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1. Introduction

Let us consider finite-dimensional vector spaces over a field F, such as the
vector space of column vectors F

n. We are now familiar with the machinery
of linear algebra as applied to such vector spaces, such as linear transform-
ations, duals and annihilators, bilinear forms etc. In linear algebra, every
vector space in particular comes with a distinguished element, the zero vec-
tor. Geometrically, we often want to de-emphasise the special role played
by the zero vector (or origin). We then refer to n-dimensional space as af-
fine space (often the notation A

n is used in this situation). We have met
geometric notions such as lines, planes and hyperplanes in affine geometry,
and we know how to compute intersections.

However, doing geometry in vector or affine spaces poses some problems.
If, as we usually have done up to now, we work over R or C, the space
has a topology, the Euclidean topology; but this is noncompact. Related to
this, intersection theory in affine spaces is complicated due to the presence
of special cases. For example, in the plane we have the statement that two
distinct lines meet in a unique point as long as the lines are not parallel.

Projective geometry is designed to rectify these problems. Roughly speak-
ing, it completes affine space by adding in some points “at infinity”. This
results in a much nicer intersection theory; for example, we shall see that
any two distinct projective lines meet in a unique point in the projective
plane. Moreover, if we work over R or C, there is a natural topology on
projective space which makes it compact, so we can view it as a compac-
tification of affine space. For these reasons, projective space becomes the
natural ambient space in which to consider algebraic varieties, sets defined
by systems of polynomial equations. The study of such varieties is the focus
of the vast subject of algebraic geometry, which underpins much of modern
number theory as well as geometry. This course is thus an introduction to
some of the basic concepts in algebraic geometry, which are taken much fur-
ther in the Part B course Algebraic Curves and the Part C course Algebraic
Geometry.

In the current course, we shall focus on the more linear aspects of project-
ive geometry, and we shall see that the concepts of linear transformations,
duals and bilinear forms you have seen in linear algebra will all find geomet-
ric applications here. We refer to [1] as well as [3, Chapter 5] for treatments
that go considerably beyond what we have space for in this course. For
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further work in algebraic geometry, other topics from algebra, notably com-
mutative algebra (including the study of polynomial rings) are fundamental.
The book [4] is a good introduction to this subject.

2. Projective space and its linear subspaces

In this section we define the basic objects of study in this course: project-
ive spaces. Let V be a finite-dimensional1 vector space over a field F. We
denote by F

∗ the multiplicative group of nonzero elements of F.

Definition 2.1. The projective space P(V ) associated to V is the set of
1-dimensional subspaces of V .

We can rephrase this, using the fact that each 1-dimensional subspace L
is just the set of multiples of a nonzero vector v, that is2 L = 〈v〉. Moreover
〈v〉 = 〈w〉 if and only if v is a nonzero scalar multiple of w. This gives us
the following equivalent definition.

Definition 2.2. Projective space P(V ) is the quotient of V \ {0} by the
equivalence relation

v ∼ w iff v = λw for some λ ∈ F
∗.

Equivalently, in the language of group actions,

P(V ) = (V \ {0})/F∗

is the space of orbits of the F
∗-action by scalar multiplication on V \ {0}.

Points of the projective space P(V ) will often denoted [v], for any (nonzero)
representing vector v ∈ V \ {0}, meaning the orbit of v under the F

∗-action.
If dim V = 2, then P(V ) is called the projective line; if dim V = 3, then

P(V ) is called the projective plane. This reflects our intuition that factoring
out the F

∗-action has lowered the dimension by one. We define the dimen-
sion3 of P(V ) as a projective space to be dim V − 1. Note that this can take
the value −1 if dim V = 0 and therefore P(V ) is empty; this convention will
be useful below.

If U is a linear subspace of V , then P(U) is a subset of P(V ) called
a (projective) linear subspace, of dimension dim U − 1. In particular, if
dim U = 2, we obtain the notion of a projective line (usually just referred to
as a line) in P(V ). If dim U = dim V − 1, then we call P(U) a hyperplane.

The following statement would also be true in ordinary (affine) geometry.

Lemma 2.3. Through any two distinct points P , Q in P(V ), there is a
unique projective line L.

Proof. Let P = [p] 6= Q = [q] in P(V ), so the vectors p, q ∈ V are linearly
independent. The unique line containing P, Q is now L = P〈p, q〉. �

1The initial definitions also make sense for an infinite-dimensional vector space. How-
ever, many of our later results rely on the space being finite-dimensional, so we make this
assumption once and for all.

2We will denote by 〈v1, . . . , vn〉 the linear span of the vectors v1, . . . , vn of V , the vector
subspace of V of all linear combinations of the vi.

3If F = R or C, then this is equal to the dimension of projective space as a manifold.
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We can also see immediately that intersection properties are nicer in pro-
jective space than in a vector space; the following statement is of course
false in affine geometry.

Proposition 2.4. In the projective plane, any two distinct projective lines
meet in a unique point.

Proof. We can write the projective plane as P(V ) for a 3-dimensional vector
space V . The projective lines are P(U1),P(U2) for two distinct 2-dimensional
subspaces U1 and U2 of V . Now recall the formula

dim(U1 + U2) + dim(U1 ∩ U2) = dim(U1) + dim(U2).

