Index/index free notation

$$
\begin{aligned}
T(X, Y, \eta, \mu) & =T_{\mu \nu}{ }^{\rho \sigma} X^{\mu} Y^{\nu} \eta_{\rho} \mu_{\sigma}=T_{a b}{ }^{c d} X^{a} Y^{b} \eta_{c} \mu_{d}=T_{a b}{ }^{c d} Y^{b} \eta_{c} X^{a} \mu_{d} \\
T_{b}^{a} & =T\left(\mathrm{~d} x^{a}, \partial_{b}\right) \\
\nabla_{X} Y & =X^{b}\left(\nabla_{b} Y^{a}\right) \partial_{a} \\
& \leftrightarrow X^{\nu} \nabla_{\nu} Y^{\mu}=X^{b}\left(\nabla_{b} Y^{a}\right)\left(\partial_{a}\right)^{\mu}
\end{aligned}
$$

2020 Q3 d)

$$
L=-\left(1+r^{2}\right) \dot{t}^{2}+\left(1+r^{2}\right)^{-1} \dot{r}^{2}+r^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)
$$

By the usual arguments we can restrict to $\theta=\frac{\pi}{2}$. Also have conserved quantities

$$
\begin{gathered}
\Omega=r^{2} \sin ^{2} \theta \dot{\phi}=r^{2} \dot{\phi} \\
E=\left(1+r^{2}\right) \dot{t} \\
L=-1
\end{gathered}
$$

Since we start at $r=0, \Omega=0$. Hence

$$
-1=(1+r)^{-1}\left(-E^{2}+\dot{r}^{2}\right)
$$

$$
\begin{aligned}
& \quad \dot{r}^{2}=E^{2}-1-r^{2} \\
& \Rightarrow r=\sqrt{E^{2}-1} \sin \tau_{A} .
\end{aligned}
$$

So the clock returns when $\tau_{A}=\pi$. On the other hand, for the observer remaining at the origin, $-1=-\dot{t}$, so $\tau_{B}=t$. To compare the two times, we want to express τ_{A} in terms of the coordinate time t.

$$
\begin{aligned}
E & =\left(1+r^{2}\right) \frac{\mathrm{d} t}{\mathrm{~d} \tau_{A}}=\left(1+\left(E^{2}-1\right) \sin ^{2} \tau_{A}\right) \frac{\mathrm{d} t}{\mathrm{~d} \tau_{A}} \\
\Rightarrow t & =\int_{0}^{\tau_{A}}\left(\frac{E}{\left(1+\left(E^{2}-1\right) \sin ^{2} \tau\right)}\right) \mathrm{d} \tau \\
& =\arctan \left(E \tan \tau_{A}\right)
\end{aligned}
$$

So when $\tau_{A}=\pi$, we also have $\tau_{B}=t=\pi$!

2016 Question 1

Consider the following two-dimensional metric

$$
\mathrm{d} s^{2}=-\cosh ^{2} \rho \mathrm{~d} t^{2}+\mathrm{d} \rho^{2}
$$

where $-\infty<t<\infty$ and $0 \leq \rho<\infty$.
(a) Write down a Lagrangian for affinely parametrized geodesics. Show that

$$
\epsilon=\cosh ^{2} \rho \dot{t}
$$

and the Lagrangian itself are conserved.
(b)Using the coordinate transformation $v=\tanh \rho$, show that

$$
\left(\frac{\mathrm{d} v}{\mathrm{~d} t}\right)^{2}+v^{2}=1-\frac{\kappa}{\epsilon^{2}}
$$

where $\kappa=0$ for a null geodesic, and $\kappa>0$ for a time-like geodesic.
(Skip (a)) Since $v=\tanh \rho$ we have $\mathrm{d} v=\frac{1}{\cosh ^{2} \rho} \mathrm{~d} \rho$, so the metric is

$$
\left.\mathrm{d} s^{2}=\cosh ^{2} \rho\left(-\mathrm{d} t^{2}+\cosh ^{2} \rho \mathrm{~d} v^{2}\right)=-\frac{1}{1-v^{2}} \mathrm{~d} t^{2}+\frac{1}{\left(1-v^{2}\right)^{2}} \mathrm{~d} v^{2}\right)
$$

