
Index/index free notation

T (X ,Y , η, µ) = T ρσ
µν XµY νηρµσ = T cd

ab X aY bηcµd = T cd
ab Y bηcX

aµd

T a
b = T (dxa, ∂b)

∇XY = X b(∇bY
a)∂a

↔ X ν∇νY
µ = X b(∇bY

a)(∂a)µ



2020 Q3 d)

L = −(1 + r2)ṫ2 + (1 + r2)−1ṙ2 + r2(θ̇2 + sin2 θφ̇2).

By the usual arguments we can restrict to θ = π
2 . Also have conserved

quantities

Ω = r2 sin2 θφ̇ = r2φ̇

E = (1 + r2)ṫ

L = −1.

Since we start at r = 0, Ω = 0. Hence

−1 = (1 + r)−1(−E 2 + ṙ2).



ṙ2 = E 2 − 1− r2

⇒ r =
√
E 2 − 1 sin τA.

So the clock returns when τA = π.
On the other hand, for the observer remaining at the origin, −1 = −ṫ, so
τB = t. To compare the two times, we want to express τA in terms of the
coordinate time t.



E = (1 + r2)
dt

dτA
= (1 + (E 2 − 1) sin2 τA)

dt

dτA

⇒ t =

∫ τA

0

(
E

(1 + (E 2 − 1) sin2 τ)

)
dτ

= arctan(E tan τA)

So when τA = π, we also have τB = t = π!



2016 Question 1

Consider the following two-dimensional metric

ds2 = −cosh2ρdt2 + dρ2

where −∞ < t <∞ and 0 ≤ ρ <∞.
(a) Write down a Lagrangian for affinely parametrized geodesics.
Show that

ε = cosh2 ρṫ

and the Lagrangian itself are conserved.
(b)Using the coordinate transformation v = tanh ρ, show that(

dv

dt

)2

+ v2 = 1− κ

ε2

where κ = 0 for a null geodesic, and κ > 0 for a time-like geodesic.



(Skip (a)) Since v = tanh ρ we have dv = 1
cosh2 ρ

dρ, so the metric is

ds2 = cosh2 ρ(−dt2 + cosh2 ρdv 2) = − 1

1 − v 2
dt2 +

1

(1 − v 2)2
dv 2)

Note that ε = 1
1−v2 ṫ. For affinely parametrised geodesics we have

−κ = − 1

1 − v 2
ṫ2 +

1

(1 − v 2)2
v̇ 2 = −(1 − v 2)ε2 +

1

(1 − v 2)2
v̇ 2

where κ is constant (affine parameter), κ = 0 for null geodesics and κ > 0 for
timelike geodesics.
Now we have

dv

dt
=

v̇

ṫ
= ε−1 1

1 − v 2
v̇ ,

so

−κ = −ε2(1 − v 2) + ε2

(
dv

dt

)2



(c) Explain why κ = 1 for a time-like geodesic parametrized by
proper time and hence show that ε ≥ 1 for such a geodesic. Find
the time-like geodesic with ε = 1 and hence explain the physical
meaning of the coordinate t.



For timelike geodesics parametrised by proper time, g(X ,X ) = −1
where X is tangent to the geodesic. But

g(X ,X ) = − 1

1− v2
ṫ2 +

1

(1− v2)2
v̇2 = −κ.

In this case, (
dv

dt

)2

+ v2 = 1− 1

ε2
,

and since the LHS is ≥ 0 we must have ε2 ≥ 1. Also, ε ≥ 0 since t
increases to the future, so in fact ε ≥ 1.



If ε = 1, (
dv

dt

)2

+ v2 = 0.

Hence v = 0 and dv
dt = 0.

In view of ε = 1, we find that ṫ = 1, i.e. the coordinate t agrees
(up to an additive constant) with the proper time τ along a
stationary geodesic through ρ = 0.



(d) Consider geodesics starting at the origin ρ = 0 with ρ̇ > 0.
Sketch the trajectories of both null and time-like geodesics in the
(v , t)-plane. Show that a null geodesic will reach ρ =∞ at an
infinite value of the affine parameter, whereas a time-like geodesic
will return to ρ = 0 after proper time π.
[You may use without proof the definite integral∫ π

0

dt

1− γ2 sin2 t
=

π

1− γ2

which is valid for 0 ≤ γ < 1.]