As U1, U2 are distinct 2-dimensional subspaces, the sum U1 +U2 strictly con-
tains U1 and hence is of dimension greater than 2, so is the full 3-dimensional
space V . Hence the formula shows U1 ∩ U2 is 1-dimensional, and this rep-
resents the unique point in projective space where P(U1) meets P(U2). �

The statements of Lemma 2.3 and Proposition 2.4 can be generalized
substantially as follows. First, we define the (projective) span 〈L1, L2〉 of
two projective linear subspaces of a projective space P(V ). This is given
by the following construction: let Li = P(Ui) for linear subspaces Ui ⊂ V .
Then

〈L1, L2〉 = P(U1 + U2).

See Problem Sheet 1 for a geometric interpretation of the span.

Theorem 2.5. (Projective Dimension of Intersection Formula) Let L1, L2

be two projective linear subspaces of a projective space P(V ). Then we have

dim(L1 ∩ L2) = dim(L1) + dim(L2)− dim〈L1, L2〉.

Here the convention dim ∅ = −1 is in force.

Note what the last pronouncement of the Theorem says: the intersection
of two projective linear subspaces is empty if and only if there is a numerical
reason for this to be so.

3. Coordinates on projective space

Vector spaces and linear transformations between them may be viewed
either abstractly, or else more concretely by choosing a basis and studying
the matrix representation of the linear transformation. More concretely, we
can think of this process as ‘choosing coordinates’.

What is an appropriate coordinate system for projective spaces? Given an
ordered basis {e0, . . . , en} for an (n+1)-dimensional vector space V , a vector
v =

∑n
i=0 xiei is thought of as represented by coordinates (x0, x1, . . . , xn).

The choice of basis has set up an identification of V with the vector space
F

n+1.
The projective space P(V ) = P(Fn+1) is often denoted by FP

n. In this
space FP

n, each point is represented by an equivalence class of (n+1)-tuples,
where (x0, . . . , xn) ∼ (y0, . . . , yn) iff there exists λ ∈ F

∗ such that yi = λxi

for i = 0, 1, . . . , n. Recall also that the xi are not allowed to be all zero.
We use the notation

[x0 : . . . : xn]
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to represent a point in projective space, so that not all the xi are zero, and

[x0 : . . . : xn] = [λx0 : . . . : λxn]

for any λ ∈ F
∗. This construction is referred to as a system of homogeneous

coordinates on P(V ) = P(Fn+1).

Let us consider the simplest case, ie. the projective line FP
1, where points

are represented by homogeneous coordinates [x0 : x1]. If x0 = 0, then we
just get one point [0 : x1] = [0 : 1], since x1 is a nonzero scalar. If on the
other hand, x0 6= 0, then we may write [x0 : x1] = [1 : t] where t = x1/x0

is an arbitrary element of the field F. So, we have written the projective
line as the disjoint union of two sets, one of which is a point [0 : 1] and one
of which is a copy of the affine line F. Moreover, as [1 : t] = [t−1 : 1] for
t nonzero, we can think of the point [0 : 1] as corresponding to letting the
coordinate t on the affine line tend to infinity.

Examples 3.1. (i) If we take F = R, then we can think of the project-
ive line RP

1 as the circle S1.
(ii) If F = C, then the above argument shows that projective line CP

1

is the same as the extended complex plane C∪{∞} which you have
studied in Part A Complex Analysis. As you saw in that course,
the extended plane may also be viewed as a 2-dimensional sphere,
the Riemann sphere.

More generally, we may decompose n-dimensional projective space FP
n

as the union of 2 sets

S∞ = {[x0 : . . . : xn] | x0 = 0}

and

Saff = {[x0 : . . . : xn] | x0 6= 0}.

Clearly, S∞ may be identified with projective space FP
n−1 of dimension one

lower. In Saff , every point may be written as [1, t1, . . . , tn] where ti = xi/x0,
and this sets up an identification of Saff with F

n. So we have a decomposition

(3.2) FP
n = F

n
⊔

FP
n−1.

Intuitively, we are adding some points at infinity to affine space to obtain
projective space. As we mentioned in the Introduction, this ensures that
projective space has nicer properties than affine space, especially as regards
intersection theory, as in Theorem 2.5 above, or its special case Proposi-
tion 2.4. Indeed, we can see that parallel lines in affine space F

2 generate
projective lines in FP

2 that meet in the line S∞ = FP
1 at infinity.

It is important to realise that the decomposition (3.2) is not canonical. We
could, for example, choose any other coordinate xi and decompose projective
space according to whether xi is zero or nonzero.

In fact, it is often useful to consider the subsets Ui of FP
n called affine

patches, given by

Ui = {[x0, . . . , xn] : xi 6= 0}.
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The sets Ui cover FPn, as every point in FP
n has some coordinate xi nonzero.

As above, each Ui may be identified with F
n. So we have covered4 projective

space by open sets each with an identification with affine space.
Let us return now to linear subspaces P(U) where U is a subspace of a

vector space V of dimension n+1. The subspace U may be viewed as defined
by the vanishing of a system of some m linear equations

n
∑

j=0

aijxj = 0 for i = 1, . . . , m.

These equations are homogeneous in the xi variables of degree 1: denoting

fi(x0, . . . , xn) =
∑

aijxj ,

we have

fi(λx0, . . . , λxn) = λfi(x0, . . . , xn).

This means that the equations fi(x0, . . . , xn) = 0 are well defined on pro-
jective space. The locus defined by the equations

fi(x) = 0

in projective space FP
n is of course just the linear subspace P(U).

Example 3.3. Consider the line in affine space R
2 with equation y = 2x.

