Index/index free notation

$$T(X, Y, \eta, \mu) = T_{\mu\nu}{}^{\rho\sigma} X^{\mu} Y^{\nu} \eta_{\rho} \mu_{\sigma} = T_{ab}{}^{cd} X^{a} Y^{b} \eta_{c} \mu_{d} = T_{ab}{}^{cd} Y^{b} \eta_{c} X^{a} \mu_{d}$$

$$T^{a}_{b} = T(\mathrm{d}x^{a},\partial_{b})$$

$$abla_X Y = X^b (
abla_b Y^a) \partial_a \ \leftrightarrow X^
u
abla_
u Y^\mu = X^b (
abla_b Y^a) (\partial_a)^\mu$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2020 Q3 d)

$$L = -(1+r^2)\dot{t}^2 + (1+r^2)^{-1}\dot{r}^2 + r^2(\dot{\theta}^2 + \sin^2\theta\dot{\phi}^2).$$

By the usual arguments we can restrict to $\theta = \frac{\pi}{2}$. Also have conserved quantities

$$\Omega = r^2 \sin^2 \theta \dot{\phi} = r^2 \dot{\phi}$$

 $E = (1 + r^2) \dot{t}$
 $L = -1.$

Since we start at r = 0, $\Omega = 0$. Hence

$$-1 = (1+r)^{-1}(-E^2 + \dot{r}^2).$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○へ⊙

$$\dot{r}^2 = E^2 - 1 - r^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\Rightarrow r = \sqrt{E^2 - 1} \sin \tau_A.$$

So the clock returns when $\tau_A = \pi$.

On the other hand, for the observer remaining at the origin, $-1 = -\dot{t}$, so $\tau_B = t$. To compare the two times, we want to express τ_A in terms of the coordinate time t.

$$E = (1+r^2)\frac{\mathrm{d}t}{\mathrm{d}\tau_A} = (1+(E^2-1)\sin^2\tau_A)\frac{\mathrm{d}t}{\mathrm{d}\tau_A}$$

$$\Rightarrow t = \int_0^{\tau_A} \left(\frac{E}{\left(1 + \left(E^2 - 1 \right) \sin^2 \tau \right)} \right) \mathrm{d}\tau$$

$$= \arctan(E \tan \tau_A)$$

So when $\tau_A = \pi$, we also have $\tau_B = t = \pi!$

2016 Question 1

Consider the following two-dimensional metric

$$\mathrm{d}s^2 = -\cosh^2\rho\mathrm{d}t^2 + \mathrm{d}\rho^2$$

where $-\infty < t < \infty$ and $0 \le \rho < \infty$.

(a) Write down a Lagrangian for affinely parametrized geodesics. Show that

$$\epsilon = \cosh^2
ho \dot{t}$$

and the Lagrangian itself are conserved. (b)Using the coordinate transformation $v = \tanh \rho$, show that

$$\left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)^2 + v^2 = 1 - \frac{\kappa}{\epsilon^2}$$

where $\kappa = 0$ for a null geodesic, and $\kappa > 0$ for a time-like geodesic.

< ロ > < 伊 > < 三 > < 三 > 、 三 の < 0</p>

(Skip (a)) Since $v = \tanh \rho$ we have $dv = \frac{1}{\cosh^2 \rho} d\rho$, so the metric is

$$ds^{2} = \cosh^{2} \rho (-dt^{2} + \cosh^{2} \rho dv^{2}) = -\frac{1}{1 - v^{2}} dt^{2} + \frac{1}{(1 - v^{2})^{2}} dv^{2})$$

Note that $\epsilon = \frac{1}{1-v^2}\dot{t}$. For affinely parametrised geodesics we have

$$-\kappa = -\frac{1}{1-v^2}\dot{t}^2 + \frac{1}{(1-v^2)^2}\dot{v}^2 = -(1-v^2)\epsilon^2 + \frac{1}{(1-v^2)^2}\dot{v}^2$$

where κ is constant (affine parameter), $\kappa = 0$ for null geodesics and $\kappa > 0$ for timelike geodesics.

Now we have

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \frac{\dot{\mathbf{v}}}{\dot{t}} = \epsilon^{-1} \frac{1}{1 - v^2} \dot{\mathbf{v}},$$

so

$$-\kappa = -\epsilon^2 (1 - v^2) + \epsilon^2 \left(\frac{\mathrm{d}v}{\mathrm{d}t} \right)^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(c) Explain why $\kappa = 1$ for a time-like geodesic parametrized by proper time and hence show that $\epsilon \ge 1$ for such a geodesic. Find the time-like geodesic with $\epsilon = 1$ and hence explain the physical meaning of the coordinate t.

