
Stationary solutions

Slightly vague question regarding ignoring coordinates in a
stationary situation.
In general, stationary means that, if we choose the right
coordinates, all of the components of the metric will be
independent of the “time” coordinate. This can simplify some
calculations: for example, the coordinate time for a light signal to
travel from a place with spatial coordinates x to a place with
spatial coordinates y will be independent of the time when the
light signal is sent. On the other hand, if two observers are moving
relative to the stationary coordinates, then various physical
quantities will depend on the time at which they are measured.



On a related note: to calculate redshift, in some situations
(stationary spacetime, stationary observers) we can simply take the
ratio

dτB
dt

/
dτA
dt

but in other situations we cannot. If one or more of the observers
are moving relative to the stationary coordinates, then this formula
might not give the right answer. Even in Minkowski space, for two
inertial observers, if their worldlines are not “parallel’ then there
will be some effect due to the changing times signals take to get
from one observer to the other – the Doppler effect!



Symmetries of the Riemann tensor

The definition is

Ra
bcdX

b = (∇c∇d −∇d∇c)X a,

so we immediately get antisymmetry in the last two indices,
Ra

bcd = −Ra
bdc

Next, apply (∇c∇d −∇d∇c) to the metric tensor:

0 = (∇c∇d −∇d∇c)gab

= −Re
acdgeb − Re

bcdgae

⇒ Rabcd = −Rbacd ,

where we used the fact that ∇g = 0.



Finally, for a scalar field f , consider

∇a∇b∇c f +∇b∇c∇af +∇c∇a∇bf

−∇b∇a∇c f −∇a∇c∇bf −∇c∇b∇af

= ∇a[∇b,∇c ]f +∇b[∇c ,∇a]f +∇c [∇a,∇b]f = 0

= [∇a,∇b]∇c f + [∇b,∇c ]∇af + [∇c ,∇a]∇bf

= Rd
cab∇d f + Rd

abc∇d f + Rd
bca∇d f

=
(
Rd

cab + Rd
abc + Rd

bca

)
∇d f

so Rd
cab + Rd

abc + Rd
bca = 0 (note that we can span the cotangent space

with covectors of the form ∇f ).



2019 Question 2 d)

General tip: a metric of the form g = −dt2 + dx2 can be
transformed into “null” form by defining

u = t − x v = t + x ,

in which case g = −dudv .



2011 Question 3

We have reduced the null geodesic equation to(
du

dφ

)2

= α2 + 2u3 − u2,

where u = m/r , α = Em/J.
Show that a photon may have a stable circular orbit at r = 3m.



Solution

For a circular orbit, we must be at a local extremum of the
effective potential, V (u) = −2u3 + u2. Since V ′(u) = −6u2 + 2u
(and u > 0) there is a unique extremum at u = 1/3. Also,
V ′′(u) = −12u + 2, so V ′′(1/3) = −2 > 0 and this is a local
maximum (hence unstable!).
Finally, u = 1/3 means r = 3m.



Verify that

Aeφ =
1− 3u

(
√

3 +
√

1 + 6u)2

is a solution to the geodesic equation, for an arbitrary constant A.
Give a qualitative description of the photon orbits as we approach
the limit φ = −∞ for A = 0 and A > 0.



Solution

Differentiating implicitly, we find that

du

dφ

(
−3(3 +

√
3
√

1 + 6u)√
1 + 6u(

√
3 +
√

1 + 6u)3

)
= Aeφ =

1− 3u

(
√

3 +
√

1 + 6u)2
.

Some algebra then leads to

du

dφ
= − (1− 3u)

√
1 + 6u

3
√

3
⇒
(
du

dφ

)2

=
1

27
− u2 + 3u3,

so this solves the required equation (with α2 = 1/27).
Qualitatively, if A = 0 we have u = 1/3, and so we just have the unstable
circular orbit. If A > 0 then, as φ→∞, we also have an orbit which
approaches the circular orbit (since u → 1/3). In fact, if A > 0 then we see
that we must have u < 1/3, and so (recalling u = m/r) this corresponds to an
orbit which “spirals out” from r/3m as φ increases.