We can complete this to a projective line in RP
2 by embedding R

2 in RP
2 via

(x, y) 7→ [1 : x : y]. Now the projective line is given by the projectivisation
of the 2-dimensional subspace of R3 spanned by (1, 1, 2) and (0, 1, 2). The
latter represents the ‘point at infinity’ [0 : 1 : 2] that we add to the affine line
to get the projective line. In terms of homogeneous coordinates [x0 : x1 : x2],
the projective line has equation x2− 2x1 = 0, so is defined by the vanishing
of a single homogeneous degree 1 polynomial. ♦

In general projective lines in FP
2 will be given by equations

a0x1 + a1x1 + a2x2 = 0,

where (a0, a1, a2) are not all zero. Scaling (a0, a1, a2) by a nonzero λ leaves
the line unchanged. In this way, lines in FP

2 correspond to points [a0 : a1 :
a2] in a different projective plane! We shall return to this idea in §5 when
we discuss duality.

Remark 3.4. The idea of defining subsets of projective space by homogen-
eous polynomials can also be applied to higher degree polynomials. We say
that a polynomial P (x0, . . . , xn) is homogeneous of degree d, if there exists
a positive integer d such that

P (λx0, . . . , λxn) = λdP (x0, . . . , xn)

for all (x0, . . . , xn); equivalently, all the terms in P (xi) are of total degree d.
Homogeneity is the condition that ensures that the equation

P (x0, . . . , xn) = 0

4If F = R or C, then this endows RP
n and CP

n with the structure of an n-dimensional
manifold and n-dimensional complex manifold respectively. More on this in the Part C
course Differentiable Manifolds.
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is well-defined on projective space. A projective algebraic variety is a subset
of projective space defined by a system of homogeneous polynomial equa-
tions. If the equations are all of degree 1, then we recover linear subspaces.
We shall later investigate the case of quadrics, which are defined by a single
homogeneous quadratic polynomial.

Remark 3.5. (Non-examinable) If we take the field F to be R or C then
in fact we can put a topology on projective space, related to the Euclidean
topology5 on R

n or C
n.

For RP
n, this proceeds by observing that Definition 2.2 is equivalent to

RP
n = {v ∈ Sn ⊂ R

n+1}/(v ∼ −v),

where Sn is the unit sphere in R
n+1. This is because every nonzero vector

v = (x1, . . . , xn) ∈ R
n+1 may be scaled by R

∗ to an element of length
one, which is unique up to replacing v by −v. So we have exhibited real
projective space as the quotient of the sphere by an action of the finite group
C2. We can thus endow real projective space with the quotient topology,
which is compact (as the sphere is a compact subset of Euclidean space) and
Hausdorff (as it is the quotient of a Hausdorff space by the action of a finite
group). Similar ideas may be used to topologise complex projective space.

Real and complex projective spaces may thus be viewed as compactifica-
tions of the corresponding affine spaces. In particular, the projective lines
over these fields are the one-point compactifications of R and C respectively.
In the complex case, as we alluded to above, we may view the projective
line as the Riemann sphere.

4. Projective transformations

Whenever we introduce a class of mathematical objects, we are also in-
terested in the transformations between them. We have defined projective
spaces in terms of quotients of vector spaces. It is therefore natural to con-
sider maps of projective spaces induced by linear maps of vector spaces. The
obvious definition is

τ : [v] 7→ [Tv]

where [v] is the point of projective space represented by v ∈ V − {0}, and
T : V →W is a linear map.

There are two potential problems we must consider first, however. One,
as always with defining maps on quotient spaces, is to check that the map
is welldefined. That is, we must check that if [v] = [w] then [Tv] = [Tw]. In
our situation this is clear from the linearity of T , and the fact that [v] = [w]
if and only if v is a nonzero scalar multiple of w. The second problem is
that only nonzero vectors represent points of projective space, so we need
Tv to be nonzero whenever v is, that is, we need T to be injective.

5For general fields F, we do not have an analogue of the Euclidean topology on F
n,

so these ideas are not applicable. In algebraic geometry there is a standard topology
for projective spaces over general fields, the Zariski topology, but it has very different
properties; in particular it has fewer open sets and is not Hausdorff.
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Definition 4.1. If T : V → W is an injective linear transformation, we
define the associated projective linear transformation

τ : P(V )→ P(W )

by

[v] 7→ [Tv].

We are generally interested in the case when V = W and thus T is
invertible.

Note that any nonzero scalar multiple of T represents the same projective
transformation as does T . In fact the assignment T 7→ τ defines a homo-
morphism from GL(V ), the group of invertible linear transformations of V ,
onto the group of projective linear transformations of P(V ). The kernel of
this map is the (normal) subgroup of scalar invertible linear transformations,
that is, nonzero scalar multiples of the identity. Therefore, using the first
isomorphism theorem for groups, we can make the definition:

Definition 4.2. The group of projective linear transformations of P(V ) is

PGL(V ) = GL(V )/{λI : λ ∈ F
∗}.

More concretely, if we identify V with F
n+1, then we write the group

PGL(V ) as PGL(n + 1,F), the quotient of the group of size n + 1 invertible
matrices over F by the subgroup of nonzero scalar matrices.

Of course we can write projective transformations in terms of homogen-
eous coordinates. We illustrate this in the case of the projective line.

Example 4.3. Consider an invertible linear map T : F2 → F
2 given by

T : (x, y) 7→ (ax + by, cx + dy)

with ad − bc 6= 0. Then in projective coordinates, the effect of the corres-
ponding projective transformation τ is

τ : [x : y] 7→ [ax + by : cx + dy].