For timelike geodesics parametrised by proper time, g(X, X) = -1where X is tangent to the geodesic. But

$$g(X,X) = -rac{1}{1-v^2}\dot{t}^2 + rac{1}{(1-v^2)^2}\dot{v}^2 = -\kappa.$$

In this case,

$$\left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right)^2 + \mathbf{v}^2 = 1 - \frac{1}{\epsilon^2},$$

and since the LHS is ≥ 0 we must have $\epsilon^2 \geq 1$. Also, $\epsilon \geq 0$ since t increases to the future, so in fact $\epsilon \geq 1$.

If $\epsilon = 1$, $\left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)^2 + v^2 = 0.$ Hence v = 0 and $\frac{\mathrm{d}v}{\mathrm{d}t} = 0$

Hence v = 0 and $\frac{dv}{dt} = 0$. In view of $\epsilon = 1$, we find that $\dot{t} = 1$, i.e. the coordinate t agrees (up to an additive constant) with the proper time τ along a stationary geodesic through $\rho = 0$.

(d) Consider geodesics starting at the origin $\rho = 0$ with $\dot{\rho} > 0$. Sketch the trajectories of both null and time-like geodesics in the (v, t)-plane. Show that a null geodesic will reach $\rho = \infty$ at an infinite value of the affine parameter, whereas a time-like geodesic will return to $\rho = 0$ after proper time π .

[You may use without proof the definite integral

$$\int_0^{\pi} \frac{\mathrm{d}t}{1 - \gamma^2 \sin^2 t} = \frac{\pi}{1 - \gamma^2}$$

which is valid for $0 \leq \gamma < 1.$]

$$\left(\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\right)^2 = 1 - \frac{\kappa}{\epsilon^2} - \mathbf{v}^2$$

 $ightarrow t = \int rac{\mathrm{d} m{v}}{\sqrt{1 - rac{\kappa}{\epsilon^2} - m{v}^2}}$ (while $m{v}$ is increasing, but symmetry

arguments deal with decreasing case)

$$\Rightarrow t = \arcsin\left(v \middle/ \sqrt{1 - rac{\kappa}{\epsilon^2}}
ight)$$

$$v = \sqrt{1 - \frac{\kappa}{\epsilon^2}} \sin t.$$

Timelike case ($\kappa = 1$)

$$\frac{\mathrm{d}t}{\mathrm{d}\lambda} = \epsilon (1 - v^2) = \epsilon \left(1 - \left(1 - \frac{1}{\epsilon^2} \right) \sin^2 t \right)$$

$$\Rightarrow \lambda_{(\text{return})} = \frac{1}{\epsilon} \int_0^{\pi} \frac{\mathrm{d}t}{\left(1 - \left(1 - \frac{1}{\epsilon^2}\right)\sin^2 t\right)}$$

$$= \frac{\pi}{\epsilon(1-1+1/\epsilon)} = \pi.$$

Null case: $v = \sin t$, $\frac{dt}{d\lambda} = \epsilon \cos^2 t$, so $\lambda = \epsilon^{-1} \tan t$, $v = \sin(\tan^{-1}(\epsilon\lambda))$. So as $\lambda \to \infty$, $v \to 1$, so $\rho \to \infty$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2016 Q2 d)

A stationary observer at radius r_1 (in Schwarzschild) emits a photon of frequency ω_1 , which is received by a stationary observer at radius $r_2 > r_1$. Using the results from parts (a), (b) and (c), show that the frequency ω_2 measured by the observer at radius r_2 is given by

$$\frac{\omega_2}{\omega_1} = \sqrt{\frac{1-2m/r_1}{1-2m/r_2}}.$$

Comment on the frequency observed at radius r_2 as $r_1 \rightarrow 2m$. [You may use without proof at the frequency ω of a photon with tangent vector V^a measured by a coincident observer with 4-velocity U^a is $\omega = U_a V^a$.] Along the worldline of the photon, $(1 - 2m/r)\dot{t} = E$ is constant. So the tangent to the photon is

$$V = \frac{\mathrm{d}x^{a}}{\mathrm{d}\lambda}\partial_{a} = E(1 - 2m/r)^{-1}\partial_{t} + V^{r}\partial_{r} + V^{\theta}\partial_{\theta} + V^{\phi}\partial_{\phi}.$$

The tangent to a stationary observer is

$$U=\frac{1}{\sqrt{1-2m/r}}\partial_t.$$

Hence

$$\frac{\omega_2}{\omega_1} = \frac{g(V, U_2)}{g(V, U_1)} = \sqrt{\frac{1 - 2m/r_1}{1 - 2m/r_2}}.$$

As $r_1 \rightarrow 2m$, the frequency observed by the observer at r_2 approaches zero, and the signals are infinitely redshifted.