(
dv

dt

)2

= 1− κ

ε2
− v2

→ t =

∫
dv√

1− κ
ε2 − v2

(while v is increasing, but symmetry

arguments deal with decreasing case)

⇒ t = arcsin

(
v

/√
1− κ

ε2

)

v =

√
1− κ

ε2
sin t.



Timelike case (κ = 1)

dt

dλ
= ε(1− v2) = ε

(
1−

(
1− 1

ε2

)
sin2 t

)

⇒ λ(return) =
1

ε

∫ π

0

dt(
1−

(
1− 1

ε2

)
sin2 t

)
=

π

ε(1− 1 + 1/ε)
= π.

Null case: v = sin t, dt
dλ = ε cos2 t, so λ = ε−1 tan t, v = sin(tan−1(ελ)).

So as λ→∞, v → 1, so ρ→∞.
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A stationary observer at radius r1 (in Schwarzschild) emits a
photon of frequency ω1, which is received by a stationary observer
at radius r2 > r1. Using the results from parts (a), (b) and (c),
show that the frequency ω2 measured by the observer at radius r2
is given by

ω2

ω1
=

√
1− 2m/r1
1− 2m/r2

.

Comment on the frequency observed at radius r2 as r1 → 2m.
[You may use without proof at the frequency ω of a photon with
tangent vector V a measured by a coincident observer with
4-velocity Ua is ω = UaV

a.]



Along the worldline of the photon, (1− 2m/r)ṫ = E is constant. So the
tangent to the photon is

V =
dxa

dλ
∂a = E (1− 2m/r)−1∂t + V r∂r + V θ∂θ + V φ∂φ.

The tangent to a stationary observer is

U =
1√

1− 2m/r
∂t .

Hence

ω2

ω1
=

g(V ,U2)

g(V ,U1)
=

√
1− 2m/r1
1− 2m/r2

.

As r1 → 2m, the frequency observed by the observer at r2 approaches
zero, and the signals are infinitely redshifted.



2014 Question 1

Consider a timelike geodesic in the following two-dimensional
spacetime:

ds2 = e2gξ(−dη2 + dξ2)

where g > 0.
(a) Show that

E = e2gξη̇

is conserved along the geodesic, where η̇ denotes the derivative of
η with respect to proper time. Show that

ξ̇2 = e−4gξ(E 2 − e2gξ).



Affinely parametrised geodesics extremise the action associated
with the Lagrangian

L = e2gξ(−η̇2 + ξ̇2).

Since ∂L/∂η = 0, the quantity ∂L/∂η̇ is constant, i.e. e2gξη̇ = E
is constant.
Then, since τ is the proper time (or since L is independent of τ)
we have L = −1, i.e.

−1 = −e−2gξE 2 + e2gξ ξ̇2

⇒ ξ̇2 = e−4gξ
(
E 2 − e2gξ

)



(b) Use your results in part (a) to obtain an equation for (dξ/dη)2

and explain why an observer following a timelike geodesic who
initially moves in the +ξ direction will eventually turn around and
approach ξ = −∞.



dξ

dη
=

dξ

dτ

dτ

dη
=

dξ

dτ

(
dη

dτ

)−1

=
ξ̇

η̇
.

We also have
η̇ = Ee−2gξ,

hence (
dξ

dη

)2

= 1− E−2e2gξ

and we see that, if ξ is initially increasing with η, then eventually ξ
will become sufficiently large that we will have E−2e2gξ = 1, at
which point dξ

dη will have decreased to zero. After this, ξ̇ will

become negative (since ξ̇ is smooth).



2013 Q3

Skip part (a) – not applicable to the course now. I’ll also change the
signature of the metric to match our conventions.
The metric is

g = −
(

1− Λ

3
r2

)
dt2 +

(
1− Λ

3
r2

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
.



b) Consider geodesics in the equatorial plane, θ = π/2. Show that

E =

(
1− Λ

3
r2

)
ṫ, J = r2φ̇

are conserved along these geodesics, where ẋa refers to the derivative of
the coordinate xa with respect to the affine parameter of the geodesic.
For timelike geodesics, obtain an equation for ṙ in terms of an effective
potential. Can bound orbits occur in this spacetime? If so, compute the
radius of circular orbits in terms of J and Λ. Distinguish between the
cases Λ > 0 and Λ < 0.