Working on an affine patch y 6= 0, we can rewrite the associated projective
linear transformation of FP1 as:

[

x

y
: 1

]

7→

[

ax + by

cx + dy
: 1

]

,

so in terms of the affine coordinate t = x
y

as

t 7→
at + b

ct + d
.

In the case F = C, we have encountered these transformations before: they
are the Möbius transformations of the Riemann sphere CP

1. The point at
infinity ∞ in the Riemann sphere is just identified with [1 : 0]. ♦

We may recall from complex analysis the result that given an ordered
triple of distinct points in the Riemann sphere, there is a unique Möbius
transformation sending the triple to (0, 1,∞). Hence the group PGL(2,C)
of Möbius transformations acts transitively on the set of ordered triples of
distinct points in the projective line.
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What does the condition that the points are distinct mean in terms of
projective geometry? Well, two points in projective space are equal if and
only if their representative vectors are proportional, which for two vectors
is equivalent to saying they are dependent. This motivates the following
definition, which generalises the n = 1 case just discussed.

Definition 4.4. In the n-dimensional projective space P(V ) for an (n + 1)-
dimensional vector space V over F, we say that n + 2 points are in general
position, if each subset of n + 1 of these points is represented by linearly
independent representative vectors.

We have the following theorem, which generalises the above result about
Möbius transformations.

Theorem 4.5. (General Position Theorem) Let X0, . . . , Xn+1, respectively
Y0, . . . , Yn+1 be two (n+2)-tuples of points in n-dimensional projective space
P(V ), such that each (n + 2)-tuple is in general position. Then there exists
a unique projective linear transformation τ such that τ(Xi) = Yi for each i.

Proof. Let Xi = [vi] for i = 0, . . . , n + 1, that is, vi ∈ V are representative
vectors for Xi. The general position hypothesis implies that v0, . . . , vn form
a basis for the vector space V . Then for the last point Xn+1, we have

vn+1 =
n

∑

i=0

λivi

for some scalars λi.
Now, all λi are nonzero, again using the general position hypothesis: if

one were to be zero, then we would get a dependency relation between vn+1

and n of the other vi. So we may in fact replace vi by λivi and take

vn+1 =
n

∑

i=0

vi

as representative vector for our last point. Again using the general position
hypothesis, this representation of vn+1 is unique.

Similarly we can take Yi = [wi] for i = 0, . . . , n + 1, with wn+1 =
∑n

i=0 wi,
where w0, . . . , wn is another basis of V .

Now there exists an invertible linear transformation T of V with T (vi) =
wi for i = 0, . . . , n. Linearity and the formulae for vn+1, wn+1 imply that
T (vn+1) = wn+1 also, as required.

If S is another linear transformation inducing a projective transformation
with the required property, then Svi = µiwi for i = 0, . . . , n + 1, where µi

are nonzero scalars. Now

µn+1wn+1 = Svn+1 =
n

∑

i=0

Svi =
n

∑

i=0

µiwi,

so wn+1 =
∑n

i=0(µi/µn+1)wi and by uniqueness of this representation we
see all the µi are equal. Hence S = µT and they induce the same projective
map. �

Remark 4.6. A coordinate-based rephasing of the result of the first part of
the argument above is that if P0, . . . , Pn+1 are points in the n-dimensional
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projective space P(V ) in general position, then there is a unique coordinate
system in which the points are represented by the projective coordinates

P0 = [1 : 0 : . . . : 0], P1 = [0 : 1 : 0 : . . . : 0], . . . , Pn = [0 : 0 : . . . : 0 : 1]

and
Pn+1 = [1 : 1 : . . . : 1].

Example 4.7. In the projective plane, 4 points are in general position if
and only if no 3 are collinear. We see that any two such quadruples in the
plane are projectively equivalent: any two quadrilaterals in the projective
plane are projectively equivalent. ♦

5. Some classical theorems of projective geometry

We are now in a position to prove a celebrated classical result of projective
geometry, Desargues’s Theorem. We are going to give a slick argument which
is an application of the General Position Theorem. Other proofs are possible,
some more geometric than the one given here.

Theorem 5.1. (Desargues) Let P, A, A′, B, B′, C, C ′ be seven distinct points
in a projective space such that the lines AA′, BB′ and CC ′ are distinct and
concurrent at P . Then the points of intersection AB ∩A′B′, BC ∩B′C ′,
CA ∩ C ′A′ are collinear.

Proof. As in the proof of the General Position Theorem, above we can choose
representative vectors p, a, a′, b, b′, c, c′ for our points such that

p = a + a′,

p = b + b′,

p = c + c′.

Now these equations imply a − b = b′ − a′, so a − b is a representative
vector for AB ∩ A′B′. Similarly b − c and c − a are representative vectors
for BC ∩B′C ′ and CA ∩ C ′A′ respectively.

But (a− b) + (b − c) + (c − a) = 0, so these three representative vectors
are linearly dependent, hence the points they represent are collinear. �

The Theorem of Pappus is another classical result that may be proved
using general position arguments, in this case by standardising the points
A, B, C ′, B′ (say) into a simple form, and then explicitly calculating inter-
sections.

Theorem 5.2. (Pappus) Let A, B, C and A′, B′, C ′ be two collinear triples
of distinct points in the projective plane. Then the three points AB′ ∩A′B,
BC ′ ∩B′C and CA′ ∩ C ′A are collinear.

Proof. Exercise on Problem Sheet. �

6. The axiomatics of projective planes

This section is off-syllabus.

