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1 Introduction

In this course we shall extend notions of differential calculus from functions of one variable to more
general functions

f : Rn → R
m,

in other words functions f = (f1, . . . , fm) with m components, all depending on n variables x1, . . . , xn.
The questions we will be interested in studying include the following.

• If n = m, under what circumstances is f invertible?

• If n ≥ m, when does the equation f(x, y) = 0, with x ∈ R
n−m and y ∈ R

m, implicitly determine y
as a function of x ?

• Is the zero locus f−1(0) a smooth subset of Rn in a suitable sense, for example a smooth surface in
R

3?

The first major new idea is to define the derivative at a point as a linear map, which we can think of
as giving a first-order approximation to the behaviour of the function near that point. A key theme will
be that, subject to suitable nondegeneracy assumptions, the derivative at a point will give qualitative
information about the function on a neighbourhood of the point. In particular, the Inverse Function
Theorem will tell us that invertibility of the derivative at a point (as a linear map) will actually guarantee
local invertibility of the function in a neighbourhood.

The results of this course are foundational for much of applied mathematics and mathematical physics,
and also for geometry. For example, we shall meet the concept of a smooth manifold in R

n (intuitively, a
generalisation to higher dimensions of a smooth surface in R

3), and use our theorems to obtain a criterion
for when the locus defined by a system of nonlinear equations is a manifold. Manifolds are the setting for
much of higher-dimensional geometry and mathematical physics and in fact the concepts of differential
(and integral) calculus that we study in this course can be developed on general manifolds. The Part B
course Geometry of Surfaces and the Part C course Differentiable Manifolds develop these ideas further.

2 Differentiation of functions of several variables

2.1 Introduction

In this chapter we will extend the concept of differentiability of a function of one variable to the case of
a function of several variables. We first recall the definitions for a function of one variable.

Differentiability of a function of one variable

Let I ⊆ R be an open interval. A function f : I ⊆ R → R is differentiable at x ∈ I if

f ′(x) := lim
h→0

f(x+ h)− f(x)

h

exists. Equivalently we can say that f is differentiable in x ∈ I if there exists a linear map∗ L : R → R

such that

lim
h→0

f(x+ h)− f(x)− Lh

h
= 0. (1)

In this case, L is given by L : h 7→ f ′(x) · h.
Another way of writing (1) is

f(x+ h)− f(x)− Lh = Rf (h) with Rf (h) = o(|h|), i.e. lim
h→0

Rf (h)

|h| = 0. (2)

This definition is more suitable for the multivariable case, where h is now a vector, so it does not make
sense to divide by h.

∗Here and in what follows, we will often write Lh instead of L(h) if L is a linear map.
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Differentiability of a vector-valued function of one variable

Completely analogously we define the derivative of a vector-valued function of one variable. More pre-
cisely, if f : I ⊆ R → R

m,m > 1, with components f1, . . . , fm, we say that f is differentiable at x ∈ I
if

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists.

It is easily seen that f is differentiable at x ∈ I if and only if fi : I ⊆ R → R is differentiable in x ∈ I
for all i = 1, . . . ,m. Also, f is differentiable in x ∈ I if and only if there exists a linear map L : R → R

m

such that

lim
h→0

f(x+ h)− f(x)− Lh

h
= 0.

How can we now generalize the concept of differentiability to functions of several variables, say for a
function f : Ω ⊆ R

2 → R, f = f(x, y)? A natural idea is to freeze one variable, say y, define g(x) = f(x, y)
and check whether g is differentiable at x. This will lead to the notion of partial derivatives and most
of you have seen this already in lectures in the first year, e.g. in Calculus. However, we will see that
the concept of partial derivatives alone is not completely satisfactory. For example we will see that the
existence of partial derivatives does not guarantee that the function itself is continuous (as it is the case
for a function of one variable).

The notion of the (total) derivative for functions of several variables will not have this deficiency. It is
based on a generalisation of the formulation in (1). In order to do that we will need a suitable norm
(length function) on R

n. You may have learned already, e.g. in Topology, that all norms on R
n are

equivalent, and hence properties of sets, such as openness or boundedness, and of functions, such as
continuity, do not depend on the choice of the norm.

In the sequel we will always use the Euclidean norm on R
n and denote it by | · |. More precisely, for

x = (x1, . . . , xn) ∈ R
n we denote

|x| =
√

x2
1 + . . . x2

n .

You may check yourself that this defines a norm (and hence a metric). For the proof of the triangle
inequality you will need to use the Cauchy-Schwarz inequality.

We shall also use the matrix (Hilbert-Schmidt) norm

‖C‖ =





n
∑

i,j=1

C2
ij





1

2

on the space of n× n real matrices. We have the following useful inequality:

|Ch| =
(

∑

i

(

∑

j

Cjihj

)2) 1

2 ≤
(

∑

i

(

∑

j

C2
ij

)(

∑

j

h2
j

))
1

2

= |h| ‖C‖.

We shall also occasionally use the fact that

‖AB‖ ≤ ‖A‖‖B‖.

2.2 Partial derivatives

We are going to consider† functions f : Ω ⊆ R
n → R

m. Here and in what follows we always assume that
Ω is an open and connected subset of Rn (a domain).

We first consider a few examples of such functions.

Example 2.1. a) The function f : Rn → R given by

x 7→ |x| =
(

n
∑

i=1

x2
i

)
1

2

.

†We will use the shorthand f : Ω ⊆ Rn → Rm’ to mean that “Ω is a domain in Rn and f : Ω → Rm is a function”.
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b) The function g : R3 → R
2 defined by

g : (x, y, z) 7→
(

x3 + y3 + z3 − 7
xy + yz + zx+ 2

)

.

c) The electric field in a vacuum induced by a point charge q in a point x0 ∈ R
3 is given by

f : R3 \ {x0} → R
3 , f(x) = q

x− x0

|x− x0|3
.

d) f : C → C, f(z) = ez has – with the usual identifications – the real representation f : R2 → R
2

given by

f(x, y) =

(

ex cos y

ex sin y

)

.

e) f : Rn2 → R
n2

where we identify R
n2

with Mn×n(R), the vector space of n×n matrices, and define
f by f : A 7→ A2.

We shall sometimes use the concepts of graphs and level sets. Let f : Ω ⊆ R
2 → R be a function. Then

the graph of f , given by
Γf = {(x, y) ∈ Ω× R | y = f(x)},

is usually a surface in R
3. Its level set at level c ∈ R is

Nf (c) = {x ∈ Ω | f(x) = c},

which is usually a curve in Ω.

The concepts of graphs and level sets generalise in an obvious way to functions f : Ω → R defined on
domains Ω in R

n.

Definition 2.2. (Partial derivative) Let f : Ω ⊆ R
n → R. We say that the i-th partial derivative of f

in x ∈ Ω exists, if
∂f

∂xi
(x) = lim

t→0

f(x+ tei)− f(x)

t

exists, where ei is the i-th unit vector. In other words, the i-th partial derivative is the derivative of
g(t) = f(x+ tei) at t = 0.

Other common notations for the i-th partial derivative of f at x are

∂if(x), Dif(x), ∂xi
f(x), fxi

(x) or f,i(x).

We will mostly use ∂if(x). If f : Ω ⊆ R
2 → R we often write f = f(x, y) and denote the partial derivatives

by ∂xf and ∂yf respectively.

Example 2.3. a) Let f : Rn → R be given by f(x) = |x|. Then for x 6= 0 we have

1

t

(

|x+ tei| − |x|
)

=
1

t

|x+ tei|2 − |x|2
|x+ tei|+ |x| =

1

t

2txi + t2

|x+ tei|+ |x| =
2xi + t

|x+ tei|+ |x| →
xi

|x|

as t → 0. Hence, for x 6= 0, the function f has partial derivatives, given by ∂if(x) =
xi

|x| . Notice

that no partial derivative of f exists at x = 0.

b) Let f(x) = g(r) with r(x) = |x| and differentiable g : [0,∞) → R. Then, for x 6= 0, by the Chain
Rule from Mods Analysis 2, we find

∂if(x) = g′(r)∂ir(x) = g′(r)
xi

|x| =
g′(r)

r
xi .

The following example shows that, surprisingly, functions whose partial derivatives all exist are in general
not continuous.
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Example 2.4. Let f : R2 → R

f(x, y) =











xy

(x2 + y2)2
for (x, y) 6= (0, 0),

0 for (x, y) = (0, 0).

• f has partial derivatives on R
2 \ {0} with

∂xf(x, y) =
y

(x2 + y2)2
− 4x2y

(x2 + y2)3

and a similar expression for ∂yf(x, y).

• f has partial derivatives at 0, since f is identically zero on the x and y axes. Explicitly, for all t 6= 0
we have

f((0, 0) + t(1, 0))− f(0, 0)

t
=

f(t, 0)− f(0, 0)

t
=

0− 0

t
= 0

and thus ∂xf(0) = 0 ; similarly ∂yf(0) = 0.