Note that $\epsilon=\frac{1}{1-v^{2}} \dot{t}$. For affinely parametrised geodesics we have

$$
-\kappa=-\frac{1}{1-v^{2}} \dot{t}^{2}+\frac{1}{\left(1-v^{2}\right)^{2}} \dot{v}^{2}=-\left(1-v^{2}\right) \epsilon^{2}+\frac{1}{\left(1-v^{2}\right)^{2}} \dot{v}^{2}
$$

where κ is constant (affine parameter), $\kappa=0$ for null geodesics and $\kappa>0$ for timelike geodesics.
Now we have

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\dot{v}}{\dot{t}}=\epsilon^{-1} \frac{1}{1-v^{2}} \dot{v}
$$

so

$$
-\kappa=-\epsilon^{2}\left(1-v^{2}\right)+\epsilon^{2}\left(\frac{\mathrm{~d} v}{\mathrm{~d} t}\right)^{2}
$$

(c) Explain why $\kappa=1$ for a time-like geodesic parametrized by proper time and hence show that $\epsilon \geq 1$ for such a geodesic. Find the time-like geodesic with $\epsilon=1$ and hence explain the physical meaning of the coordinate t.

For timelike geodesics parametrised by proper time, $g(X, X)=-1$ where X is tangent to the geodesic. But

$$
g(X, X)=-\frac{1}{1-v^{2}} \dot{t}^{2}+\frac{1}{\left(1-v^{2}\right)^{2}} \dot{v}^{2}=-\kappa
$$

In this case,

$$
\left(\frac{\mathrm{d} v}{\mathrm{~d} t}\right)^{2}+v^{2}=1-\frac{1}{\epsilon^{2}}
$$

and since the LHS is ≥ 0 we must have $\epsilon^{2} \geq 1$. Also, $\epsilon \geq 0$ since t increases to the future, so in fact $\epsilon \geq 1$.

If $\epsilon=1$,

$$
\left(\frac{\mathrm{d} v}{\mathrm{~d} t}\right)^{2}+v^{2}=0
$$

Hence $v=0$ and $\frac{\mathrm{d} v}{\mathrm{~d} t}=0$.
In view of $\epsilon=1$, we find that $\dot{t}=1$, i.e. the coordinate t agrees (up to an additive constant) with the proper time τ along a stationary geodesic through $\rho=0$.
(d) Consider geodesics starting at the origin $\rho=0$ with $\dot{\rho}>0$. Sketch the trajectories of both null and time-like geodesics in the (v, t)-plane. Show that a null geodesic will reach $\rho=\infty$ at an infinite value of the affine parameter, whereas a time-like geodesic will return to $\rho=0$ after proper time π.
[You may use without proof the definite integral

$$
\int_{0}^{\pi} \frac{\mathrm{d} t}{1-\gamma^{2} \sin ^{2} t}=\frac{\pi}{1-\gamma^{2}}
$$

which is valid for $0 \leq \gamma<1$.]

$$
\begin{aligned}
&\left(\frac{\mathrm{d} v}{\mathrm{~d} t}\right)^{2}=1-\frac{\kappa}{\epsilon^{2}}-v^{2} \\
& \rightarrow t=\int \frac{\mathrm{d} v}{\sqrt{1-\frac{\kappa}{\epsilon^{2}}-v^{2}}} \quad \text { (while } v \text { is increasing, but symmetry } \\
& \text { arguments deal with decreasing case) } \\
& \Rightarrow t=\arcsin \left(v / \sqrt{1-\frac{\kappa}{\epsilon^{2}}}\right) \\
& v=\sqrt{1-\frac{\kappa}{\epsilon^{2}}} \sin t
\end{aligned}
$$