As an alternative to our construction through linear algebra, projective
planes can also be introduced using an axiomatic approach. In this approach,
an abstract projective plane consists of collections P of points and L of lines,
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as well as an incidence relation I ⊂ P × L, describing which point lies on
which line. These sets should satisfying the following:

• given two distinct points P, Q ∈ P , there is a unique line L ∈ L
containing them;
• any two lines L1, L2 ∈ L have at least one point P ∈ P in common;
• any line L ∈ L contains at least three points;
• there are at least two distinct lines L1, L2 ∈ L.

Then it is clear from our discussions that for F a field and V a three-
dimensional vector space over F, the projective plane FP

2 = P(V ), with
its standard points, lines and their incidence relation, gives an abstract
projective plane. The smallest abbstract projective plane is the order 2 Fano
plane, which is the same as F2P

2. (The order of abstract projective plane
is one less than the number of points in any projective line.) Conversely, it
can be proved that any order 2 abstract projective plane is (isomorphic to)
the Fano plane.

However, it turns out that in general, projective planes over fields do
not exhaust the set of all abstract projective planes. Indeed, there are four
non-isomorphic abstract projective planes of order 9, the usual F9P

2 and
three further planes in which Desargues’ Theorem does not hold. Moreover,
the only known finite abstract projective planes have an order which is the
power of a prime. There is no abstract projective plane of order 10, but this
is only known to be true using lengthy computer elimination. It is still an
open problem as to whether there is a abstract projective plane of order 12.

Hilbert was the first to appreciate that abstract projective planes need not
be Desarguesian. It turns out that Desargues theorem holds in an abstract
projective plane if and only if it is (isomorphic to) P(V ), where V is a "vector
space" over a division ring R. A division ring satisfies all the axioms of a field,
other than the commutativity of multiplication. In turn, a Desarguesian
projective plane can be expressed as a projective space of a vector space
over a field if and only if Pappus’ Theorem holds.

7. Cross-ratio

Let us return to the case of the projective line. We know that any two
triples of distinct points are equivalent under the action of the projective
linear group. What can we say about quadruples?

It turns out that there is a single numerical invariant which distinguishes
orbits of quadruples of distinct points in the projective line under the pro-
jective group.

Definition 7.1. Let Pi = [ξi : ηi] for i = 0, . . . , 3 be four distinct points in
the projective line FP

1. The cross-ratio of the ordered quadruple is

(P0P1 : P2P3) =
(ξ0η2 − ξ2η0)(ξ1η3 − ξ3η1)

(ξ0η3 − ξ3η0)(ξ1η2 − ξ2η1)

We can observe that if we scale any pair (ξi, ηi) then the numerator and
denominator both scale by the same factor, so the quotient on the right
hand side is unchanged. The cross-ratio is therefore well-defined.
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Moreover, under projective transformations
(

ξi ξj

ηi ηj

)

7→

(

a b
c d

) (

ξi ξj

ηi ηj

)

so the cross terms ξiηj − ξjηi scale by the (nonzero!) determinant ad − bc,
and hence the cross-ratio is invariant. We have shown

Proposition 7.2. Cross-ratio is a projective invariant.

So any two quadruples that are projectively equivalent must have the
same cross-ratio. What about the converse? We would like to show that
any two quadruples with the same cross-ratio are projectively equivalent.
Stated like that, it seems like an involved calculation, but we can greatly
simplify it by using the action of the projective group (which leaves the
cross-ratio unchanged!) to standardise three of the points. Explicitly, we
can move P0, P1, P2 to [1 : 0], [0 : 1], [1 : 1] by a projective transformation by
Remark 4.6. Now

(P0P1 : P2P3) =
(1.1− 0.1)(0.η3 − ξ3.1)

(1.η3 − 0.ξ3)(0.1− 1.1)
=

ξ3

η3

As the points are distinct, we may write P3 = [λ : 1] for a unique λ 6= 0, 1,
and now the cross-ratio (P0P1 : P2P3) is simply equal to λ. So any quadruple
{P0, P1, P2, P3} of distinct points of the projective line FP

1 is projectively
equivalent to the quadruple

{[1 : 0], [0 : 1], [1 : 1], [λ : 1]},

where λ is the value of the cross-ratio. We have proved the following result.

Theorem 7.3. Two quadruples of distinct points in the projective line FP
1

are projectively equivalent if and only if their cross-ratios are equal.

Notice that the cross-ratio does not take the values 0 or 1. The cross-ratio
thus sets up a bijection between

(i) quadruples of distinct points in FP
1 modulo the action of the pro-

jective linear group PGL(2,F), and
(ii) the affine line F with points 0, 1 removed (or equivalently, the pro-

jective line FP
1 with points 0, 1,∞ removed6).

We conclude by remarking that the cross-ratio has some interesting sym-
metries.

Theorem 7.4. The cross-ratio obeys the following equations:

(P0P1 : P2P3) = (P1P0 : P3P2) = (P2P3 : P0P1),

(P0P1 : P2P3) = (P1P0 : P2P3)−1,

(P0P2 : P1P3) = 1− (P0P1 : P2P3).