• But: f is not continuous at (x, y) = (0, 0). To see this, consider the behaviour of the function on
the line {(t, t) : t ∈ R}. On this line, f(t, t) = 1

4t2 which tends to ∞ as t → 0.

This shows that existence of partial derivatives is not the correct notion of differentiability in higher
dimensions. We shall see later that the correct generalized version of differentiability, using the ideas
concerning linear maps from the beginning of this chapter, will imply continuity of the function. We shall
also see that functions with continuous partial derivatives are differentiable in the generalised sense and
hence are also continuous. In our example above, the partial derivatives ∂if(x) are not continuous at
x = 0.

Before we define differentiablity, we shall make some more remarks about partial derivatives.

The partial derivative is a special case of the directional derivative which we will now define.

Definition 2.5. (Directional derivative) Suppose that f : Ω ⊆ R
n → R and v ∈ R

n\{0}. If

∂vf(x) = lim
t→0

f(x+ tv)− f(x)

t

exists, we call it the directional derivative of f in direction v at the point x ∈ Ω.

Observe that if v is one of the unit coordinate vectors ei then we recover the notion of partial derivative.

Example 2.6. Let f : Rn → R be given by f(x) = |x| and let x, v ∈ R
n \ {0}. Then

∂vf(x) =
d

dt

∣

∣

∣

t=0
|x+ tv| = d

dt

∣

∣

∣

t=0

(

n
∑

i=1

|xi + tvi|2
)

1

2

=
1

2|x|

n
∑

i=1

2xivi =

n
∑

i=1

xi

|x|vi =
〈 x

|x| , v
〉

,

where 〈·, ·〉 denotes the usual scalar product in R
n. If v = ei we recover the formula ∂i|x| = xi

|x| from

Example 2.3.

Definition 2.7. (Gradient) Let f : Ω ⊆ R
n → R and assume that all partial derivatives exist at x ∈ Ω.

We call the vector field ∇f(x) ∈ R
n given by

∇f(x) =







∂1f(x)
...

∂nf(x)







the gradient of f at x.
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Note that the directional derivative is related to the gradient via ∂vf(x) = 〈∇f(x), v〉.

Example 2.8. If f(x) = |x| and x 6= 0 then ∇f(x) =







x1

|x|

...
xn

|x|






= x

|x|

and ∂vf(x) = 〈∇f(x), v〉.

Definition 2.9. (Partial derivatives for vector-valued functions) Let f : Ω ⊆ R
n → R

m. We say that
the i-th partial derivative of f at x ∈ Ω exists, if it exists for all components f1, . . . , fm. In that case we

write ∂if(x) =







∂if1(x)
...

∂ifm(x)






.

The following definition will prove useful when we study differentiable functions.

Definition 2.10. (Jacobian matrix) Suppose that f : Ω ⊆ R
n → R

m and that all partial derivatives
exist at x ∈ Ω. Then the (m× n)-matrix

Df(x) =







∂1f1(x) . . . ∂nf1(x)
...

. . .
...

∂1fm(x) . . . ∂nfm(x)







is called the Jacobian matrix of f in the point x.
If n = m we call Jf (x) = detDf(x) the Jacobian determinant or the functional determinant of f at x.

We can write the Jacobian matrix in terms of the gradients of the components:

Df(x) =







(∇f1(x))
T

...
(∇fm(x))T






,

where the superscript T denotes transposition.

Note for future reference that the Jacobian Df(x) is a linear map from R
n to R

m.

2.3 Higher partial derivatives

Definition 2.11. (Partial derivatives of order k, Ck(Ω,Rn)) Suppose that we are given a domain
Ω ⊆ R

n.

a) Let f : Ω → R
m. The partial derivatives of order k are inductively defined via

∂j1 . . . ∂jkf(x) = ∂j1(∂j2 . . . ∂jk)f(x) where j1, . . . , jk ∈ {1, . . . , n}.

Notice that j1, . . . , jk are not necessarily distinct, and that (a priori) their order is important. A

common notation is ∂kf(x)
∂j1

...∂jk

or even ∂j1j2...jkf(x).

b) Let Ck(Ω,Rm) be the set of continuous functions f : Ω → R
m whose partial derivatives exist up to

order k for all x ∈ Ω and are continuous in Ω. If m = 1, we write Ck(Ω). Given a domain Θ ⊂ R
m,

we will sometimes write Ck(Ω,Θ) to be the set of functions f ∈ Ck(Ω,Rm) with f(Ω) ⊂ Θ.

Proposition 2.12. (Exchangeability of partial derivatives, Theorem of Schwarz) Suppose that f ∈
C2(Ω). Then we have for 1 ≤ i, j ≤ n and for any x ∈ Ω that

∂i∂jf(x) = ∂j∂if(x)
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Proof. (Not examinable) Let ∂t
jf(x) =

f(x+tej)−f(x)
t be the difference quotient of f in xj . By definition

∂i∂jf(x) = lim
s→0

(lim
t→0

∂s
i ∂

t
if(x))

We need to show that both limits can be interchanged. By the Intermediate Value Theorem we have for
all functions g : Ω → R, for which ∂ig(x) exists, that

∂s
i g(x) = ∂ig(x+ αsei) for some α ∈ (0, 1).

If we apply this for g = ∂t
jf and g = ∂s

i f , we get

∂s
i ∂

t
jf(x) = ∂i∂

t
jf(x+ αsei) for some α ∈ (0, 1)

= ∂t
j(∂if(x+ αsei))

= ∂j(∂if(x+ αsei + βtej)) for some β ∈ (0, 1)

Since ∂j∂if is continuous, it follows that

∂j∂if(x+ αsei + βtej)
s→0−−−→ ∂j∂if(x+ βtej)

t→0−−−→ ∂j∂if(x).

Corollary 2.13. Suppose that f ∈ Ck(Ω). Then all partial derivatives up to order k can be interchanged.

The following example shows that the condition in Proposition 2.12 that the second partial derivatives
must be continuous is indeed necessary.

Example 2.14. Let f : R2 → R be given by

f(x, y) =















xy
x2 − y2

x2 + y2
for (x, y) 6= (0, 0);

0 for (x, y) = (0, 0).

One can show that f ∈ C1(R2), but ∂x∂yf(0, 0) = 1 and ∂y∂xf(0, 0) = −1.

2.4 Differentiability

We will now introduce the notion of the (total) derivative which is based on the idea that the function
can be approximated at a point by a linear map.

Definition 2.15. (Differentiable map)

a) We say that a function f : Ω ⊆ R
n → R

m, is differentiable at x ∈ Ω if there exists a linear map
L : Rn → R

m such that

lim
h→0

f(x+ h)− f(x)− Lh

|h| = 0

We call L the (total) derivative of f at x and denote it by df(x).

b) We say that f is differentiable in Ω, if f is differentiable at every x ∈ Ω.

Remark 2.16.

a) Alternatively we can say that f is differentiable at x ∈ Ω if there exists a linear map L : Rn → R
m

such that
f(x+ h)− f(x)− Lh = Rf (h) with Rf (h) = o(|h|)

b) f : Ω → R
m is differentiable at x ∈ Ω if and only if every component fi : Ω → R, i = 1, . . . ,m, is

differentiable at x ∈ Ω.
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Intuitively, f(x) is the zero-order approximation to f(x+ h), while f(x) + Lh is the first order or linear
approximation to f(x+h). The term Rf (h) tends to zero faster than h and can be viewed as a remainder
or error term for the linear approximation. This kind of thinking is familiar from the theory of Taylor
approximations.

We shall now give some examples of computing the derivative. The strategy is always the same–expand
out f(x + h) − f(x), and we are left with the terms linear in h, which give the derivative, and terms of
higher order which are collected together to form the remainder term.

Example 2.17.

1. Let A = (aij) be a m× n matrix and let f : Rn → R
m be the linear map f : x 7→ Ax. Now

f(x+ h)− f(x) = A(x+ h)−Ax

= Ax+Ah−Ax

= Ah

So in this case f(x+h)−f(x) is exactly given by the linear term Ah and the remainder term Rf (h)
is zero. So f is differentiable and the linear map L = df(x) is given by df(x) : h 7→ Ah.

2. Let C = (cij) ∈ Mn×n(R) be symmetric and let f : Rn → R be the quadratic form corresponding
to C, that is f(x) = xTCx = 〈x,Cx〉. Letting h ∈ R

n, we see:

f(x+ h)− f(x) = 〈x+ h,C(x+ h)〉 − 〈x,Cx〉
= 〈x,Cx〉+ 〈h,Cx〉+ 〈x,Ch〉+ 〈h,Ch〉 − 〈x,Cx〉
= 2 〈Cx, h〉+ 〈h,Ch〉

where we use the fact that 〈x,Ch〉 is a scalar so

〈x,Ch〉 = xTCh = (xTCh)T = hTCTx = hTCx = 〈h,Cx〉

as C is symmetric. Hence a candidate for df(x) is (2Cx)T , as 2(Cx)Th = 2 〈Cx, h〉. Indeed,
∣

∣

∣

∣

f(x+ h)− f(x)− 2(Cx)Th

|h|

∣

∣

∣

∣

=

∣

∣

∣

∣

〈h,Ch〉
|h|

∣

∣

∣

∣

≤ |h||Ch|
|h|

≤ ‖C‖ |h| → 0 for h → 0 ,

where ‖C‖ =
(

∑n
i,j=1 c

2
ij

)
1

2

. Thus f is differentiable at every x ∈ R
n and df(x) = (2Cx)T , that is

df(x)h = (2Cx)Th = 〈2Cx, h〉.