2014 Question 1

Consider a timelike geodesic in the following two-dimensional spacetime:

$$\mathrm{d}s^2 = e^{2g\xi}(-\mathrm{d}\eta^2 + \mathrm{d}\xi^2)$$

where g > 0. (a) Show that

$$E = e^{2g\xi}\dot{\eta}$$

is conserved along the geodesic, where $\dot{\eta}$ denotes the derivative of η with respect to proper time. Show that

$$\dot{\xi}^2 = e^{-4g\xi}(E^2 - e^{2g\xi}).$$

Affinely parametrised geodesics extremise the action associated with the Lagrangian

$$L=e^{2g\xi}(-\dot{\eta}^2+\dot{\xi}^2).$$

Since $\partial L/\partial \eta = 0$, the quantity $\partial L/\partial \dot{\eta}$ is constant, i.e. $e^{2g\xi}\dot{\eta} = E$ is constant.

Then, since τ is the proper time (or since *L* is independent of τ) we have L = -1, i.e.

$$-1 = -e^{-2g\xi}E^2 + e^{2g\xi}\dot{\xi}^2$$
$$\Rightarrow \dot{\xi}^2 = e^{-4g\xi}\left(E^2 - e^{2g\xi}\right)$$

(b) Use your results in part (a) to obtain an equation for $(d\xi/d\eta)^2$ and explain why an observer following a timelike geodesic who initially moves in the $+\xi$ direction will eventually turn around and approach $\xi = -\infty$.

$$\frac{\mathrm{d}\xi}{\mathrm{d}\eta} = \frac{\mathrm{d}\xi}{\mathrm{d}\tau}\frac{\mathrm{d}\tau}{\mathrm{d}\eta} = \frac{\mathrm{d}\xi}{\mathrm{d}\tau}\left(\frac{\mathrm{d}\eta}{\mathrm{d}\tau}\right)^{-1} = \frac{\dot{\xi}}{\dot{\eta}}.$$

We also have

$$\dot{\eta} = E e^{-2g\xi},$$

hence

$$\left(\frac{\mathrm{d}\xi}{\mathrm{d}\eta}\right)^2 = 1 - E^{-2} e^{2g\xi}$$

and we see that, if ξ is initially increasing with η , then eventually ξ will become sufficiently large that we will have $E^{-2}e^{2g\xi} = 1$, at which point $\frac{d\xi}{d\eta}$ will have decreased to zero. After this, $\dot{\xi}$ will become negative (since $\dot{\xi}$ is smooth).

2013 Q3

Skip part (a) – not applicable to the course now. I'll also change the signature of the metric to match our conventions. The metric is

$$g = -\left(1 - \frac{\Lambda}{3}r^2\right) \mathrm{d}t^2 + \left(1 - \frac{\Lambda}{3}r^2\right)^{-1} \mathrm{d}r^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right).$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○へ⊙

b) Consider geodesics in the equatorial plane, $\theta = \pi/2$. Show that

$$E = \left(1 - \frac{\Lambda}{3}r^2\right)\dot{t}, \qquad J = r^2\dot{\phi}$$

are conserved along these geodesics, where \dot{x}^a refers to the derivative of the coordinate x^a with respect to the affine parameter of the geodesic. For timelike geodesics, obtain an equation for \dot{r} in terms of an effective potential. Can bound orbits occur in this spacetime? If so, compute the radius of circular orbits in terms of J and Λ . Distinguish between the cases $\Lambda > 0$ and $\Lambda < 0$.

Solution: Skip conserved quantities. Substituting conserved quantities into the equation L = -1 (for timelike geodesics) we get

$$-1 = \left(1 - \frac{\Lambda}{3}r^2\right)^{-1} \left(-E^2 + \dot{r}^2\right) + r^{-2}J^2$$

$$\Rightarrow \frac{1}{2}\dot{r}^{2} + \frac{1}{2}\left(-\frac{\Lambda}{3}r^{2} + J^{2}r^{-2}\right) = \frac{1}{2}E^{2} + \frac{\Lambda}{6}J^{2} - \frac{1}{2},$$

so the effective potential is

$$V(r)=rac{1}{2}\left(-rac{\Lambda}{3}r^2+J^2r^{-2}
ight) \qquad \Rightarrow V'(r)=-rac{\Lambda}{3}r-J^2r^{-3}.$$

If $\Lambda > 0$ the V strictly decreases and there are no bound orbits. If $\Lambda < 0$ and $J \neq 0$ then V has a local minimum, so there are bound orbits.