Proof. See the Problem Sheet. �

6The question of whether this bijection can be completed to include the points 0, 1, ∞
by allowing members of the quadruple to coincide suitably is a subtle one that leads into
the branch of algebraic geometry known as Geometric Invariant Theory.
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8. Duality

We shall now apply some more linear algebra technology to projective
geometry. We recall that to any vector space V over F we can associate
the dual space V ∗ of linear maps f : V → F. In the finite dimensional case,
V and V ∗ are isomorphic, since they are of equal dimension; however this
isomorphism depends on a choice of basis and so is not canonical. However
the double dual V ∗∗, that is, the dual of V ∗, is canonically isomorphic to V .
Explicitly, the map

φ : V → V ∗∗

defined by

φ(v) : f 7→ f(v) (f ∈ V ∗)

defines an isomorphism between V and V ∗∗.
We have an inclusion-reversing correspondence between subspaces of V

and subspaces of V ∗, given by associating to U ≤ V its annihilator

U◦ = {f ∈ V ∗ : f(u) = 0 for all u ∈ U}.

We recall the following results from part A linear algebra

Proposition 8.1. For subspaces U, U1, U2 of a finite-dimensional vector
space V , we have

(i) if U1 ≤ U2, then U◦
2 ≤ U◦

1 ; that is, taking the annihilator reverses
inclusion;

(ii) (U1 + U2)◦ = U◦
1 ∩ U◦

2 ;
(iii) (U1 ∩ U2)◦ = U◦

1 + U◦
2 ;

(iv) dim U + dim U◦ = dim V ;
(v) (U◦)◦ = φ(U).

The last statement follows from the obvious fact that φ(U) ≤ (U◦)◦, and
the dimension formula (iv).

We shall usually use the canonical isomorphism φ to identify spaces with
their double duals, and subspaces with their double annihilators, without
further comment.

Turning to projective spaces, we obtain an inclusion-reversing duality cor-
respondence

{linear subspaces P(U) ⊂ P(V )} ←→ {linear subspaces P(U◦) ⊂ P(V ∗)}.

By the dimension formula, if P(U) is an m-dimensional linear subspace
of Pn = P(V ), then U has dimension m + 1, so U◦ has dimension (n + 1)−
(m+1) = n−m, and hence P(U◦) is a linear subspace of P(V ∗) of dimension
n−m− 1.

In particular, with dim V = n + 1, points of P(V ∗), which represent 1-
dimensional subspaces of V ∗, correspond to hyperplanes in P(V ), which
represent n-dimensional subspaces of V . This is just the assigment to 〈f〉,
where f ∈ V ∗ − {0}, of the hyperplane P(ker(f)) in P(V ). In terms of
homogeneous coordinates, the point [a0 : . . . : an] in the dual projective
space P(V ∗) corresponds to the hyperplane a0x0+. . . anxn = 0 in P(V ); note
that scaling all the ai does not alter the hyperplane. Conversely, hyperplanes
in P(V ∗) correspond to points in P(V ∗∗) and thus to points in P(V ).
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For the projective plane, the duality interchanges points and lines. If
P = [p], Q = [q] are two distinct points on the line L = PU with U = 〈p, q〉,
then the lines P〈p〉◦,P〈q〉◦ meet at the point PU◦. More generally, a set
of collinear points corresponds under duality to a set of concurrent lines.
We can interpret P〈x〉◦ as the locus in the dual plane parametrising lines
through [x] in the original plane.

Notice that for the projective plane, Lemma 2.3 and Proposition 2.4 are
dual to each other, in the sense that we get one from the other via duality.
In general, each theorem in projective geometry will have a dual version.
Moreover, having proved the theorem in all projective spaces P(V ), the
result applies equally well to the dual projective space P(V ∗) and so the
dual theorem is a free biproduct of the original theorem.

Example 8.2. The dual of Desargues’s Theorem in the plane is as follows.
Let π, α, α′, β, β′, γ, γ′ be seven distinct lines in a projective plane such that
the points α ∩ α′, β ∩ β′ and γ ∩ γ′ are distinct and all lie on π. Then the
lines joining α∩β, α′ ∩β′ and β ∩ γ, β′ ∩ γ′ and γ ∩α, γ′ ∩α′ are concurrent.

The principle of duality says that we do not need to prove this result
separately; it simply follows from the original result!

♦

9. Bilinear forms and quadrics

The next piece of algebra we consider in the context of projective geometry
is the theory of bilinear forms.

Definition 9.1. A symmetric bilinear form on a vector space V over F is a
map B : V × V → F such that

(i) B(v, w) = B(w, v); (ii) B is linear in v (and hence, by (i), in w).

If an addition we have the property

(iii) if B(v, w) = 0 for all w, then v = 0,

then we say the form is nondegenerate or nonsingular.

More concretely, if we choose a basis {e0, . . . , en} of V , then a bilinear
form is given by B(v, w) = vtXw for a symmetric matrix X given by
Xij = B(ei, ej). Nondegeneracy of the form is equivalent to nonsingular-
ity (invertibility) of the matrix X. Symmetric matrices form a vector space
of dimension 1

2 dim V (dim V + 1), so we can form linear combinations of
bilinear forms.

Remark 9.2. In part A linear algebra we focused particularly on inner
products. Over R, these are symmetric bilinear forms which satisfy the
extra condition of positive definiteness (that is B(v, v) > 0 for v 6= 0). Over
C, positive definiteness requires the form to be conjugate symmetric rather
than symmetric and sesquilinear rather than bilinear: the form is linear in
one variable and conjugate linear in the other. Here we shall focus instead
on bilinear forms and drop the positive definiteness property. In fact, for
most purposes nondegeneracy is a good replacement for positive definiteness.
In particular, nondegeneracy is actually equivalent to the statement that the
map from V to V ∗ defined by v 7→ B(v, .) is an isomorphism.
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A bilinear form is determined (if the characteristic of F is 6= 2), by the
associated quadratic form

Q(v) = B(v, v),

for we can recover B via the polarisation identity

B(v, w) =
1

4
(B(v + w, v + w)−B(v−w, v−w)) =

1

4
(Q(v + w)−Q(v−w))

Over R or C we can diagonalise quadratic forms.