3. f : Mn×n(R) → Mn×n(R), f(A) = A2.
Let H ∈ Mn×n(R). Then

f(A+H)− f(A) = (A+H)(A+H)−A2

= AH +HA+H2

The linear term AH +HA is a candidate for the derivative:

f(A+H)− f(A)− (AH +HA)

|H| =
H2

|H| → 0 as H → 0.

Hence f is differentiable in every A ∈ Mn×n(R) with df(A)H = AH +HA.

There is a nice general formula for the differential df(x) in terms of the Jacobian matrix Df(x).

Proposition 2.18. If f : Ω ⊆ R
n → R

m is differentiable at x ∈ Ω, then f is continuous, the partial
derivatives ∂1f(x), . . . , ∂nf(x) exist and

df(x)h = Df(x)h

7



for all h ∈ R
n. That is, with h =

∑n
i=1 hiei we have







df1(x)h
...

dfm(x)h






=







∂1f1(x) . . . ∂nf1(x)
...

. . .
...

∂1fm(x) . . . ∂nfm(x)













h1

...
hn






.

In other words, the Jacobian matrix Df(x) is the representation of df(x) with respect to the given basis
e1, . . . , en.

Proof. It suffices to prove the statement for m = 1. Continuity of f at x follows from

lim
h→0

(

f(x+ h)− f(x)
)

= lim
h→0

(

Lh−Rf (h)
)

= 0.

To show that the partial derivatives exist, choose h = tei. Then differentiability of f at x implies

∣

∣

∣

1

t

(

f(x+ tei)− f(x)
)

− Lei

∣

∣

∣→ 0 as t → 0.

Hence ∂if(x) = Lei. Since h =
∑n

i=1 hiei we find Lh =
∑n

i=1 hiLei =
∑n

i=1 hi∂if(x).

Remark 2.19. a) Proposition 2.18 in particular implies that if f : Ω ⊆ R
n → R is differentiable at

x ∈ Ω, then

df(x)h =

n
∑

i=1

∂if(x)hi = 〈∇f(x), h〉 .

This can also be seen as the definition of the gradient. The gradient of f is the vector field ∇f such
that Lh = 〈∇f, h〉 for all h ∈ R

n.

b) It is important to realise that Proposition 2.18 just says that if f is differentiable, then the derivative
is given by the Jacobian matrix of partial derivatives. As we have seen before in Example 2.4,
existence of the Jacobian is not sufficient to guarantee differentiability.

3 A sufficient condition for differentiability

It is often not so easy to use the definition of differentiability to decide whether a function is differentiable
or not. The following result gives a useful criterion.

Proposition 3.1. (Continuous partial derivatives imply differentiability) Suppose that the function
f : Ω ⊆ R

n → R
m has continuous partial derivatives. Then f is differentiable in Ω.

Proof. It suffices to consider the case m = 1. Let h ∈ R
n; a candidate for the derivative is Lh =

∑n
k=1 ∂kf(x)hk.

Let x0 = x, xk = x+
∑k

j=1 hjej , such that xn = x+h. Then f(xk)−f(xk−1) = f(xk−1+hkek)−f(xk−1)
and the Mean Value Theorem (for functions of one variable) implies f(xk) − f(xk−1) = ∂kf(xk−1 +
θkhkek)hk with θk ∈ [0, 1]. Hence

|f(x+ h)− f(x)− Lh|
|h| =

1

|h|

∣

∣

∣

∣

∣

n
∑

k=1

(f(xk)− f(xk−1))−
n
∑

k=1

∂kf(x)hk

∣

∣

∣

∣

∣

=
1

|h|

∣

∣

∣

∣

∣

n
∑

k=1

∂kf(xk−1 + θkhkek)hk −
n
∑

k=1

∂kf(x)hk

∣

∣

∣

∣

∣

≤ |h|
|h|

(

n
∑

k=1

(

∂kf(xk−1 + θkhkek)−
n
∑

k=1

∂kf(x)
)2
)

1

2

→ 0 for h → 0,

since ∂kf is continuous in x.

Corollary 3.2. If f has continuous partial derivatives, then f is continuous.
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4 The Chain Rule

Proposition 4.1. (Chain Rule) Let Ω ⊆ R
n and V ⊆ R

m be open and connected sets, let g : Ω → V
and f : V → R

k. Suppose that g is differentiable at x ∈ Ω and f is differentiable at y = g(x) ∈ V . Then
the map f ◦ g : Ω → R

k is differentiable at x and

d(f ◦ g)(x) = df(g(x))dg(x) .

In coordinates this reads

∂

∂xj
(fi ◦ g)(x) =

m
∑

l=1

∂

∂yl
fi(g(x))

∂

∂xj
gl(x) , i = 1, . . . , k , j = 1, . . . , n .

Proof. We define A = dg(x) and B = df(g(x)). We need to show that d(f ◦ g)(x) = BA.
Since g and h are differentiable, we have

g(x+ h) = g(x) +Ah+Rg(h) with h ∈ R
n, Rg(h) = o(|h|)

and
f(y + η) = f(y) +Bη +Rf (η) with η ∈ R

m, Rf (η) = o(|η|).

We choose now η = g(x+ h)− g(x) = Ah+Rg(h). Then

f(g(x+ h)) = f(g(x) + η) = f(g(x)) +Bη +Rf (η),

so
f(g(x+ h)) = f(g(x)) +B(Ah+Rg(h)) +Rf (Ah+Rg(h)) .

It remains to show g(h) = BRg(h) +Rf (Ah+Rg(h)) = o(|h|) To that aim notice that

|BRg(h)|
|h| ≤ |B||Rg(h)|

|h| → 0 for |h| → 0

and, for sufficiently small |h|,

|Ah+Rg(h)| ≤ |A||h|+ |Rg(h)| ≤ (|A|+ 1)|h|.

Hence
Rf (Ah+Rg(h))

|h| → 0 for |h| → 0

Corollary 4.2. (Derivative of the Inverse) Suppose that f : Rn → R
n is invertible with inverse g : Rn →

R
n. Suppose further that f is differentiable at x and that g is differentiable at g = f(x).

Then the Chain Rule implies for g(f(x)) = x that

dg(f(x))df(x) = Id and hence dg(f(x)) = (df(x))−1 .

Example 4.3. (Polar coordinates in R
2) Let f : R+×(0, 2π) → R

2 be given by f(r, ϕ) = (r cosϕ, r sinϕ) =:
(x, y). Let g be the inverse function to f . From

Df(r, ϕ) =

(

cosϕ −r sinϕ
sinϕ r cosϕ

)

we deduce that detDf(r, ϕ) = r > 0. Then

Dg(x, y) = Df(r, ϕ)−1 =

(

cosϕ sinϕ
− 1

r sinϕ
1
r cosϕ

)

=

(

x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

)
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Corollary 4.4. (The gradient is perpendicular to level sets) Let f : Ω ⊆ R
n → R be differentiable and

let γ be a regular curve (α, β) → Ω, which lies in a level set of f , that is f(γ(t)) = c for all t ∈ (α, β).
Then we have for all t ∈ (α, β) that

0 = df(γ(t))γ′(t) = 〈∇f(γ(t)), γ′(t)〉
Remark 4.5. The direction of ∇f(x) is the direction of steepest ascent at x, (−∇f(x)) is the direction
of steepest descent. Indeed, consider any v ∈ R

n with |v| = 1. Then

|df(x)v| = | 〈∇f(x), v〉 | ≤ |∇f(x)||v| = |∇f(x)|1 = |∇f(x)|

and equality holds if v = ∇f(x)
|∇f(x)| .

4.1 Mean Value Theorems

Our goal in this section is to use information about the derivative of a function to obtain information
about the function itself.

Remark 4.6. In the case n = 1 we know the following Mean Value Theorem for a differentiable function
f : f(x) − f(y) = f ′(ξ)(x − y) for some ξ ∈ (x, y). We cannot generalize this, however, for vector-
valued functions, since in general we get a different ξ for every component. The Fundamental Theorem
of Calculus does not have this disadvantage: f(y) − f(x) =

∫ y

x
f ′(ξ) dξ is also true for vector-valued

functions, but requires f ′ to be integrable.

We are now going to prove some versions of the Mean Value Theorem for functions of several variables.

Proposition 4.7. Suppose that f : Ω ⊆ R
n → R is differentiable and let x, y ∈ Ω be such that the line

segment [x; y] = {tx+ (1− t)y | t ∈ [0, 1]} is also contained in Ω. Then there exists ξ ∈ [x; y], such that

f(x)− f(y) = df(ξ)(x− y) = 〈∇f(ξ), x− y〉
Proof. Let γ(t) = tx+ (1− t)y, t ∈ [0, 1], and F (t) = f(γ(t)). Then f(x) = F (1) and f(y) = F (0). The
Chain Rule implies that f is differentiable and

d

dt
F (t) = df(γ(t))γ′(t) .

