Special Relativity
 Trinity Term 2017

Problem sheet 2

1. Lorentz transformations and velocity. Let O and O^{\prime} be two non-accelerating observers whose inertial coordinate systems are related by a proper orthochronous Lorentz transformation

$$
\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)=L\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) .
$$

Show that the Lorentz transformation matrix L must be of the form

$$
\left(\begin{array}{cccc}
\gamma & -\gamma v_{1}^{\prime} / c & -\gamma v_{2}^{\prime} / c & -\gamma v_{3}^{\prime} / c \\
\gamma v_{1} / c & * & * & * \\
\gamma v_{2} / c & * & * & * \\
\gamma v_{3} / c & * & * & *
\end{array}\right)
$$

where $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ is the velocity of observer O^{\prime} in frame $O, \mathbf{v}^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$ is the velocity of observer O frame O^{\prime}, and $\gamma=\gamma(v)=\gamma\left(v^{\prime}\right)$.
2. Lorentz matrices. Which of the following matrices represent Lorentz transformations? Which are proper? Which are orthochronous?

$$
\begin{array}{ll}
\left(\begin{array}{cccc}
\sqrt{2} & 1 & 0 & 0 \\
1 & \sqrt{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), & \frac{1}{\sqrt{2}}\left(\begin{array}{rrrr}
2 & 0 & 1 & -1 \\
1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right), \\
\frac{1}{\sqrt{2}}\left(\begin{array}{rrrr}
-2 & 1 & 0 & -1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right), & \frac{1}{\sqrt{2}}\left(\begin{array}{rrrr}
2 & 1 & 0 & -1 \\
1 & 1 & 1 & -1 \\
-1 & -1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right) .
\end{array}
$$

3. Geometry of four-vectors. Show that:
(i) If V is a future-pointing timelike four-vector, then there exists an inertial coordinate system in which it has components $(T, 0,0,0)$, where $T=\sqrt{g(V, V)}$.
(ii) If V is a future-pointing null four-vector, then there exists an inertial coordinate system in which V has components $(1,1,0,0)$.
(iii) The sum of two future-pointing timelike four-vectors is future-pointing timelike.
(iv) The sum of two future-pointing null four-vectors is future-pointing and either timelike or null. Under what condition is the sum null?
(v) Every four-vector pseudo-orthogonal to a timelike vector is spacelike.
4. A time-like inequality. Let X and Y be future-pointing, timelike four-vectors, and let $Z=X+Y$. Show that

$$
\sqrt{g(Z, Z)} \geqslant \sqrt{g(X, X)}+\sqrt{g(Y, Y)} .
$$

When does equality hold? What is the analogous statement in Euclidean geometry?
Now consider two space-time events A and B separated by displacement vector Z, which is future-pointing timelike. One observer travels from A to B in a straight line at constant speed. A second observer travels from A to event C with displacement vector X from A in a straight line at constant speed, and then travels from C to B with displacement vector Y from C in a straight line at constant speed. Whose journey from A to B takes longer?
5. Particle physics. A particle of rest mass M and total energy E collides with a particle of rest mass m at rest. Show that the sum E^{\prime} of the total energies of the two particles in the frame in which their center of mass is at rest is given by

$$
E^{\prime 2}=\left(M^{2}+m^{2}\right) c^{4}+2 E m c^{2}
$$

(Hint: let P and Q be the four-momenta of the two particles, and consider $g(P+Q, P+$ $Q)=\left(E^{\prime} / c^{2}\right) g(P+Q, V)$.
The centre of mass is defined as the frame whose four-velocity V is proportional to the total four-momentum of the two particles.
6. Photon scattering. Suppose that two photons of energies E_{1} and E_{2} travel towards one another along the x-axis in a fixed ICS. Show that there can be no interaction in which the the outcome is a single photon. Argue that the same conclusion holds when the two photons don't necessarily collide head on, but instead collide at a general angle.
7. Four-acceleration. A particle travels along a straight line in space relative to a given ICS at a not-necessarily-constant speed. Show that

$$
g(A, A)=-c^{2}\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} s}\right)^{2}
$$

where A is the four-acceleration, s measures proper time, and ϕ is the (instantaneous) rapidity.
8. Constant acceleration motion. Two rockets accelerating along the x-axis in opposite directions with constant acceleration a have worldlines whose coordinates in a fixed ICS are given by

$$
x=-\frac{c^{2} \cosh (a s / c)}{a}, \quad t=\frac{c \sinh (a s / c)}{a},
$$

and

$$
x=\frac{c^{2} \cosh (a s / c)}{a}, \quad t=\frac{c \sinh (a s / c)}{a}
$$

respectively.
Draw a space-time diagram showing the two worldines. Show that the parameter s measures proper time along the worldlines.

Let $Z(s)$ denote the displacement four-vector from the event A at proper time $-s$ on the first worldine to the event B at proper time s on the second worldline. Show that
(i) $g(Z, Z)$ is independent of s.
(ii) Z is always pseudo-orthogonal to the four-velocity of the first rocket at A and to the four-velocity of the second rocket at B.

Deduce that observers in the two rockets reckon that A and B are simultaneous for every choice of s, and that they both think that the distance between A and B is independent of s. Thus the two rockets are always the same distance apart, according to the observers. Discuss this apparent absurdity.

Draw a picture of the Euclidean analogue of this situation.