Solution: Skip conserved quantities. Substituting conserved quantities
into the equation L = −1 (for timelike geodesics) we get

−1 =

(
1− Λ

3
r2

)−1 (
−E 2 + ṙ2

)
+ r−2J2

⇒1

2
ṙ2 +

1

2

(
−Λ

3
r2 + J2r−2

)
=

1

2
E 2 +

Λ

6
J2 − 1

2
,

so the effective potential is

V (r) =
1

2

(
−Λ

3
r2 + J2r−2

)
⇒ V ′(r) = −Λ

3
r − J2r−3.

If Λ > 0 the V strictly decreases and there are no bound orbits. If Λ < 0
and J 6= 0 then V has a local minimum, so there are bound orbits.



For circular orbits, we need ṙ = r̈ = 0, so V must be at a local
extremum. Hence −Λ

3 r − J2r−3+ = 0, and so

r =

(
3J2

Λ

) 1
4

.



c) Consider null geodesics in the equatorial plane, θ = π/2. What
is the effective potential for these geodesics? Show that photons
travel along straight lines in this spacetime.



Solution:
Setting L = 0 and substituting the conserved quantities,

0 =

(
1− Λ

3
r2

)−1 (
−E 2 + ṙ2

)
+ r−2J2

⇒1

2
ṙ2 +

1

2
J2r−2 =

1

2
E 2 +

Λ

6
J2,

so the effective potential is 1
2J

2r−2.



Now we have
dr

dφ
=

ṙ

φ̇
=

r2

J
ṙ ,

and so (
dr

dφ

)2

+ r2 =

(
E 2

J2
+

Λ

3

)
r4.

We can either solve this by integrating directly and using trig
substitutions, or by guessing rcos(φ− φ0) = b for some constant
b, which represents “straight lines” and solves the equations with
impact parameter

b =

(
E 2

J2
+

Λ

3

)− 1
2

.



d) For the case Λ < 0, consider two static observers located at
radii r1 and r2. Suppose the observer at r1 sends a photon to the
observer at r2. What is the ratio of the photon frequency measured
by the observer at r1 to the photon frequency measured by the
observer at r2?



Solution:
Using expressions from above, the photon frequency is g(U,V ), where U is the
tangent vector to the observer’s worldline and V is the tangent to the photon’s
worldline.
For static observers, U = c∂t for some constant c. Since also g(U,U) = −1,
we have

−1 = −
(

1 − Λ

3
r 2

)
c2

and so

U =

(
1 − Λ

3
r 2

)− 1
2

∂t .

Along the worldline of the photon, we have the constant

E =

(
1 − Λ

3
r 2

)
dt

dλ
,

so the tangent to the photon is

V = E

(
1 − Λ

3
r 2

)−1

∂t + V r∂ − r + V θ∂θ + V φ∂φ



Hence for a static observer at r = R,

ω = g(U,V ) = E

(
1− Λ

3
R2

)− 1
2

and so

ω1

ω2
=

√
1− Λ

3 (r2)2

1− Λ
3 (r1)2

.



e) For the case Λ > 0, the metric can be written in different
coordinates as

g = −dt ′2 + e2Ht′
(
(dr ′)2 + (r ′)2(dθ2 + sin2 θdφ2)

)
where H is a constant. Suppose that a static observer at r ′ = 0
emits a photon at t ′ = 0. What radius r ′ will the photon reach as
t ′ →∞? By comparing this result to your result in part a, deduce
how H is related to Λ.



Solution:
Cut to the chase:

0 = −(ṫ ′)2 + e2Ht′(ṙ ′)2

⇒ dr ′

dt ′
= e−Ht

′

⇒ r ′ =
1

H

(
1− e−Ht

′
)
,

so r ′ → 1
H as t ′ →∞.