By the Mean Value Theorem for n = 1 there exists τ ∈ (0, 1), such that F (1)− F (0) = F ′(τ). Hence

f(x)− f(y) = df(γ(τ))(x− y) = df(ξ)(x− y) with ξ = γ(τ) .

Corollary 4.8. Let Ω ⊆ R
n be path connected. If then f : Ω → R satisfies df(x) = 0 for all x ∈ Ω then

f is constant in Ω.

Proof. Connect two arbitrary points by a polygon and apply the Mean Value Theorem to each part.

Proposition 4.9. Let f : Ω ⊆ R
n → R

m, f ∈ C1(Ω,Rm). Suppose that for x, y ∈ Ω there exists a
regular curve γ : [α, β] → Ω which connects x and y, i.e γ(α) = y, γ(β) = x. Then

f(x)− f(y) =

∫ β

α

df(γ(t))γ′(t) dt .

Proof. Use the Fundamental Theorem of Calculus and the Chain Rule for for F (t) = f(γ(t)).

Remark 4.10. Another version: let x ∈ Ω, ξ ∈ R
n und ∀t ∈ [0, 1] : x+ tξ ∈ Ω. Then

f(x+ ξ)− f(x) =

∫ 1

0

df(x+ tξ)ξ dt .

Proposition 4.11. Let Ω ⊆ R
n be open and convex, i.e. for all points x, y ∈ Ω we also have that the

line segment [x; y] ⊂ Ω. Suppose that f ∈ C1(Ω,Rm) and supx∈Ω |Df(x)| ≤ K. Then we have for all
x, y ∈ Ω that

|f(x)− f(y)| ≤ K|x− y| ,
that is f is Lipschitz continuous in Ω with Lipschitz constant K.

Proof. Exercise.
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5 The Inverse Function Theorem and the Implicit Function

Theorem

The Inverse Function Theorem and the Implicit Function Theorem are two of the most important the-
orems in Analysis. The Inverse Function Theorem tells us when we can locally invert a function; the
Implicit Function Theorem tells us when a function is given implicitly as a function of other variables.
We will discuss both theorems in R

n here, but they are also valid in basically the same form in infinite-
dimensional spaces (more precisely, in Banach spaces). Their applications are vast and we can only get
a glimpse of their significance in this course.

The flavour of both results is similar: we linearise the problem at a point by taking the derivative df . Now,
subject to a suitable nondegeneracy condition on df , we obtain a result that works on a neighbourhood
of the point. In this way we go from an infinitesimal statement to a local (but not a global) result.

The theorems are equivalent; the classical approach, however, is to prove first the Inverse Function
Theorem via the Contraction Mapping Fixed Point Principle and then deduce the Implicit Function
Theorem from it. The proof of the Inverse Function Theorem is however lengthy and technical and
we do not have the time to go through it in this lecture course. We recommend the books by Spivak
(Calculus on Manifolds) [6]or Krantz and Parks (The Implicit Function Theorem, History, Theory and
Applications, Birkhäuser) where you can also find an elementary (but still not short) proof of the Implicit
Function Theorem which does not use the Inverse Function Theorem. The latter then follows directly as
a corollary from the Implicit Function Theorem.

In these lecture notes we first prove the Implicit Function Theorem in the simplest setting, which is the
case of two variables. We then state carefully the Implicit Function Theorem and the Inverse Function
Theorem in higher dimensions, deduce the Implicit Function Theorem from the Inverse Function Theorem,
and give some examples of applications.

5.1 The Implicit Function Theorem in R
2

We start with a simple example. Consider S1 = {(x, y) ∈ R
2 |x2 + y2 = 1}, which is just the unit circle

in the plane. Can we find a function y = y(x) such that x2 + y(x)2 = 1? Obviously, in this example, we
cannot find one function to describe the whole unit circle in this way. However, we can do it locally, that
is in a neighbourhood of a point (x0, y0) ∈ S1, as long as y0 6= 0. In this example we can find y explicitly:
it is y(x) =

√
1− x2 if y0 > 0 and y(x) = −

√
1− x2 if y0 < 0 both for |x| < 1. Notice also, that if y0 = 0,

we cannot find such a function y, but we can instead write x as a function of y.

The Implicit Function Theorem describes conditions under which certain variables can be written as
functions of the others. In R

2 it can be stated as follows.

Theorem 5.1. (Implicit Function Theorem in R
2) Let Ω ⊆ R

2 be open and F ∈ C1(Ω). Let (x0, y0) ∈ Ω
and assume that

f(x0, y0) = 0 and
∂f

∂y
(x0, y0) 6= 0 .

Then there exist open intervals I, J ⊆ R with x0 ∈ I, y0 ∈ J and a unique function g : I → J such that
y0 = g(x0) and

f(x, y) = 0 if and only if y = g(x) for all (x, y) ∈ I × J.

Furthermore, g ∈ C1(I) with

g′(x0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

. (3)

Remark 5.2. Obviously, an analogous result is true if ∂f
∂x (x0, y0) 6= 0.

Proof. (Not examinable) Without loss of generality we can assume that ∂f
∂y (x0, y0) > 0. Due to the

continuity of ∂f
∂y we can also assume – by making Ω smaller if necessary – that

∂f

∂y
(x, y) ≥ δ > 0 for all (x, y) ∈ Ω . (4)
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As a consequence we can find y1 < y0 < y2 such that f(x0, y1) < 0 < f(x0, y2) and due to the continuity
of f we can find an open interval I containing x0 such that

f(x, y1) < 0 < f(x, y2) for all x ∈ I . (5)

The Intermediate Value Theorem and (4) imply that for each x ∈ I there exists a unique y ∈ (y1, y2) =: J
such that f(x, y) = 0. Denote this y by g(x). The continuity of f and the uniqueness of y also imply
that g is continuous.

To complete the proof of the theorem, we need to show that g is continuously differentiable in I and that
(3) holds. With the notation y = g(x) we find

f(x+ s, y + t)− f(x, y) = s
∂f

∂x
(x, y) + t

∂f

∂y
(x, y) + ε(s, t)

√

s2 + t2 , (6)

with ε(s, t) → 0 as (s, t) → 0. We now choose t = g(x + s) − g(x) such that the left hand side in (6)
vanishes and obtain

t
∂f

∂y
(x, y) = −s

∂f

∂x
(x, y)− ε(s, t)

√

s2 + t2 . (7)

We rearrange to obtain
∣

∣

∣

t

s
+

∂f

∂x
(x, y)/

∂f

∂y
(x, y)

∣

∣

∣ ≤ |ε|
|∂f∂y (x, y)|

(

1 +
|t|
|s|
)

.

Thus, if we can show that |t|
|s| ≤ C as s → 0, then we can let s → 0 in the above inequality to find that

indeed g′(x) exists for all x ∈ I. For (x, y) = (x0, y0) we find the formula in (3) and the properties of f
and g also imply that g′ is continuous.

We still need to show that |t|
|s| ≤ C . We obtain from (7) that

|t|
|s| ≤

∣

∣

∂f

∂x
(x, y)

∣

∣/
∣

∣

∂f

∂y
(x, y)

∣

∣+
|ε|

∣

∣

∂f
∂y (x, y)

∣

∣

(

1 +
|t|
|s|
)

≤
∣

∣

∂f

∂x
(x, y)

∣

∣/
∣

∣

∂f

∂y
(x, y)

∣

∣+
|ε|
δ

(

1 +
|t|
|s|
)

.

We can choose now |s| so small such that |ε|
δ ≤ 1

2 and then

|t|
|s| ≤ 2

∣

∣

∂f

∂x
(x, y)

∣

∣/
∣

∣

∂f

∂y
(x, y)

∣

∣+ 1.

This finishes the proof of the theorem.

Example 5.3. In the example at the beginning of this section we have f(x, y) = x2 + y2 − 1. The
theorem tells us that we this relation defines y as a function of x in a neighbourhood of a point where ∂f

∂y

is nonzero, that is, in a neighbourhood of points other than (±1, 0).

Example 5.4. We show that for sufficiently small a > 0 there exists a function g ∈ C1(−a, a) with
g(0) = 0 such that

g2(x)x+ 2x2eg(x) = g(x) .

Indeed, define f : R2 → R via f(x, y) = y2x + 2x2ey − y. Then f(0, 0) = 0 and ∂yf(0, 0) = −1. Hence
the Implicit Function Theorem implies the existence of the function g as claimed. Furthermore we can
compute g′(0) = −∂xf(0, 0)/∂yf(0, 0) = 0. Of course, we cannot hope for an explicit expression for g,
but the Implicit Function Theorem tells us quite easily that such a g exists.

