
2021 Question 1

a) Modelling the Earth as a spherically symmetric and non-rotating
body in an otherwise empty spacetime, explain why the metric
outside of the Earth is given by the Schwarzschild metric.
Solution: Birkhoff’s theorem tells us that the metric outside of a
spherically symmetric body must be given by the Schwarzschild
metric.



b) A satellite orbits the Earth in a circular orbit at a radius rS (in
Schwarzschild coordinates), and Alice stands on the surface of the
Earth, which has radius rA. No external forces act on the satellite.
Each time the satellite passes directly above Alice, it emits a radial
light ray, which is then received by Alice.
Let the proper time along the worldline of the satellite be τS , and
let the proper time along Alice’s worldline be τA. At the moment
when the satellite first emits a light ray, its clock reads τS = 0, and
when Alice first receives the light ray, her clock reads τA = 0.
Subsequent signals are emitted by the satellite when its clock reads
τS = T(S ,n) (for n ∈ N), and received by Alice when her clock
reads τA = T(A,n).

(i) For fixed n ≥ 1, find T(A,n) as a function of T(S,n), rS and rA,
justifying all of your calculations.



Solution:
We will calculate τS and τA as functions of the Schwarzschild time
coordinate t. Then, let the Schwarzschild time for a radial light ray
to go from rS to rA be t0 (in the end we won’t have to calculate
this constant).
First we calculate τS(t). The worldline of the satellite, written in
Schwarzschild coordinates, is (t(τS), r(τS), θ(τS), φ(τS)). This
worldline extremises the Lagrangian

L = −
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2,

where ‘dots’ are derivatives with respect to τS .



First we note that, without loss of generality, we can take the
worldline of the satellite to lie in the equatorial plane θ = 0. This
is because the Euler-Lagrange equation for θ is

r2θ̈ + 2r ṙ θ̇ − r2 sin θ cos θφ̇ = 0,

and θ ≡ 0 is a solution to this ODE. Hence, if the initial conditions
are θ = π

2 , θ̇ = 0, then this is the (unique) solution, and these
initial conditions can be obtained by using the isometries
associated with spherical symmetry.



Next we note that, since the Lagrangian is independent of t, E is
constant, where

E = −1

2

∂L

∂ ṫ
=

(
1− 2M

r

)
ṫ.

Similarly, since the Lagrangian is independent of φ, Ω is constant,
where

Ω =
1

2

∂L

∂φ̇
= r2 sin2 θφ̇.

Finally, since τS is the proper time along the worldline of the
satellite, L = −1.



Putting this together, we find that

−1 = −
(

1− 2M

r

)−1

E 2 +

(
1− 2M

r

)−1

ṙ2 + r−2Ω2

⇒ 1

2
ṙ2 − M

r
+

Ω2

2r2
− MΩ2

r3
=

1

2
(E 2 − 1),

so the motion corresponds to the motion of a particle in one
dimension, with potential V (r) = −M

r + Ω2

2r2 − MΩ2

r3 and energy
1
2 (E 2 − 1).



For a circular orbit we must have ṙ = r̈ = 0, meaning that we must
be at a local extremum of the potential energy (since r̈ = −V ′(r)).
Since the satellite orbits at a radius rS , the extrema of V are at rS ,
where

Mr2
S − Ω2rS + 3MΩ2 = 0.

Hence the angular momentum of the satellite is given by

Ω2 =
Mr2

S

rS − 3M
.

Next, since ṙ = 0 the energy of the orbit is given by

E 2 =

(
1− 2M

rS

)(
1 + r−2

S Ω2
)

=
(rS − 2M)2

rS(rS − 3M)
.



Finally, recall that ṫ =
(

1− 2M
rS

)−1
E > 0. Hence

dt

dτS
=

√
rS

rS − 3M
.

Hence we have

τS = CS +

√
rS − 3M

rS
t,

for some constant CS .



Next we compute the proper time along the worldline of Alice.
Along Alice’s worldline, all of the spatial coordinates are constant,
and so we have

−1 = gab
dxa

dτA

dxb

dτA
= −

(
1− 2M

rA

)(
dt

dτA

)2

.

Hence we have

τA = CA +

√
rA − 2M

rA
t,

for some constant CA.
Now, since the coordinate time for a radial light ray to reach Alice
from Bob is t0, which is a constant independent of n, we find that

T(A,n) =

√
rS(rA − 2M)

rA(rS − 3M)
T(S ,n).



(ii) Hence show that rS = 3
2 rA is the unique radius at which it is

possible for the clock on the satellite and Alice’s clock to be
synchronised, so that T(A,n) = T(S ,n) for all n.



Solution:
If the two clocks are synchronised, then we must have

rS(rA − 2M)

rA(rS − 3M)
= 1

⇒ rS =
3

2
rA.



c) Bob claims that, because the satellite is moving fast relative to
Alice, time dilation will cause the clock on the satellite to run
slower than Alice’s clock, regardless of the altitude of the satellite.
Referring to your answer to part (??), explain why Bob is correct
or incorrect. If he is incorrect, what physical effect is Bob failing to
take into account?



Bob is not correct: for low altitudes (rA ∼ rS), we have

T(A,n) ∼

√
(rS − 2M)

(rS − 3M)
T(S,n),

and so T(A,n) > T(S,n), and Bob appears to be correct. However,
for very large altitudes, rS →∞, we see that

T(A,n) ∼

√
1− 2M

rA
T(S ,n),

and so T(A,n) < T(S,n), i.e. “Alice’s clock runs slower than the
clock on the satellite”. The physical effect that causes this is the
gravitational time dilation.



