RINGS AND MODULES HT19 - SHEET ONE

Rings. Ideals and Quotient Rings. Isomorphism Theorems. Chinese Remainder Theorem.

1.(i) Show that $2 \mathbb{Z}$ and $3 \mathbb{Z}$ are isomorphic groups but that the rings $2 \mathbb{Z}$ and $3 \mathbb{Z}$ are not isomorphic.
(ii) How many elements of \mathbb{Z}_{144} are units?
(iii) What is the subring of $C(\mathbb{R})$ generated by x ?
2. Let

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad \mathbb{H}=\left\{\left(\begin{array}{cc}
x & y \\
-\bar{y} & \bar{x}
\end{array}\right): x, y \in \mathbb{C}\right\} .
$$

(i) Show that $\mathbb{R}[A]$ is a subring of $M_{2}(\mathbb{R})$ which is isomorphic to \mathbb{C}.
(ii) Find complex matrices B and C such that $\mathbb{H}=\mathbb{R}[B, C]$. Show that \mathbb{H} is non-commutative subring and that every non-zero element of \mathbb{H} has an inverse in \mathbb{H}.
3. You are given that the following are CRIs. In each case, identify the identity 1_{R}, the units and any zero-divisors.
(i) R is the set of $n \times n$ diagonal complex matrices, with matrix addition and multiplication.
(ii) $R=\mathbb{Z}^{2}=\{(m, n): m, n \in \mathbb{Z}\}$ with addition and multiplication defined coordinate-wise.
(iii) $R=\mathbb{R}^{\mathbb{R}}$ is the set of functions from \mathbb{R} to \mathbb{R}, with pointwise addition and multiplication.
(iv) [Harder] $R=C(\mathbb{R})$ is the set of continuous functions from \mathbb{R} to \mathbb{R}, with the usual pointwise addition and multiplication.
4. Which of the following I_{k} are ideals of $\mathbb{R}[x]$? If I_{k} is an ideal, find a monic polynomial p_{k} such that $I_{k}=\left\langle p_{k}\right\rangle$.
(i) $I_{1}=\{a(x) \in \mathbb{R}[x]: a(2)=0\}$.
(ii) $I_{2}=\left\{a(x) \in \mathbb{R}[x]: a^{\prime}(2)=0\right\}$.
(iii) $I_{3}=\{a(x) \in \mathbb{R}[x]: a(2)=a(3)=0\}$.
(iv) $I_{4}=\left\{a(x) \in \mathbb{R}[x]: a(1)=a^{\prime}(1)=0\right\}$.
5. Let A be a square matrix with entries in the field F, and let $m(x)$ denote the minimal polynomial of A. Show that

$$
F[A] \cong \frac{F[x]}{\langle m(x)\rangle}
$$

Show that if A is a 2×2 real square matrix then $\mathbb{R}[A]$ is isomorphic to one of

$$
\mathbb{R}, \quad \mathbb{R} \times \mathbb{R}, \quad \mathbb{R}[x] /\left\langle x^{2}\right\rangle, \quad \mathbb{C}
$$

6.(i) Write down the addition and multiplication tables for $\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$.
(ii) Let $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$. Show that the map

$$
\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{5} \text { given by } a+b i \mapsto a+2 b \bmod 5
$$

is a ring homomorphism. Show further that the kernel of ϕ is $\langle 2-i\rangle$ and that $\mathbb{Z}[i] /\langle 2-i\rangle \cong \mathbb{Z}_{5}$.
(iii) Find a zero-divisor in $\mathbb{Z}[i] /\langle 2\rangle$.
7. Let

$$
R_{1}=\frac{\mathbb{Q}[x]}{\left\langle x^{2}-1\right\rangle}, \quad R_{2}=\frac{\mathbb{Q}[x]}{\left\langle x^{2}-2\right\rangle}
$$

Show that the map $\phi: R_{1} \rightarrow \mathbb{Q}^{2}$ given by $p(x) \mapsto(p(1), p(-1))$ is an isomorphism. Deduce that R_{1} is not an integral domain and find all the zero-divisors in R_{1}. How many roots does the equation $z^{2}-1=0$ have in R_{1} ?
Show that R_{2} is isomorphic to $\mathbb{Q}[\sqrt{2}]$ and hence that R_{2} is a field.
8. Let $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Q}$ be a non-zero ring homomorphism. Prove that $\phi(1)=1$.

Prove also that, if $\phi(x)=u / v$ (where $v \in \mathbb{N}-\{0\}$ and $u \in \mathbb{Z}$), then a necessary condition for a rational number m / n (in lowest terms) to lie in the image of ϕ is that every prime divisor p of n be a divisor of v.

Deduce, or prove otherwise, that there are no ideals A in $\mathbb{Z}[x]$ such that $\mathbb{Z}[x] / A \cong \mathbb{Q}$.
Are there ideals A of $\mathbb{Z}[x]$ such that (i) $\mathbb{Z}[x] / A \cong \mathbb{Z}$? (ii) $\mathbb{Z}[x] / A \cong \mathbb{Z}_{2}$? (iii) $\mathbb{Z}[x] / A \cong \mathbb{Z}[i]$? (iv) $\mathbb{Z}[x] / A \cong \mathbb{Z}\left[\frac{1}{2}\right]$?
9. (Optional) (i) Use the Chinese remainder theorem to find all solutions $x \in \mathbb{Z}$ to the simultaneous congruences $x \equiv 8 \bmod 17$ and $x \equiv 3 \bmod 9$.
(ii) Find all solutions (if any) to the simultaneous congruences $x \equiv 13 \bmod 15, x \equiv 10 \bmod 21, x \equiv 3 \bmod 35$.
(iii) Find all solutions $x \in \mathbb{Z}_{143}$ to the quadratic $x^{2}+4 x+3 \equiv 0 \bmod 143$.