5.2 The Implicit Function Theorem in R
n

To formulate the Implicit Function Theorem in R
n we first introduce some convenient notation. We write

• R
n = R

k × R
m ∋ (x1, . . . , xk, y1, . . . ym) =: (x, y)

• f : Ω ⊆ R
n → R

m, (x0, y0) ∈ Ω ⊆ R
n, f(x0, y0) =: z0
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We are looking for open neighbourhoods U of x0 and V of y0 as well as a function g : U → V such that

∀(x, y) ∈ U × V : f(x, y) = z0 = f(x0, y0) ⇔ y = g(x)

It is instructive to consider first the linear case. Let f(x, y) = Ax + By with A ∈ Mm×k(R) and
B ∈ Mm×m(R). If B is invertible then the equation f(x, y) = Ax0 +By0 =: z0 can be solved for y via

y = B−1
(

z0 −Ax
)

.

Notice that B is just the m×m submatrix of Df consisting of the partial derivatives with respect to the
y-variables.

Now consider the nonlinear case. Let f ∈ C1(Ω) and write

Df(x, y)) = (Dxf(x, y), Dyf(x, y)) ,

where

Dxf(x, y) =

(

∂fj
∂xi

)

∈ Mm×k(R) (j = 1, . . . ,m; i = 1, . . . , k)

and

Dyf(x, y) =

(

∂fj
∂yi

)

∈ Mm×m(R) (j = 1, . . . ,m; i = 1, . . . ,m) .

Then

f(x, y) = f(x0, y0) +Dxf(x0, y0)(x− x0) +Dyf(x0, y0)(y − y0) + o(|(x, y)− (x0, y0)|).

If the remainder term were zero, then we would have f(x, y) = f(x0, y0) = z0 iff

Dxf(x0, y0)(x− x0) = −Dyf(x0, y0)(y − y0) .

which, if Dyf(x0, y0) is invertible, is equivalent to

y = y0 −
(

Dyf(x0, y0)
)−1

Dxf(x0, y0)(x− x0).

Hence there exists a function g(x) auch that F (x, y) = z0 iff y = g(x), as desired.

In the nonlinear case, of course the remainder term is nonzero. The Implicit Function Theorem is the
statement that we can still conclude the existence of such a function g, subject to the nondegeneracy
condition that Dyf is invertible.

Theorem 5.5. (The Implicit Function Theorem) Let f : Ω ⊆ R
k+m → R

m, where n = k + m, f ∈
C1(Ω,Rm) and let (x0, y0) ∈ Ω with z0 = f(x0, y0). If Dyf(x0, y0) is invertible then there exist open
neighbourhoods U of x0 and V of y0, and a function g ∈ C1(U, V ) such that

{(x, y) ∈ U × V | f(x, y) = z0} = {(x, y) | x ∈ U, y = g(x)}.

Furthermore

Dg(x0) = −
(

Dyf(x0, y0)
)−1

Dxf(x0, y0) .

So y ∈ V ⊂ R
m is defined implicitly as a function of x ∈ U ⊂ R

k via the relation f(x, y) = 0.

Example 5.6.

a) (Nonlinear system of equations)

Consider the system of equations

f(x, y1, y2) =

(

x3 + y31 + y32 − 7
xy1 + y1y2 + y2x+ 2

)

=

(

0
0

)

.

The function f is zero at the point (2,−1, 0) and

Df(x, y1, y2) =

(

3x2 3y21 3y22
y1 + y2 x+ y2 x+ y1

)

,
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hence

Dyf(2,−1, 0) =

(

3 0
2 1

)

with detDyf(2,−1, 0) = 3 6= 0.

The Implicit Function Theorem implies that there exist open neighbourhoods I of 2 and V ⊆ R
2

of (−1, 0) and a continuously differentiable function g : I → V , with g(2) = (−1, 0), such that

f(x, y1, y2) = 0 ⇔ y = (y1, y2) = g(x) = (g1(x), g2(x))

for all x ∈ I, y ∈ V . Furthermore, the derivative of g at x0 = 2 is given by

Dg(2) = −
(

3 0
2 1

)−1(
12
−1

)

= −1

3

(

1 0
−2 3

)(

12
−1

)

=

(

−4
9

)

.

b) The function f : R4 → R
2 is given by

f(x, y, u, v) =

(

x2 + uy + ev

2x+ u2 − uv

)

.

Consider the point (2, 5,−1, 0) such that f(2, 5,−1, 0) = (0, 5)T . The Jacobian matrix of f is

Df(x, y, u, v) =

(

2x u y ev

2 0 2u− v −u

)

.

Hence

D(u,v)f(x, y, u, v) =

(

y ev

2u− v −u

)

and D(u,v)f(2, 5,−1, 0) =

(

5 1
−2 1

)

.

Since detDf(2, 5,−1, 0) = 7 6= 0, the Implicit Function Theorem implies that there exist open
neighbourhoods U ⊂ R

2 of (2, 5) and V ⊂ R
2 of (−1, 0) and a function g ∈ C1(U, V ) with g(2, 5) =

(−1, 0) and f(x, y, g(x, y)) = (0, 5)T for all (x, y) ∈ U . We can also compute that

Dg(2, 5) = −
(

5 1
−2 1

)−1(
4 −1
2 0

)

= −1

7

(

2 −1
18 −2

)

.

c) (Writing a surface locally as graph)

Let h : R3 → R with h(x, y, z) = xy − z log y + exz − 1. Can we represent the ’surface’ given by
h(x, y, z) = 0 locally in a neighbourhood of (0, 1, 1) either in the form x = f(y, z), y = g(x, z) or
z = p(x, y)? The Jacobian matrix of h is Dh(x, y, z) = (y + zexz, x − z

y ,− log y + xexz) and thus

Dh(0, 1, 1) = (2,−1, 0). Hence, the Implicit Function Theorem tells us that we can represent the
surface locally as x = f(y, z) or y = g(x, z), but it does not tell us whether we can do it in the form
z = p(x, y). In fact, one can show that the latter is not possible.

5.3 The Inverse Function Theorem

In this section we consider the following problem. Given a function f : Ω ⊆ R
n → R

n, does there exist
locally around a point x0 an inverse function g = f−1?

The idea is, as usual, to linearise around a point. Let x0 ∈ R
n, y0 = f(x0) and assume that the Jacobian

matrix Df(x0) is invertible. Then we find for general x that

f(x) = y0 +Df(x0)(x− x0) + o(|x− x0|) .

Now, if the remainder term were not present, then we could just invert the function by

y = f(x) if x = x0 +Df(x0)
−1(y − y0)

Of course, this will only be true if f is itself linear! The content of the Inverse Function Theorem is that
for general differentiable f there will still be a local inverse, that is, an inverse defined on a neighbourhood
of x0, provided the Jacobian Df(x0) is invertible.
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Example 5.7. Let f : R → R be given by f(x) = x2.

• For x0 > 0 or x0 < 0 we have that f is invertible in a neighbourhood of x0

• For x0 = 0 there is no neighbourhood of x0 where f has an inverse. Indeed, f ′(0) = 0 is not
invertible

We first make a definition that is relevant for our discussion of the local behaviour of f .

Definition 5.8. (Diffeomorphism) Let f : U ⊆ R
n → V ⊆ R

n and suppose that U and V are open in R
n.

We say that f is a diffeomorphism if f is bijective, that is there exists f−1 : V → U , and if f ∈ C1(U, V )
and f−1 ∈ C1(V,U).

Example 5.9. Here is a simple example for a function f : (−1, 1) → (−1, 1) which is bijective, f ∈ C1,
but f−1 is not differentiable on (−1, 1).

Let f : (−1, 1) → (−1, 1) be given by f(x) = x3. Obviously f is bijective with inverse f−1 : (−1, 1) →
(−1, 1) given by f−1(y) = y

1

3 . Furthermore, f ∈ C∞(−1, 1), but f−1 is not differentiable in any
neighbourhood of 0. Hence, f is not a diffeomorphism.

We sometimes informally think of a diffeomorphism as a ‘smooth change of coordinates’.

We can now state our theorem.

Theorem 5.10. (The Inverse Function Theorem in R
n) Let Ω ⊆ R

n be open, let f ∈ C1(Ω,Rn) and let
x0 ∈ Ω. If Df(x0) is invertible, then there exists an open neighbourhood U of x0 such that f(U) is open
and f : U → f(U) is a diffeomorphism. Furthermore

Df−1(f(x0)) =
(

Df(x0)
)−1

.

Remark 5.11. Notice that it follows that f−1 ∈ C1 in a neighbourhood of f(x0), we do not need to
assume it.

This is an example of our philosophy that the linearisation of a function at a point will give us local
qualitative information about the function’s behaviour on a neighbourhood of the point, provided we
have suitable nondegeneracy conditions (in this case the assumption that the derivative is invertible at
the point). It is important to realise, however, that we do not necessarily get a global result. Even if the
derivative is everywhere invertible the function need not be a global diffeomorphism from Ω to f(Ω), or
even a global bijection. We shall see examples of this in (c) and (d) below.