2017 Question 1 part (c)

Consider
sabcd(x) = εabcdω(x),

where we define εabcd by setting ε0123 = 1, as well as
ε[abcd ] = εabcd in every coordinate system. Given that sabcd
transforms as a (0, 4)-tensor under (1), derive the transformation
behaviour of ω under (1). Find how the covariant derivative ∇a

must act on ω.

[(1) is coordinate transformations]



Unfortunately this question doesn’t give you enough information to
solve it. Under the map

∇aω 7→ ∇aω + Xa

∇aεbcde 7→ ∇aεbcde − Xaεbcde

the expression ∇a(ωεabcd) is invariant. Since we don’t know how
the covariant derivative acts on εabcd (it’s not a tensor!), given
what we’re told in the question, we can’t uniquely determine the
expression ∇aω, since there is always this ambiguity.
The missing information is this: the covariant derivative acts on ε
as

∇ε = 0.



Using the normal expressions for tensors:

∇asbcde = ∂asbcde − Γf
absfcde − Γf

acsafde − Γf
adsbcfe − Γf

aesbcdf

= (∂aω)εbcde − ω
(

Γf
abεfcde + Γf

acεafde + Γf
adεbcfe + Γf

aeεbcdf
)

On the other hand we have ∇asbcde = (∇aω)εbcde .
Setting (bcde) = (0123) relative to some arbitrary coordinate
system, we find

∇aω = ∂aω − ω
(

Γf
a0εf 123 + Γf

a1ε0f 23 + Γf
a2ε01f 3 + Γf

a3ε012f

)
= ∂aω − ω

(
Γ0
a0ε0123 + Γ1

a1ε0123 + Γ2
a2ε0123 + Γ3

a3ε0123

)
= ∂aω − ω

(
Γ0
a0 + Γ1

a1 + Γ2
a2 + Γ3

a3

)
= ∂aω − Γb

abω

Can also check that this transforms like a vector times ω.



2018 Question 2

Consider a metric of the form

ds2 = −e−2Λ(r)dt2 + e2Λ(r)dr 2 + r 2
(
dθ2 + sin2(θ)dφ2

)
. (1)

For the Schwarzschild solution, where

e−2Λ(r) = 1− 2MG

r
, (2)

(c) The Einstein tensor of the space-time (1) has a component

Gtt = e−2Λ

(
2e−2Λ

r

∂Λ

∂r
+

1− e−2Λ

r 2

)
. (3)

Use this to derive the form of the Schwarzschild solution (2).



Vacuum Einstein equations are Gµν = 0, so

0 =
2e−2Λ

r

dΛ

dr
+

1− e−2Λ

r2

Now, let ν = e−2Λ, so dν = −2e−2ΛdΛ. Hence

−1

r

dν

dr
+

1− ν
r2

= 0,

and so ∫
dr

r
=

∫
dν

1− ν
⇒ log r + C = − log(1− ν)

⇒ ν = 1− e−C

r

Now choose the integration constant C = − log(2GM).



(d) Consider a spherically symmetric charge distribution ρ(r) with
ρ(r) = 0 for r > r0 in the space-time (1). Such a charge
distribution induces a vector potential A, for which the only
non-vanishing component is

At = Q/r .

(i) Find the associated field strength and the energy-momentum
tensor
(ii) Using the expression (3) for Gtt , find the function Λ(r) induced
by such an energy momentum tensor



(i) Given a four-potential A, the associated field strength is
F = dA or, with indices,

Fab = ∂aAb − ∂bAa

( it doesn’t matter whether we use ∂ or ∇ here, by the torsion-free
property). Hence, if A = (Q/r)dt, we have

Frt = −Ftr = −Q

r2

with all other components of the field strength vanishing.



The energy-momentum tensor in electrodynamics is

Tab = F c
a Fbc −

1

4
(F cdFcd)gab.

We calculate

F cdFcd = F trFtr + F rtFrt = 2F trFtr

= 2(g−1)tt(g−1)rr (Ftr )
2 = −2Q2

r 4

and so we find

Ttt =
1

2

Q2

r 4
e−2Λ

Trr = −1

2

Q2

r 4
e2Λ

Tθθ =
1

2

Q2

r 4
r 2

Tφφ =
1

2

Q2

r 4
r 2 sin2 θ

with the off-diagonal components being zero.



To find the associated function Λ we use the tt component of the Einstein
equations:

Gtt = 8πTtt

which gives us

e−2Λ

(
2e−2Λ

r

∂Λ

∂r
+

1− e−2Λ

r 2

)
= 4π

Q2

r 4
e−2Λ

Following the same ideas as before:

dν

dr
=

1− ν
r
− 4πQ2

r 3

⇒
∫

1

1− ν dν =

∫ (
1

r
− 4πQ2

r 3

)
.

Now try setting ν = νS + ν1, where νS is the function ν that we found before.
In particular,

dνS
dr

=
1− νS

r
and so we see that ν1 must satisfy

dν1

dr
= −ν1

r
− 4πQ2

r 3
.



dν1

dr
= −ν1

r
− 4πQ2

r3

Guess a solution of the form ν1 = α/r2: then we find

−2α = −α− 4πQ2

⇒ α = 4πQ2,

so the full solution is

e−2Λ = 1− 2GM

r
+

4πQ2

r2


