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right), \qquad B = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

(i) Show that $\mathbb{R}[A]$ and $\mathbb{R}[B]$ are isomorphic as $\mathbb{R}[x]$ -modules. What is the dimension of $\mathbb{R}[A]$ as a real vector space? (ii) Given a vector space over F and a linear map $T: V \to V$, explain how T defines V as a F[x]-module.

(iii) Given a F[x]-module V, explain why V is a vector space over F and show that there is a linear map $T: V \to V$ defining V as a F[x]-module.

(iv) With $V = \mathbb{R}^3$, let *M* and *N* respectively denote the $\mathbb{R}[x]$ -modules defined by *A* and *B*. Are *M* and *N* isomorphic as $\mathbb{R}[x]$ -modules?

(v) What are submodules of M?

8. Consider the quotient \mathbb{Z} -module

$$M = \frac{\mathbb{Z}^3}{\langle (3,3,1), (2,2,2) \rangle}$$

(i) Is M free?

(ii) Show that $\langle (3,3,1), (2,2,2) \rangle = \langle (1,1,-1), (0,0,4) \rangle$.

(iii) Find an element of infinite order in M. Justify your answer.

(iv) Find a non-zero element of finite order in M. Justify your answer.

(v) Show that M is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}_4$.

9. (Optional) (i) Let A be an abelian group. Show that the endomorphisms of A (the homomorphisms $A \to A$) form a ring with an identity under addition and composition.

(ii) Let M be an R-module. Show how this induces a ring homomorphism $\rho: R \to \text{End}(M)$ such that $\rho(1_R) = id$. (iii) Show, conversely, given an abelian group M and a ring homomorphism $\rho: R \to \text{End}(M)$ with $\rho(1_R) = id$, how

(iii) Show, conversely, given an abelian group M and a ring nomomorphism $\rho: R \to \text{End}(M)$ with $\rho(1_R) = ia$, now to give M the structure of an R-module.