Example 5.12.

a) f : R → R, f(x) = x2. If x0 > 0 we can choose U = (0,∞), if x0 < 0 we can choose U = (−∞, 0).

b) Let f : R+ × R → R
2, be given by

(r, ϕ) 7→ (r cosϕ, r sinϕ)

Df(r, ϕ) =

(

cosϕ −r sinϕ
sinϕ r cosϕ

)

such that detDf(r, ϕ) = r > 0.

We have already seen that

(Df(r, ϕ))−1 =
1

r

(

r cosϕ r sinϕ
− sinϕ cosϕ

)

.

Hence f is locally invertible everywhere, but not globally (in fact f is 2π-periodic in the ϕ variable).
The local inverse can be computed: Let f(r, ϕ) =: (x, y) ∈ R

2: and let

U =
{

(r, ϕ) | ϕ ∈
(

−π

2
,
π

2

)}

and V = {(x, y) ∈ R
2 | x > 0}.

f : U → V is a diffeomorphism, where g = f−1 : V → U is given by

g(x, y) =
(

√

x2 + y2, arctan
y

x

)

.
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c) The following important example is one we encountered in Example 2.1. The exponential function
exp : C → C given by z 7→ ez is, in real cordinates, the map

(x, y) 7→ (ex cos y, ex sin y)

The Jacobian is

Df(x, y) =

(

ex cos y −ex sin y
ex sin y ex cos y

)

and detDf(x, y) = e2x(cos2 y + sin2 y) = e2x which never vanishes. Hence Df is always invertible,
and the Inverse Function Theorem tells us that the exponential map is a local diffeomorphism.
However it is not a global diffeomorphism as it is not bijective. The map is periodic in y with period
2π–equivalently exp(z + 2πi) = exp(z). (For those of you who have seen the concept in topology,
the exponential map is a covering map from C onto C− {0}).

d) Let f : (0,∞)× R → R
2 be given by f(x, y) = (coshx cos y, sinhx sin y) =: (u, v). Then

Df(x, y) =

(

sinhx cos y − coshx sin y
coshx sin y sinhx cos y

)

.

Hence detDf(x, y) = sinh2 x + sin2 y and thus detDf(x, y) > 0 for all x > 0, y ∈ R. As a
consequence of the Inverse Function Theorem we have that f is locally a diffeomorphism for all
(x, y). (The function f is not a global diffeomorphism as it is periodic in y.)

Notice that for fixed x > 0 the image f(x, y) describes an ellipse with axes of length coshx > 1 and
sinhx respectively. Hence f((0,∞)× R) = R

2 \ {(u, 0) | |u| ≤ 1}.

We conclude by deducing the Implicit Function Theorem from the Inverse Function Theorem.

Recall the setup of the latter theorem. We have a C1 map f : Rk+m → R
m. We write a point of Rk+m as

(x, y) with x ∈ R
k and y ∈ R

m, and we assume the m×m submatrix Dyf of Df at (x0, y0) is invertible.
We want to locally find a function g such that f(x, y) = 0 iff y = g(x).

In order to apply the Inverse Function Theorem we will expand f to a function R
k+m → R

k+m: explicitly,
we let

F (x, y) = (x, f(x, y)).

Now

DF =

(

I 0
Dxf Dyf

)

so as we are assuming invertibility of Dyf , we have that DF is invertible at (x0, y0). The Inverse Function
Theorem now tells us F has a local differentiable inverse h : (x, y) 7→ (h1(x, y), h2(x, y)). We have

(x, y) = F ◦ h(x, y) = (h1(x, y), f ◦ h(x, y))

so h1(x, y) = x, and hence h(x, y) = (x, h2(x, y)) with f(x, h2(x, y)) = f ◦ h(x, y) = y. In particular,
f(x, h2(x, 0)) = 0, and we can take g(x) = h2(x, 0).

In fact, this way of approaching the Implicit Function Theorem also yields the following useful theorem.

Theorem 5.13. Let f : R
n → R

m (where m ≤ n) be a C1 function such that f(a) = 0 and rank
Df(a) = m. Then there is an open neighbourhood U of a and a differentiable function h : U → R

n with
differentiable inverse such that

f ◦ h(x1, . . . , xn) = (xn−m+1, . . . , xn)

Proof. This is basically contained in the proof of the Implicit Function Theorem above. After applying
a permutation of coordinates (which is a diffeomorphism of Rn) we can assume that the m ×m matrix
formed from the m last columns of Df(a) is invertible. Now the proof we saw above shows the existence
of h such that f ◦ h(x, y) = y, as required.

The significance of this is that if f : Rn → R
m and Df has rank m at a point (ie is of maximal rank at

a), we can locally apply a diffeomorphism which makes f into the simplest possible rank m map, that is,
a projection to R

m. In particular, the local structure of level sets of f around points of maximum rank
is very simple, up to a diffeomorphism (‘change of coordinates’).
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6 Submanifolds in R
n and constrained minimisation problems

We are now going to introduce the notion of submanifolds of Rn, which are generalisations to general
dimensions of smooth surfaces in R

3.

6.1 Submanifolds in R
n

Let us begin by looking at hypersurfaces in R
n, that is, zero loci of functions f : Rn → R. These can be

very complicated and singular in general, but we expect that for a generic choice of f we get a smooth
set. We can make this precise using the Implicit Function Theorem as follows.

Let f : Rn → R be a C1-function and M = {x ∈ R
n | f(x) = 0} = f−1{0} its zero set. If Df(a) 6= 0

for some a ∈ M , then we know from the Implicit Function Theorem, that we can represent M in a
neighbourhood of a as a graph of a function of n− 1 variables (after a suitable reordering of coordinates
xn = h(x1, . . . , xn−1) In this way, a neighbourhood of a is seen to be diffeomorphic to an open set in
R

n−1. We could also see this via the result at the end of the previous section, because this tells us that
after a diffeomorphism we can reduce to the case when the map is a projection.

If this kind of behaviour holds for all points a ∈ M , we say M is an n−1-dimensional submanifold of Rn.
So we know that if Df(x) is nonzero for all x ∈ M , then M is an n− 1-dimensional submanifold of Rn.

We are now going to generalize this definition to k-dimensional submanifolds of Rn, for general k.

Definition 6.1. (Submanifolds of Rn) Let 0 < k < n be an integer. A set M ⊆ R
n is called a k-

dimensional submanifold of Rn, if for every x0 ∈ M there exists an open neighbourhood Ω of x0 in R
n

and f ∈ C1(Ω,Rn−k), such that

M ∩ Ω = f−1{0} and rankDf(x) = n− k for all x ∈ Ω .

Remark 6.2. It suffices to require rankDf(x) = n− k for all x ∈ M ∩Ω. Indeed, if rankDf(x) = n− k
for an x ∈ M ∩Ω, this means that the matrix Df(x) has n− k independent columns, or in other words,
that the determinant of the matrix formed by these n− k independent columns is nonzero. Since Df is
continuous and the determinant is a continuous function, it follows that the determinant of this submatrix
is also nonzero in an open neighbourhood of x.

The next proposition, which is a consequence of the Implicit Function Theorem, will tell us that a
submanifold can be locally represented as a graph of a differentiable function.

Proposition 6.3. (Submanifolds can be locally represented as graphs) For a set M ⊆ R
n the following

properties are equivalent.

(1) M is a k-dimensional submanifold of Rn (in the sense of definition 6.1).

(2) For each x ∈ M we can, after suitably relabelling the coordinates, write x = (z0, y0) with z0 ∈ R
k,

y0 ∈ R
n−k and find an open neighbourhood U of z0 in R

k, an open neighbourhood V of y0 in R
n−k,

and a map g ∈ C1(U, V ) with g(z0) = y0, such that

M ∩ (U × V ) = {(z, g(z)) | z ∈ U}.

Remark 6.4. In (2) it is important that we remember that the statement is true only after relabelling
the coordinates. For instance, consider again the unit circle S1 =

{

(x1, x2) |x2
1 + x2

2 = 1
}

in R
2. If

x = (1, 0) ∈ S1 we have

S1 ∩
(

(0, 2)× (−1, 1)
)

=
{

(
√

1− z2, z) | |z| < 1
}

.

Hence, to get the statement in (2) we have to relabel (x1, x2) as (x2, x1).

Proof. We first show that (1) implies (2): After possibly relabelling the coordinates we can write x
as x = (z0, y0) such that Dyf(x) is invertible. Then property (2) follows from the Implicit Function
Theorem.

Now assume that (2) is satisfied. Define Ω = U × V and f ∈ C1(Ω,Rn−k) via

f(z, y) = y − g(z)

Then M ∩ Ω = f−1{0} and Df(z, y) = (−Dg(z), Idn−k). It follows that rankDf(z, y) = n− k.
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As in the hypersurface case, we see that a suitable neighbourhood of each point in a k-dimensional
submanifold can be identified by a diffeomorphism with an open set in R

k. We can think of submanifolds
as subsets of Rn that locally look like open sets in Euclidean space R

k.