Theorem 9.3. If v 7→ Q(v) = B(v, v) is a quadratic form defined on a
vector space V , then

(i) if the field F = C, there is a basis {e0, . . . , en} of V , with respect to
which

Q(v) = λ2
0 + . . . λ2

r

where v =
∑n

i=0 λiei;
(ii) if F = R, there is a basis {e0, . . . , en} of V , with respect to which

Q(v) = λ2
0 + . . . λ2

r − λ2
r+1 − . . .− λ2

r+s

where v =
∑n

i=0 λiei.

Proof. Write B(v, v) = vtXv =
∑

i,j Xijvivj in some basis, where X is a
symmetric matrix. We can assume that some Xii is nonzero, because if Xij

is nonzero we can introduce new variables yi = 1
2(vi + vj), yj = 1

2(vi − vj)

and now vivj = y2
i − y2

j .
Now we complete the square.

1

Xii





∑

j

Xijvj





2

= Xiiv
2
i + 2

∑

j 6=i

Xijvjvi + terms in vj(j 6= i)

so by introducing the new variable ỹi =
∑

Xijvj we can put B into the form

B(v, v) =
1

Xii

y2
i + terms in vj(j 6= i)

Now we repeat the process until we have diagonalised B: rescaling the
variables appropriately now brings it into the desired form. (Note that over
R we cannot change the sign of y2

i by rescaling). �

Notice that the form is nondegenerate exactly when r = n (in the complex
case) and r + s = n (in the real case).

Example 9.4. Consider the form on R
3 given by

(x1, x2, x3) 7→ x1x2 + x2x3 + x3x1.

We change variables to

y1 =
1

2
(x1 + x2), y2 =

1

2
(x1 − x2), y3 = x3

to generate some nonzero diagonal terms. The form is now

y2
1 − y2

2 + 2y3y1.

We complete the square, writing this as

(y1 + y3)2 − y2
3 − y2

2
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so on putting z1 = y1 + y3 and z2 = y2, z3 = y3 we get the required form

(z1, z2, z3) 7→ z2
1 − z2

2 − z2
3

over the reals. If we work over C then scaling z2, z3 by i brings us into the
standard form

(z1, z2, z3) 7→ z2
1 + z2

2 + z2
3

of a nondegenerate quadratic form over C. ♦

Remark 9.5. In the real case, we can also prove our result using the the-
orem from linear algebra that given a real symmetric matrix B, there exists
an orthogonal P such that

PBP t = diag(λ1, . . . , λn).

Now letting Q be the diagonal matrix with entries (
√

|λi|)
−1 if λi 6= 0 and 1

if λi = 0, we see that (QP )B(QP )t has the desired form (see the comment
below about how quadratic forms transform under projective transforma-
tions).

We have seen that linear subspaces of projective space P(V ) are project-
ivisations of subspaces of V , and hence are determined by systems of ho-
mogeneous linear equations. The next simplest subsets of projective space
defined by polynomial equations are the quadrics, which are defined by the
vanishing of a quadratic form.

Definition 9.6. A quadric is the locus of points in a projective space P(V )
defined by an equation Q(v) = 0, where v 7→ Q(v) = B(v, v) is a (not
identically zero) quadratic form on V .

We remark that this does indeed define a subset of projective space, as
Q(v) is homogeneous of degree 2 in v (cf. the remarks at the end of §2).

It is easy to see that projective transformations send quadrics to quadrics.
If we write the quadratic form in terms of a symmetric matrix X, then its
image under a projective transformation is the form defined by the symmet-
ric matrix MXM t where M defines the projective transformation. Note
also that if Q and Q′ are proportional, that is Q′(v) = λQ(v) for all v, then
they define the same quadric.

Definition 9.7. We say a quadric is nonsingular if the associated symmetric
bilinear form is nondegenerate.

On choosing a basis, this is equivalent to the symmetric matrix defining
the form being invertible.

The lowest-dimensional nontrivial quadrics are the conics, that is, the
quadrics in the projective plane. Over C, our diagonalisation theorem tells
us that a conic can be put into one of the following three forms:

(i) z2
0 + z2

1 + z2
2 = 0;

(ii) z2
0 + z2

1 = 0;
(iii) z2

0 = 0.
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Case (i) is the general case, when the conic is nonsingular. The remaining
two cases are the two kinds of singular conics. Case (ii) is a pair of distinct
lines: on putting the conic in the above form z2

0 + z2
1 = 0, we see that the

lines are z0 − iz1 = 0 and z0 + iz1 = 0, which meet at the point [0, 0, 1] in
the plane. Case (iii) is the most degenerate: it is a double line, a line with
multiplicity two. We can think of Cases (ii) and (iii) as singular limits or
degenerations of the generic nonsingular conics7.

Definition 9.8. The singular points of the quadric are those points [v]
where Xv = 0.

So in case (ii), where X = diag(1, 1, 0), the unique singular point is
[0, 0, 1], the intersection point of the pair of lines. In case (iii) we have
X = diag(1, 0, 0), then the singular points are the points on the line z0 = 0;
in other words every point on the conic is singular.