Timelike case ($\kappa=1$)

$$
\begin{aligned}
\frac{\mathrm{d} t}{\mathrm{~d} \lambda} & =\epsilon\left(1-v^{2}\right)=\epsilon\left(1-\left(1-\frac{1}{\epsilon^{2}}\right) \sin ^{2} t\right) \\
\Rightarrow \lambda_{(\text {return })} & =\frac{1}{\epsilon} \int_{0}^{\pi} \frac{\mathrm{d} t}{\left(1-\left(1-\frac{1}{\epsilon^{2}}\right) \sin ^{2} t\right)} \\
& =\frac{\pi}{\epsilon(1-1+1 / \epsilon)}=\pi .
\end{aligned}
$$

Null case: $v=\sin t, \frac{\mathrm{~d} t}{\mathrm{~d} \lambda}=\epsilon \cos ^{2} t$, so $\lambda=\epsilon^{-1} \tan t, v=\sin \left(\tan ^{-1}(\epsilon \lambda)\right)$. So as $\lambda \rightarrow \infty, v \rightarrow 1$, so $\rho \rightarrow \infty$.

2016 Q2 d)

A stationary observer at radius r_{1} (in Schwarzschild) emits a photon of frequency ω_{1}, which is received by a stationary observer at radius $r_{2}>r_{1}$. Using the results from parts (a), (b) and (c), show that the frequency ω_{2} measured by the observer at radius r_{2} is given by

$$
\frac{\omega_{2}}{\omega_{1}}=\sqrt{\frac{1-2 m / r_{1}}{1-2 m / r_{2}}} .
$$

Comment on the frequency observed at radius r_{2} as $r_{1} \rightarrow 2 m$. [You may use without proof at the frequency ω of a photon with tangent vector V^{a} measured by a coincident observer with 4-velocity U^{a} is $\omega=U_{a} V^{a}$.]

Along the worldline of the photon, $(1-2 m / r) \dot{t}=E$ is constant. So the tangent to the photon is

$$
V=\frac{\mathrm{d} x^{a}}{\mathrm{~d} \lambda} \partial_{a}=E(1-2 m / r)^{-1} \partial_{t}+V^{r} \partial_{r}+V^{\theta} \partial_{\theta}+V^{\phi} \partial_{\phi} .
$$

The tangent to a stationary observer is

$$
U=\frac{1}{\sqrt{1-2 m / r}} \partial_{t}
$$

Hence

$$
\frac{\omega_{2}}{\omega_{1}}=\frac{g\left(V, U_{2}\right)}{g\left(V, U_{1}\right)}=\sqrt{\frac{1-2 m / r_{1}}{1-2 m / r_{2}}}
$$

As $r_{1} \rightarrow 2 m$, the frequency observed by the observer at r_{2} approaches zero, and the signals are infinitely redshifted.

2014 Question 1

Consider a timelike geodesic in the following two-dimensional spacetime:

$$
\mathrm{d} s^{2}=e^{2 g \xi}\left(-\mathrm{d} \eta^{2}+\mathrm{d} \xi^{2}\right)
$$

where $g>0$.
(a) Show that

$$
E=e^{2 g \xi} \dot{\eta}
$$

is conserved along the geodesic, where $\dot{\eta}$ denotes the derivative of η with respect to proper time. Show that

$$
\dot{\xi}^{2}=e^{-4 g \xi}\left(E^{2}-e^{2 g \xi}\right) .
$$

Affinely parametrised geodesics extremise the action associated with the Lagrangian

$$
L=e^{2 g \xi}\left(-\dot{\eta}^{2}+\dot{\xi}^{2}\right)
$$

Since $\partial L / \partial \eta=0$, the quantity $\partial L / \partial \dot{\eta}$ is constant, i.e. $e^{2 g \xi} \dot{\eta}=E$ is constant.
Then, since τ is the proper time (or since L is independent of τ) we have $L=-1$, i.e.

$$
\begin{aligned}
-1 & =-e^{-2 g \xi} E^{2}+e^{2 g \xi} \dot{\xi}^{2} \\
\Rightarrow \dot{\xi}^{2} & =e^{-4 g \xi}\left(E^{2}-e^{2 g \xi}\right)
\end{aligned}
$$