Remark 6.5. In fact it is possible to use these ideas to define abstract k-dimensional manifolds without
reference to an embedding in R

n. Roughly speaking, such a manifold is a space covered by open sets
(‘charts’), each homeomorphic to an open set in R

k, such that the charts fit together smoothly in a
suitable sense. It is in fact possible to transfer the machinery of differential and integral calculus to such
abstract manifolds. These ideas are explored further in the Part C course on Differentiable Manifolds.

Example 6.6.

a) (Curves in R
2)

i) The unit circle in R
2:

∗ A definition as the level set of a function is given by {(x, y) ∈ R
2 | x2 + y2 − 1 = 0}. Note

that this is f−1(0) where f(x, y) = x2 + y2 − 1, and that Df(x, y) = (2x, 2y) which has
rank 1 at all points of the unit circle (in fact, at all points except the origin). So the circle
is a 1-dimensional submanifold of R2.

∗ A local representation as a graph of a function is for example y(x) = ±
√
1− x2 ; x ∈

[−1, 1].

∗ A parametrisation is given by γ : [0, 2π) → R
2; γ(t) = (cos t, sin t).

ii)
M = {(x, y) ∈ R

2 |x3 − y2 − 1 = 0}
defines a one-dimensional submanifold (a regular curve) in R

2. Here, Df(x, y) = (3x2,−2y)
which again has rank 1 on all points of M .

iii) Consider now
M = {(x, y) ∈ R

2 | x2 − y2 − 0}
Now M = f−1(0) where f(x, y) = x2 − y2, and Df(x, y) = (2x,−2y) has rank 1 except at the
origin, which is on the curve. So the curve has the submanifold property away from the origin,
but not at the origin itself. Geometrically, we can see that the curve is the union of the two
lines y = x and y = −x, which meet at (0, 0). So away from the origin the curve looks like a
1-dimensional submanifold, but this breaks down at the origin.

b) (Ellipsoids)

An ellipsoid is given by

M =

{

x ∈ R
3 | f(x) = x2

1

a2
+

x2
2

b2
+

x2
3

c2
− 1 = 0

}

.

for some a, b, c > 0. We check that this defines a two-dimensional submanifold of R3. Indeed,

Df(x) = 2
(x1

a2
,
x2

b2
,
x3

c2

)

and thus Df(x) = 0 if and only if x = 0, but x = 0 /∈ M .

c) (Hyperboloid) Let n = 3 und k = 2. For c ∈ R\{0} let

f(x) = x2
1 + x2

2 − x2
3 − c

The hyperboloid for given c is then

Hc =
{

x ∈ R
3 | f(x) = 0

}

.

On the problem sheet you are asked to show that this defines a two-dimensional submanifold of R3

if c 6= 0. You are also asked to check what happens for c = 0.
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d) (Torus)

Let n = 3 and k = 2. For 0 < r < R a torus is given by

T =
{

(x, y, z) ∈ R
3 | f(x, y, z) =

(
√

x2 + y2 −R
)2

+ z2 − r2 = 0
}

.

That is, the torus consists of the points in R
3 which have distance r to a circle with radius R. The

defining function f is continuously differentiable away from the z-axis. However, when r < R the
torus does not contain any point on the z-axis. We calculate

Df(x, y, z) =
(

2
(
√

x2 + y2 −R
) x
√

x2 + y2
, 2
(
√

x2 + y2 −R
) y
√

x2 + y2
, 2z
)

and see that Df(x, y, z) 6= 0 when (x, y, z) ∈ T . Consequently, rankDf(x, y, z) = 1 for (x, y, z) ∈ T
and we conclude that T is a two-dimensional submanifold of R3.

e) (Orthogonal group)

We claim that
O(n) =

{

X ∈ Mn×n(R) | XTX = Id
}

is a submanifold of Rn2

of dimension 1
2n(n− 1).

To see this let
S(n) =

{

X ∈ Mn×n(R) | XT = X
}

be the set of symmetric matrices. S(n) is isomorphic to R
r with r = n+(n−1)+(n−2)+ . . .+1 =

n(n+1)
2 .

Let f : Mn×n(R) → S(n) be defined via

f(X) = XTX .

Then O(n) = f−1{Id} and we need to identify the range of df(x).

We have for all H ∈ Mn×n(R) that

df(X)H = HTX +XTH ∈ S(n).

It remains to show that for all X ∈ O(n) the map df(X) is surjective. Let Z ∈ S(n) and define
H := 1

2XZ. Then

df(X)H =
1

2
ZTXTX +

1

2
XTXZ =

1

2
(ZT + Z) = Z .

Hence the range of df(X) is S(n), thus rank df(X) = dimS(n) = 1
2n(n + 1) and O(n) is a

submanifold of dimension k = n2 − 1
2n(n+ 1) = 1

2n(n− 1).

This is an example of a Lie group, a manifold which is also a group, such that the group operations of
multiplication and inversion are given by differentiable maps. Many symmetry groups in physical
problems turn out to be Lie groups. This important topic linking geometry and algebra is the
subject of the Part C course Lie Groups. There are also many excellent books on the subject
[1, 2, 4].

We now define an important concept for manifolds, the tangent space at a point of the manifold.

Definition 6.7. (Tangent vector, tangent space, normal vector) Let M ⊆ R
n be a k-dimensional

submanifold of Rn.

1. We call v ∈ R
n a tangent vector to M at x ∈ M , if there exists a C1-function γ : (−ε, ε) → R

n,
such that γ(t) ∈ M for all t ∈ (−ε, ε), γ(0) = x and γ′(0) = v.

2. The set of all tangent vectors to M at x is called the tangent space to M at x, and we denote it by
TxM .

3. We call w ∈ R
n a normal vector to M at x ∈ M if 〈w, v〉 = 0 for all v ∈ TxM . Thus the set of all

normal vectors to M at x is precisely the orthogonal complement TxM
⊥ of TxM in R

n.
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Next we prove the generalisation of the property that ‘the gradient is perpendicular to the level sets of
a function’ (see Corollary 4.4). This result in particular also shows that TxM is indeed a k-dimensional
vector space and as a consequence that the space of normal vectors is an (n−k)-dimensional vector space.

Proposition 6.8. Let M be a k-dimensional submanifold of Rn. Let Ω be an open subset of Rn and let
f ∈ C1(Ω,Rn−k) be such that M ∩ Ω = f−1{0} and rankDf(x) = n− k for all x ∈ Ω. Then we have

TxM = kerDf(x),

for all x ∈ M ∩ Ω, that is the tangent space equals the kernel of Df(x).

Proof. We first claim that TxM ⊆ kerDf(x):

Indeed, let v ∈ TxM , then there exists γ : (−ε, ε) → M such that

γ(0) = x and γ′(0) = v.

It follows for all t ∈ (−ε, ε), that f(γ(t)) = 0. Hence

0 =
d

dt
f(γ(t)) = Df(γ(t))γ′(t)

and for t = 0 we find 0 = Df(x)v, hence v ∈ kerDf(x).

Now recall that, possibly after a suitable relabelling, we can assume in view of Proposition 6.3 that
x = (z0, y0) ∈ R

k × R
n−k and that there exist open subsets U ⊆ R

k with z0 ∈ U and V ⊆ R
n−k with

y0 ∈ V and a function g ∈ C1(U, V ) with g(z0) = y0 such that

M ∩ (U × V ) = {(z, g(z)) | z ∈ U}.

We define G : U → R
n by G(z) = (z, g(z)) and for an arbitrary ξ ∈ R

k and sufficiently small ε we let
γ : (−ε, ε) → M be given by

γ(t) = G(z0 + tξ) .

Then γ′(t) = DG(z0 + tξ)ξ and

γ′(0) = DG(z0)ξ with DG(z0) =

(

Idk
Dg(z0)

)

.

Hence imDG(z0) ⊆ TxM and thus we have shown so far that imDG(z0) ⊆ TxM ⊆ kerDf(x). But
DG(z0) is obviously injective, hence dim imDg(z0) = k = n − rankDf(x) = dim kerDf(x). Hence
imDg(z0) = kerDf(x) = TxM .

Example 6.9.

a) Let A ∈ Mn×n(R) be symmetric, detA 6= 0, and let M = {x ∈ R
n | f(x) = 〈x,Ax〉 − 1 = 0}. We

have Df(x) = 2(Ax)T and since A is regular and x 6= 0 for x ∈ M we have rankDf(x) = 1 for all
x ∈ M . Hence M is an (n− 1)-dimensional submanifold of Rn and Proposition 6.8 implies that

TxM = {v ∈ R
n | 2 〈v,Ax〉 = 0}

and the 1-dimensional space of normal vectors is spanned by Ax.

In particular, if A = Id, then M is the unit sphere in R
n, the space of normal vectors at x is spanned

by x and the tangent space is given by all vectors which are perpendicular to x.

b) We have seen that a (two-dimensional) torus (in R
3) is given by

T =
{

(x, y, z) ∈ R
3 | f(x, y, z) =

(
√

x2 + y2 −R
)2

+ z2 − r2 = 0
}

,

where 0 < r < R. Hence, the space of normal vectors is

(T(x,y,z)M)⊥ =
{

w ∈ R
3 |w = λ∇f(x, y, z) for some λ ∈ R

}

.
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c) Consider the orthogonal group

O(n) =
{

X ∈ Mn×n(R) | f(X) = XTX − Id = 0
}

.

