RINGS AND MODULES HT19 - SHEET TWO

Ideals in R and R / I. Prime and maximal ideals. Euclidean Domains. PIDs. Field extensions. Tower law.

1. Let I, J, K be ideals in a ring R. Show that

$$
I(J K)=(I J) K \quad \text { and } \quad I(J+K)=I J+I K
$$

2. Let R be a commutative ring with unity. Define the terms irreducible element and prime element.
(i) Show that in an integral domain every prime element is irreducible.
(ii) Prove that 2 is irreducible but not prime in $\mathbb{Z}[\sqrt{-5}]$.
(iii) Describe the irreducible elements of the following rings:
(a) the ring $\mathbb{C}[x]$ of polynomials in x with coefficients in \mathbb{C}.
(b) the ring $\mathbb{R}[x]$ of polynomials in x with coefficients in \mathbb{R}.
(c) the ring of all numbers of the form $2^{a} b$ where a and b are integers (with the usual addition and multiplication).
(d) the ring of holomorphic functions on \mathbb{C}.
(iv) Show that the polynomial $x^{3}-3$ is irreducible over \mathbb{Z}_{7} but factorises into linear factors over $\mathbb{Z}_{7}[y] /\left\langle y^{3}-3\right\rangle$.
3. For each of the following rings and ideals, say whether the ideal is principal, prime, maximal. In each case determine the quotient ring R / I and justify your answers.
(i) $R=\mathbb{Z}[x]$ and $I=\langle x\rangle$.
(ii) $R=\mathbb{Q}[x]$ and $I=\left\langle x^{2}-4, x^{3}-8\right\rangle$.
(iii) $R=\mathbb{C}[x]$ and $I=\left\langle x^{2}+1\right\rangle$,
(iv) $R=\mathbb{Z}^{2}$ and $I=\{(a, b): a \in 2 \mathbb{Z}$ and $b \in 3 \mathbb{Z}\}$.
4. Suppose that R is an integral domain containing a field K. Then we may view R as a K-vector space. Show that if R is finite dimensional as a K-vector space then it must be a field. Deduce that if I is a prime ideal in $K[x, y]$ of finite codimension (i.e. such that the quotient $K[x, y] / I$ is finite dimensional) then I is maximal. Is every ideal in $K[x, y]$ of finite codimension necessarily prime?
5. Let R be a principal ideal domain. Prove directly (that is without using the theory of unique factorization) that
(i) R is Noetherian: if $I_{1}, I_{2}, I_{3}, \ldots$ are ideals of R such that $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$ then there is an N such that $I_{n}=I_{N}$ for all $n \geqslant N$.
(ii) R is a Bézout domain: any two elements x, y of R have a highest common factor h such that $u x+v y=h$ for some $u, v \in R$.
6. Let $p=4 n+1$ be a prime in \mathbb{Z}. Prove that $(p-1)!\equiv-1 \bmod p$ and that $((2 n)!)^{2} \equiv(4 n)!\bmod p$. Hence show that

$$
((2 n)!-i)((2 n)!+i) \in p \mathbb{Z}[i],
$$

and that p is not prime in $\mathbb{Z}[i]$.
Deduce that p is the sum of two squares in \mathbb{Z}.
Can a prime of the form $4 n+3$ be expressed as the sum of two squares?
7. (i) Determine the minimal polynomials of the following $\alpha \in \mathbb{C}$ each of which is algebraic over \mathbb{Q}.

$$
i \sqrt{3}, \quad \sqrt[4]{2}, \quad \frac{1}{2}(-1+i \sqrt{3}), \quad 2 \cos (2 \pi / 5), \quad e^{2 \pi i / 5} .
$$

(ii) Determine the degrees of each of the following field extensions.

$$
|\mathbb{Q}(\sqrt{6}): \mathbb{Q}|, \quad\left|\mathbb{Q}\left(e^{\pi i / 4}\right): \mathbb{Q}\right|, \quad|\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}|, \quad\left|\mathbb{Q}\left(e^{2 \pi i / 3}\right): \mathbb{Q}\right| .
$$

8. (Optional) Use the Euclidean algorithm to find the hcf h of $z_{1}=109+3 i$ and $z_{2}=15+70 i$ in $\mathbb{Z}[i]$.

Determine $u, v \in \mathbb{Z}[i]$ such that $h=u z_{1}+v z_{2}$.
9. (Optional) Give an example of an irreducible quadratic over \mathbb{Z}_{3}. Hence, give an example of the finite field F_{9} of order 9 . Find all the generators for F_{9}^{*} justifying your answers.
Given $\xi \in F_{9} \backslash \mathbb{Z}_{3}$ determine the possible minimal polynomials of ξ over \mathbb{Z}_{3}.

