Introduction to Manifolds

Trinity Term 2019
szendroi@maths.ox.ac.uk

Example sheet 2

1. (a) Show that there exists a real-valued C^{1} function g defined on a neighbourhood of the origin in \mathbb{R} such that

$$
g(x)=(g(x))^{3}+2 e^{g(x)} \sin x .
$$

(b) Show that the equations

$$
\begin{aligned}
e^{x}+e^{2 y}+e^{3 u}+e^{4 v} & =4 \\
e^{x}+e^{y}+e^{u}+e^{v} & =4
\end{aligned}
$$

can be solved for u, v in terms of x, y near the origin.
2. By considering the function defined by

$$
f(x)=\frac{x}{2}+x^{2} \sin \left(\frac{1}{x}\right) \text { for } x \neq 0 \text { and } f(0)=0
$$

show that the C^{1} hypothesis cannot be removed from the statement of the Inverse Function Theorem.
3. Deduce the Inverse Function Theorem from the Implicit Function Theorem.
(Hint: consider functions like $(x, y) \mapsto f(x)-y)$.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1} function.
(a) Show that the graph of f

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: z=f(x, y)\right\}
$$

is a 2 -dimensional submanifold of \mathbb{R}^{3}.
(b) Identify the normal space to M at a point $(x, y, f(x, y))$ and give a basis for the tangent space at that point.
5. For which values of c does the equation

$$
x^{2}+y^{2}-z^{2}=c
$$

define a 2 -dimensional submanifold of \mathbb{R}^{3} ?
Describe the loci defined by the above equation, paying particular attention to any values for which the locus is not a manifold.
6. Find the maximum value of

$$
g\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} x_{i}
$$

subject to the constraint $\sum_{i=1}^{n} x_{i}=1$ and the condition that the x_{i} are nonnegative.
Deduce the arithmetic mean/geometric mean inequality

$$
\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

for nonnegative reals a_{1}, \ldots, a_{n}.