(b) Use your results in part (a) to obtain an equation for $(\mathrm{d} \xi / \mathrm{d} \eta)^{2}$ and explain why an observer following a timelike geodesic who initially moves in the $+\xi$ direction will eventually turn around and approach $\xi=-\infty$.

$$
\frac{\mathrm{d} \xi}{\mathrm{~d} \eta}=\frac{\mathrm{d} \xi}{\mathrm{~d} \tau} \frac{\mathrm{~d} \tau}{\mathrm{~d} \eta}=\frac{\mathrm{d} \xi}{\mathrm{~d} \tau}\left(\frac{\mathrm{~d} \eta}{\mathrm{~d} \tau}\right)^{-1}=\frac{\dot{\xi}}{\dot{\eta}}
$$

We also have

$$
\dot{\eta}=E e^{-2 g \xi}
$$

hence

$$
\left(\frac{\mathrm{d} \xi}{\mathrm{~d} \eta}\right)^{2}=1-E^{-2} e^{2 g \xi}
$$

and we see that, if ξ is initially increasing with η, then eventually ξ will become sufficiently large that we will have $E^{-2} e^{2 g \xi}=1$, at which point $\frac{\mathrm{d} \xi}{\mathrm{d} \eta}$ will have decreased to zero. After this, $\dot{\xi}$ will become negative (since $\dot{\xi}$ is smooth).

2013 Q3

Skip part (a) - not applicable to the course now. I'll also change the signature of the metric to match our conventions.
The metric is

$$
g=-\left(1-\frac{\Lambda}{3} r^{2}\right) \mathrm{d} t^{2}+\left(1-\frac{\Lambda}{3} r^{2}\right)^{-1} \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) .
$$

b) Consider geodesics in the equatorial plane, $\theta=\pi / 2$. Show that

$$
E=\left(1-\frac{\Lambda}{3} r^{2}\right) \dot{t}, \quad J=r^{2} \dot{\phi}
$$

are conserved along these geodesics, where \dot{x}^{a} refers to the derivative of the coordinate x^{a} with respect to the affine parameter of the geodesic. For timelike geodesics, obtain an equation for \dot{r} in terms of an effective potential. Can bound orbits occur in this spacetime? If so, compute the radius of circular orbits in terms of J and Λ. Distinguish between the cases $\Lambda>0$ and $\Lambda<0$.

Solution: Skip conserved quantities. Substituting conserved quantities into the equation $L=-1$ (for timelike geodesics) we get

$$
\begin{aligned}
& -1=\left(1-\frac{\Lambda}{3} r^{2}\right)^{-1}\left(-E^{2}+\dot{r}^{2}\right)+r^{-2} J^{2} \\
& \Rightarrow \frac{1}{2} \dot{r}^{2}+\frac{1}{2}\left(-\frac{\Lambda}{3} r^{2}+J^{2} r^{-2}\right)=\frac{1}{2} E^{2}+\frac{\Lambda}{6} J^{2}-\frac{1}{2},
\end{aligned}
$$

so the effective potential is

$$
V(r)=\frac{1}{2}\left(-\frac{\Lambda}{3} r^{2}+J^{2} r^{-2}\right) \quad \Rightarrow V^{\prime}(r)=-\frac{\Lambda}{3} r-J^{2} r^{-3} .
$$

If $\Lambda>0$ the V strictly decreases and there are no bound orbits. If $\Lambda<0$ and $J \neq 0$ then V has a local minimum, so there are bound orbits.

For circular orbits, we need $\dot{r}=\ddot{r}=0$, so V must be at a local extremum. Hence $-\frac{\Lambda}{3} r-J^{2} r^{-3}+=0$, and so

$$
r=\left(\frac{3 J^{2}}{\Lambda}\right)^{\frac{1}{4}}
$$

c) Consider null geodesics in the equatorial plane, $\theta=\pi / 2$. What is the effective potential for these geodesics? Show that photons travel along straight lines in this spacetime.