Remark 9.9. The conic is nonsingular if and only if X is invertible, which
is equivalent to the only solution to Xv = 0 being v = 0. So the conic is
nonsingular if and only it has no singular points in projective space. This
justifies the terminology in the definition above.

If we work over C or R, then we may further understand the notion of
singular point using some ideas from the Part A course Introduction to
Manifolds. The conic is defined by the equation f = 0 where f : v 7→ vtXv.
Now, the derivative of f at v in the sense of multivariable calculus is dfX :
h 7→ 2htXv, which has maximal rank one unless Xv = 0. So the singular
points are the points where df has less than maximal rank, and hence where
the manifold structure on the conic breaks down. In the example above, this
happens in case (ii) exactly where the lines intersect.

Nonsingular conics actually have a very nice description. If we fix a point
x on the conic, and take a projective line not containing x, then projection
from x onto the line actually sets up a bijection between the conic and the
line. (If F = C, this in fact defines a homeomorphism between the conic and
the projective line, and hence the Riemann sphere, though of course this is
not a projective equivalence.)

Theorem 9.10. Let C be a nonsingular conic in the projective plane P(V ) =
FP

2, and let X be a point of C. Let L = P(U) be a projective line in the
plane not containing X. Then there is a bijection α : P(U) → C such that
X, Y, α(Y ) are collinear, for Y ∈ P(U).

Proof. Let B denote the nondegenerate bilinear form whose quadratic form
Q defines the conic C. Let X = [x] be a point on C, so that B(x, x) = 0.

For each Y ∈ P(U), we want to see where (other than at X) the projective
line XY meets the conic. We will find that there is a unique such point and
this will be α(Y ).

Let Y ∈ P(U) have representative vector y ∈ U , so that x, y are linearly
independent, as we are assuming X /∈ P(U). Consider the 2-dimensional

7In fact the Theorem of Pappus we saw in Chapter 3 concerning six points on a line-
pair generalises to the situation where the six points lie on a conic. This result is often
called called Pascal’s Mystic Hexagon; a proof may be found in [2].
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subspace Wy = 〈x, y〉 of V , so the projective line we are considering is
XY = P(Wy). Observe that the bilinear form B cannot be identically zero
on the space Wy . For we could extend to a basis {x, y, z} for V = F

3 and
the orthogonal complement of z would meet Wy in at least a 1-dimensional
subspace, elements of which would now be orthogonal to the whole of V ,
thus contradicting nondegeneracy.

With respect to the basis {x, y}, the form Q restricted to Wy is

Q(λ0x + λ1y) = 2λ0λ1B(x, y) + λ2
1B(y, y)

and B(x, y), B(y, y) are not both zero. So the projective line P(Wy) meets
the conic at two points. One is the basepoint X = [x], corresponding to
(λ0, λ1) = (1, 0). The other, corresponding to

(λ0, λ1) = (B(y, y),−2B(x, y)),

is defined to be α(Y ). Note that α is injective as given any point Z 6= Y
on the conic, the projective line Y Z meets the line P(U) in a unique point
Y . Moreover, α(Y ) = X exactly when B(x, y) = 0, which defines a unique
point in P(U). �

We have set up a bijection between a nonsingular conic and the projective
line. This kind of bijection is called a rational parametrisation.

The existence of a rational parametrisation for the conic has some nice
applications in the theory of Diophantine equations. These are polynomial
equations where we are primarily interested in rational or integral solutions.

Example 9.11. Consider the equation

x2
0 − x2

1 − x2
2 = 0

whose solutions are Pythagorean triples. As our basepoint on the conic
defined by the above equation we may take X = [1 : 1 : 0]. We can take
x0 = 0 as the projective line L, which does not contain the basepoint X. So
if Y is a point on the projective line with representative vector y = (0, λ1, λ2)
then

α(Y ) = B(y, y)x− 2B(x, y)y

= −(λ2
1 + λ2

2)(1, 1, 0) + 2λ1(0, λ1, λ2)

= (−(λ2
1 + λ2

2), λ2
1 − λ2

2, 2λ1λ2)

It is clear that this does indeed give solutions to the equations. Replacing
x2 by its negative, we obtain the familiar formula for Pythagorean triples

x0 = s2 + t2, x1 = s2 − t2, x2 = 2st.

By taking s, t to be rational (respectively, integral), we get the solution in
rational numbers (respectively, integers). For example, (s, t) = (2, 1) gives
(x0, x1, x2) = (5, 3, 4), while (s, t) = (3, 2) and (4, 3) give the triples (13, 5, 12)
and (25, 7, 24) respectively. ♦

In the Part B course Algebraic Curves you will see that nonsingular curves
of higher degree in the projective plane do not admit rational parametrisa-
tions. Indeed, over C such curves are not homeomorphic to the Riemann
sphere. The genus of a degree d nonsingular curve in the complex projective
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plane is 1
2(d − 1)(d − 2) which is only zero for d = 1, 2 ie the case of lines

and conics. We refer, for example, to [2] for more on this subject.

References

[1] N. J. Hitchin, Projective geometry, available under “Teaching” from
https://people.maths.ox.ac.uk/hitchin/ .

[2] F. Kirwan, Complex algebraic curves, LMS Student Texts, CUP, 1992.
[3] M. Reid and B. Szendroi, Geometry and topology, CUP, 2005.
[4] K. Smith, L. Kahanpää, P. Kekäläinen and W. Traves, An invitation to algebraic

geometry, Springer Universitext, 2000.