For circular orbits, we need $\dot{r} = \ddot{r} = 0$, so V must be at a local extremum. Hence $-\frac{\Lambda}{3}r - J^2r^{-3} + = 0$, and so

$$r = \left(\frac{3J^2}{\Lambda}\right)^{\frac{1}{4}}.$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○へ⊙

c) Consider null geodesics in the equatorial plane, $\theta = \pi/2$. What is the effective potential for these geodesics? Show that photons travel along straight lines in this spacetime.

Solution:

Setting L = 0 and substituting the conserved quantities,

$$0 = \left(1 - \frac{\Lambda}{3}r^2\right)^{-1} \left(-E^2 + \dot{r}^2\right) + r^{-2}J^2$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○へ⊙

$$\Rightarrow \frac{1}{2}\dot{r}^{2} + \frac{1}{2}J^{2}r^{-2} = \frac{1}{2}E^{2} + \frac{\Lambda}{6}J^{2},$$

so the effective potential is $\frac{1}{2}J^2r^{-2}$.

Now we have

$$\frac{\mathrm{d}r}{\mathrm{d}\phi} = \frac{\dot{r}}{\dot{\phi}} = \frac{r^2}{J}\dot{r},$$

and so

$$\left(\frac{\mathrm{d}r}{\mathrm{d}\phi}\right)^2 + r^2 = \left(\frac{E^2}{J^2} + \frac{\Lambda}{3}\right)r^4.$$

We can either solve this by integrating directly and using trig substitutions, or by guessing $rcos(\phi - \phi_0) = b$ for some constant b, which represents "straight lines" and solves the equations with impact parameter

$$b = \left(\frac{E^2}{J^2} + \frac{\Lambda}{3}\right)^{-\frac{1}{2}}.$$

d) For the case $\Lambda < 0$, consider two static observers located at radii r_1 and r_2 . Suppose the observer at r_1 sends a photon to the observer at r_2 . What is the ratio of the photon frequency measured by the observer at r_1 to the photon frequency measured by the observer at r_2 ?

Solution:

Using expressions from above, the photon frequency is g(U, V), where U is the tangent vector to the observer's worldline and V is the tangent to the photon's worldline.

For static observers, $U = c\partial_t$ for some constant c. Since also g(U, U) = -1, we have

$$-1 = -\left(1 - \frac{\Lambda}{3}r^2\right)c^2$$

and so

$$U = \left(1 - \frac{\Lambda}{3}r^2\right)^{-\frac{1}{2}}\partial_t.$$

Along the worldline of the photon, we have the constant

$$E = \left(1 - \frac{\Lambda}{3}r^2\right)\frac{\mathrm{d}t}{\mathrm{d}\lambda},$$

so the tangent to the photon is

$$V = E \left(1 - \frac{\Lambda}{3}r^2\right)^{-1} \partial_t + V^r \partial - r + V^{\theta} \partial_{\theta} + V^{\phi} \partial_{\phi}$$

Hence for a static observer at r = R,

$$\omega = g(U, V) = E \left(1 - rac{\Lambda}{3}R^2
ight)^{-rac{1}{2}}$$

and so

$$rac{\omega_1}{\omega_2}=\sqrt{rac{1-rac{\Lambda}{3}(r_2)^2}{1-rac{\Lambda}{3}(r_1)^2}}.$$

e) For the case $\Lambda>0,$ the metric can be written in different coordinates as

$$g = -\mathrm{d}t'^2 + e^{2Ht'} \left((\mathrm{d}r')^2 + (r')^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2) \right)$$

where *H* is a constant. Suppose that a static observer at r' = 0 emits a photon at t' = 0. What radius r' will the photon reach as $t' \to \infty$? By comparing this result to your result in part *a*, deduce how *H* is related to Λ .

Solution: Cut to the chase:

$$0 = -(\dot{t}')^2 + e^{2Ht'}(\dot{r}')^2$$

$$\Rightarrow \frac{\mathrm{d}r'}{\mathrm{d}t'} = \mathrm{e}^{-\mathrm{H}t'}$$

$$\Rightarrow r' = \frac{1}{H} \left(1 - e^{-Ht'} \right),$$

so $r' \to \frac{1}{H}$ as $t' \to \infty$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで