The simplest example is just given by taking L =T = %m(x’2 +9? 4 2%) for motion
in free space without any forces. The Euler-Lagrange equations are just

p=ij=5=0, (44)

i.e. Newton’s laws of motion for a free particle.

The next simplest example arises from L =T — V = im(s* +2 42— mﬁm, 1Y, 2)
for motion in free space subject only to a conservative force with potential ;ﬁ}b
(typically, Newtonian gravity.) The Euler-Lagrange equations then become
ﬁy -—-—:%,Z:—f, (45)
dy Oz

ox’
as required.

The value of the reformulation as a stationary integral emerges more clearly if
we make a change of coordinates. For orbit problems, with %‘z —k/r, the use
of Cartesian z,v, 2 is correct but not very helpful. Since the Lagrangian formal-
ism does not mind which coordinates we use, let’s use spherical polars instead.
Then

L=T-V= —12—m(7'“2 +r20% + % sin? 0¢%) + l_cg_z_ ‘ (46)
The #-equation is:
ad—t(r29) — r2sinfcosfd* =0, (47)

which is solved by 6 = 7/2, i.e. by paths always in the equatorial plane. Restricting
our attention to such paths, the remaining equations become

r—rqbz—%-ﬁ:o, (48)
d ..
S ) =0, (49)

which we can recognise as the equations obtained by a longer argument in the
Prelims treatment. The ¢-equation obviously integrates to

r?¢=h. (50)

Tt is very important to note that the simplicity of this step arises directly from
the fact that ¢ never appears in L: it is an ignorable coordinate. So in the La-
grangian formulation, the conservation of angular momentum is an immediate
consequence.
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