We have seen that O(n) is a submanifold of Rn2

of dimension 1
2n(n−1) and we also have Id ∈ O(n).

With df(X)H = XTH +HTX and df(Id)H = HT +H it follows

TIdM = {H ∈ Mn×n(R) | HT +H = 0},

that is the tangent space at Id is the skew-symmetric matrices.

In fact, the tangent space to a general Lie group at the identity element carries a very rich algebraic
structure, beyond the basic vector space structure it has as a tangent space. This structure is that
of a Lie algebra, a vector space V which also carries a skew-symmetric bilinear map V × V → V
satisfying a certain identity called the Jacobi identity. Writing the bilinear form, as traditional,
using bracket notation [X,Y ], the Jacobi identity is

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

For matrix Lie groups such as O(n), the bracket is actually given by [X,Y ] = XY − Y X (check
that this does indeed satisfy the Lie algebra axioms!). For further material on Lie algebras, we refer
the reader to the books [3, 2] and also the Part C course Lie Algebras.

6.2 Extremal problems with constraints

We now consider an application of these ideas to the study of constrained extremisation problems. We
know from elementary vector calculus that the critical points of a function on R

n are the points where the
gradient vanishes. We now want to consider the more subtle problem of extremising a function subject
to a constraint–that is, finding the extrema of a function on some subset of Euclidean space defined by
one or more equations.

Let us first consider the simplest case, where we have two functions f, g ∈ C1(R2), and our goal is to
minimise (or maximise) g under the constraint that f(x, y) = 0.

We can often (under some assumptions on f) think of the set

Γ = {(x, y) ∈ R
2 | f(x, y) = 0}

as a curve in R
2. Let (x0, y0) be such that for some ε > 0 and all (x, y) ∈ Γ ∩Bε(x0, y0):

g(x0, y0) ≤ g(x, y).

Suppose that ∇f(x0, y0) 6= 0, and assume without loss of generality that ∂yf(x0, y0) 6= 0. The Implicit
Function Theorem guarantees that we can represent Γ in an open neighbourhood of (x0, y0) as (x, ϕ(x))
for x ∈ I, where I is an open interval with x0 ∈ I, ϕ ∈ C1(I) and ϕ(x0) = y0. The tangent to Γ at
(x, ϕ(x)) is given by the vector (1, ϕ′(x)) and since the gradient is perpendicular to the level sets we have

(

1

ϕ′(x0)

)

⊥ ∇f(x, ϕ(x)).

Define G(x) = g(x, ϕ(x)) and consider the point (x0, y0) where g has a local minimiser on Γ. Then, by
Fermat’s Theorem and the Chain Rule,

0 = G′(x0) = ∂xg(x0, y0) + ∂yg(x0, y0)ϕ
′(x0) =

〈

∇g(x0, y0),

(

1

ϕ′(x0)

)〉

.

Hence there exists λ ∈ R, such that

∇g(x0, y0) = λ∇f(x0, y0).

We can interpret this geometrically as follows. If the extremisation problem were unconstrained, the
criterion would just be vanishing of ∇g. As we are just looking for extrema on the constraint curve
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f = 0, we actually want the component of ∇g tangent to the curve to vanish, ie ∇g should be normal to
the curve f = 0. This is exactly the condition that ∇g is proportional to ∇f (cf Proposition 4.4 ).

In the following, we want to generalize this procedure by extremising a function g on a submanifold M
of Rn given by a system of equations f = 0. The following theorem will provide a necessary condition
for an extremal point.

Theorem 6.10. (Theorem on Lagrange multipliers) Let Ω ⊆ R
n be open, g ∈ C1(Ω) and f ∈

C1(Ω,Rn−k). If x0 ∈ f−1{0} is a local extremum of g on f−1{0}, that is there exists an open neighbour-
hood V of x0 such that for all x ∈ V which satisfy f(x) = 0 we have

g(x) ≥ g(x0) (or g(x) ≤ g(x0)),

and if rankDf(x0) = n− k, then there exist λ1, . . . , λn−k ∈ R, such that

∇g(x0) =

n−k
∑

i=1

λi∇fi(x0).

The numbers λ1, . . . , λn−k are called Lagrange multipliers.

Proof. If V is sufficiently small then we have for all x ∈ V that rankDf(x) = n−k, henceM = f−1{0}∩V
is a k-dimensional submanifold of Rn. For a v ∈ Tx0

M let γ : (−ε, ε) → M be a C1-function such that
γ(0) = x0 and γ′(0) = v. The function g ◦ γ has in t = 0 a local minimum. Thus

0 =
d

dt
g(γ(t))|t=0 = 〈∇g(γ(t)), γ′(t)〉 |t=0 = 〈∇g(x0), v〉

and thus ∇g(x0) ∈ (Tx0
M)⊥. Furthermore we have for all x ∈ M and i = 1, . . . , n− k that

fi(x) = 0, and thus in particular ∇fi(x0) ⊥ Tx0
M.

Since rankDf(x0) = n − k the vectors ∇fi(x0) are linearly independent and form a basis of (Tx0
M)⊥.

Hence there exist λ1, . . . , λn−k such that ∇g(x0) =
∑n−k

i=1 λi∇fi(x0).

Again, we can interpret this as saying that ∇g is normal to the submanifold f = 0, and the normal space
is spanned by ∇fi : (i = 1, . . . , n− k).

Example 6.11.

a) We want to determine the minimal and maximal value of g(x, y, z) = 5x+y−3z on the intersection
of the plane E = {(x, y, z) ∈ R

3 |x+ y+ z = 0} with the unit sphere S2 = {(x, y, z) ∈ R
3 |x2+ y2+

z2 − 1 = 0}.
In other words we want to determine the extremal values of g on

M =
{

(x, y, z) ∈ R
3 | f(x, y, z) =

(

x+ y + z
x2 + y2 + z2 − 1

)

= 0
}

.

We compute

Df(x, y, z) =

(

1 1 1
2x 2y 2z

)

and conclude that rankDf(x, y, z) = 2 for all (x, y, z) ∈ M (as (1, 1, 1) /∈ M). Hence M is a one-
dimensional submanifold of R3. Furthermore M is compact, g is continuous and hence g attains its
infimum and supremum on M . Theorem 6.10 implies that there exist λ1, λ2 ∈ R such that in an
extremal point (x, y, z) we have ∇g(x, y, z) = λ1∇f1(x, y, z) + λ2∇f2(x, y, z). Thus, we find for an
extremal point (x, y, z) that





5
1
−3



 = λ1





1
1
1



+ λ2





2x
2y
2z
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and f(x, y, z) = 0. This implies that

λ1 = 5− 2λ2x = 1− 2λ2y = −3− 2λ2z (8)

and thus (since λ2 = 0 is excluded)

x = y + 2/λ2 and z = y − 2/λ2 .

Next we conclude from f1(x, y, z) = 0 that y = 0 and hence x = 2/λ2 and z = −2/λ2. Then
it follows from f2(x, y, z) = 0 that λ2 = ±2

√
2. Thus g attains its maximum, which is 4

√
2, at

(2−1/2, 0,−2−1/2) and its minimum, which is −4
√
2, at (−2−1/2, 0, 2−1/2).

b) (Inequality between geometric and arithmetic mean)

Let g : Rn → R be given by g(x) = Πn
i=1xi. Consider the set

M =

{

x ∈ R
n | f(x) =

(

n
∑

i=1

xi

)

− 1 = 0, xi > 0

}

,

which obviously defines an (n − 1)-dimensional submanifold of Rn. Since M is compact and g is
continuous, g attains its supremum at a point z ∈ M . Since g = 0 on ∂M and positive in the
interior we conclude that indeed z ∈ M .

Now we may use Lagrange multipliers to find z and hence the maximum value of g on M . We can
then deduce the arithmetic mean/geometric mean inequality

(

n
∏

i=1

ai

)
1

n

≤ 1

n

n
∑

i=1

ai

The details of the proof are an exercise on the second problem sheet.

c) (Eigenvalues of symmetric real matrices)

Let A ∈ Mn×n(R) be symmetric and let g : Rn → R be given by

g(x) = 〈x,Ax〉 und M = {x ∈ R
n | f(x) = |x|2 − 1 = 0}.

M is an (n− 1)-dimensional submanifold of Rn since for all x ∈ M we have

∇f(x) = 2x 6= 0.

M is compact, so that g attains its supremum on M in a point x0. By Theorem 6.10 there exists
λ ∈ R, such that ∇g(x0) = λ∇f(x0) that is Ax0 = λx0. This implies that x0 is an eigenvector
of A with eigenvalue λ. Thus, we have shown that every real symmetric n × n matrix has a real
eigenvalue. We also find that

λ 〈x0, x0〉 = 〈x0, Ax0〉 = g(x0) and thus λ = g(x0) .

Since g(x0) is the maximal value of g on M this also implies that λ is the largest eigenvalue of A.
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