Solution:

Setting $L=0$ and substituting the conserved quantities,

$$
\begin{aligned}
& 0=\left(1-\frac{\Lambda}{3} r^{2}\right)^{-1}\left(-E^{2}+\dot{r}^{2}\right)+r^{-2} J^{2} \\
& \Rightarrow \\
& \frac{1}{2} \dot{r}^{2}+\frac{1}{2} J^{2} r^{-2}=\frac{1}{2} E^{2}+\frac{\Lambda}{6} J^{2},
\end{aligned}
$$

so the effective potential is $\frac{1}{2} J^{2} r^{-2}$.

Now we have

$$
\frac{\mathrm{d} r}{\mathrm{~d} \phi}=\frac{\dot{r}}{\dot{\phi}}=\frac{r^{2}}{J} \dot{r}
$$

and so

$$
\left(\frac{\mathrm{d} r}{\mathrm{~d} \phi}\right)^{2}+r^{2}=\left(\frac{E^{2}}{J^{2}}+\frac{\Lambda}{3}\right) r^{4}
$$

We can either solve this by integrating directly and using trig substitutions, or by guessing $r \cos \left(\phi-\phi_{0}\right)=b$ for some constant b, which represents "straight lines" and solves the equations with impact parameter

$$
b=\left(\frac{E^{2}}{J^{2}}+\frac{\Lambda}{3}\right)^{-\frac{1}{2}}
$$

d) For the case $\Lambda<0$, consider two static observers located at radii r_{1} and r_{2}. Suppose the observer at r_{1} sends a photon to the observer at r_{2}. What is the ratio of the photon frequency measured by the observer at r_{1} to the photon frequency measured by the observer at r_{2} ?

Solution:

Using expressions from above, the photon frequency is $g(U, V)$, where U is the tangent vector to the observer's worldline and V is the tangent to the photon's worldline.
For static observers, $U=c \partial_{t}$ for some constant c. Since also $g(U, U)=-1$, we have

$$
-1=-\left(1-\frac{\Lambda}{3} r^{2}\right) c^{2}
$$

and so

$$
U=\left(1-\frac{\Lambda}{3} r^{2}\right)^{-\frac{1}{2}} \partial_{t}
$$

Along the worldline of the photon, we have the constant

$$
E=\left(1-\frac{\Lambda}{3} r^{2}\right) \frac{\mathrm{d} t}{\mathrm{~d} \lambda}
$$

so the tangent to the photon is

$$
V=E\left(1-\frac{\Lambda}{3} r^{2}\right)^{-1} \partial_{t}+V^{r} \partial-r+V^{\theta} \partial_{\theta}+V^{\phi} \partial_{\phi}
$$

Hence for a static observer at $r=R$,

$$
\omega=g(U, V)=E\left(1-\frac{\Lambda}{3} R^{2}\right)^{-\frac{1}{2}}
$$

and so

$$
\frac{\omega_{1}}{\omega_{2}}=\sqrt{\frac{1-\frac{\Lambda}{3}\left(r_{2}\right)^{2}}{1-\frac{\Lambda}{3}\left(r_{1}\right)^{2}}} .
$$

e) For the case $\Lambda>0$, the metric can be written in different coordinates as

$$
g=-\mathrm{d} t^{\prime 2}+e^{2 H t^{\prime}}\left(\left(\mathrm{d} r^{\prime}\right)^{2}+\left(r^{\prime}\right)^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

where H is a constant. Suppose that a static observer at $r^{\prime}=0$ emits a photon at $t^{\prime}=0$. What radius r^{\prime} will the photon reach as $t^{\prime} \rightarrow \infty$? By comparing this result to your result in part a, deduce how H is related to Λ.

Solution:

Cut to the chase:

$$
\begin{gathered}
0=-\left(\dot{t}^{\prime}\right)^{2}+e^{2 H t^{\prime}}\left(\dot{r}^{\prime}\right)^{2} \\
\Rightarrow \frac{\mathrm{~d} r^{\prime}}{\mathrm{d} t^{\prime}}=e^{-H t^{\prime}} \\
\Rightarrow r^{\prime}=\frac{1}{H}\left(1-e^{-H t^{\prime}}\right)
\end{gathered}
$$

so $r^{\prime} \rightarrow \frac{1}{H}$ as $t^{\prime} \rightarrow \infty$.