2012 Question 1 c)

Using local inertial coordinates, show that if the connection is
metric compatible and torsion free, then
Rabcd = Rbacd = Rabdc = Rcdab and Rabcd + Rbcad + Rcabd = 0.
Why is it sufficient to use local inertial coordinates to prove these
identities?



Solution

We proved most of these identities already, but not using any
special coordinates. In local inertial coordinates,

Ra
bcd = ∂cΓa

db − ∂dΓa
cb,

from which we can also derive the required expressions.
(The remaining identity, Rabcd = Rcdab, can be obtained by taking
the Bianchi identity Rabcd + Racdb + Radbc = 0, cyclicly permuting
indices to obtain 4 such expressions, adding the first and last
expressions and subtracting the middle two, and finally using
antisymmetry in the first and last pairs of indices.)



Why is it sufficient to use local inertial coordinates to prove these
identities?
What they want you to say: The identities in questions are
“tensorial”, and so, if they hold in one coordinate system then they
will hold in all coordinate systems.
For example, if we have shown that Xa = Ya in some coordinate
system, then (X − Y )a = 0. But when we change coordinates this
relationship is maintained, since (X − Y )a′ = (X − Y )a

∂xa

∂ya′ = 0.



A better answer: This question is similar to the following: suppose
that, in some basis, all the components of a vector X are zero. Show
that X = 0. You would answer this question by saying that, expanding in
the basis in question,

X = X aea = 0

since X a = 0 for all a.
Similarly, if we know that Xa = Ya in some coordinate system, then this
means that

X − Y = (Xa − Ya)dxa = 0,

and so X = Y (and hence, although this is unnecessary to state, Xa = Ya

in all coordinate systems).



2020 Question 1. c)

A satellite moves in an ingoing radial direction along a geodesic in
the r > 2M region of Schwarzschild spacetime. An observer, Alice,
moves along a worldline where r = R, for some large constant
R � 2M. The angular coordinates along Alice’s worldline also take
constant values, which are the same as those along the satellite’s
geodesic.
The proper time along the satellite’s worldline is τS , while the
proper time along Alice’s worldline is τA.
(i) Assuming that τA = 0 when t = 0, show that the proper time
along Alice’s worldline is given by

τA = t + O

(
M

R

)
.



Solution

Alice’s worldline is given by

(t, r , θ, φ) = (t(τA),R, θ0, φ0)

where θ0 and φ0 are constants. Hence the tangent to Alice’s worldline is X ,
where

X =
dt

dτA
∂t .

Since τA is the proper time along Alice’s worldline, we must have
g(X ,X ) = −1. Hence

−1 = −
(

1− 2M

R

)(
dt

dτA

)2

⇒ dt

dτA
=

(
1− 2M

R

)− 1
2

= 1 + O

(
M

R

)
.

Integrating this, and using the fact that τA = 0 when t = 0, we obtain

t = τA + O

(
M

R

)
.



(ii) The satellite emits a (radial) light signal when τS = τ0.
Suppose that, at this proper time, the satellite is at the point
t = t0, r = r0 (where r0 > 2M). Show that this signal reaches
Alice when τA = τ1, where

τ1 = t0 + R − r0 + 2M log

(
R

r0 − 2M

)
+ O

(
M

R

)
.



Solution

Along a radial null geodesic with affine parameter λ we can use the
conserved quantity E (due to the fact that the Lagrangian is
independent of t) to find

dt

dλ
= E

(
1− 2M

r

)−1
.

But also, since this is an outgoing radial null geodesic, we have

dr

dλ
= E .

Putting these two together, we have

dr

dt
= 1− 2M

r

⇒ dt =

(
1 +

2M

r − 2M

)
dr .



Integrating from r = r0 (when t = t0) to r = R (when t = t1) we obtain

t1 − t0 = R − r0 + 2M log

(
R − 2M

r0 − 2M

)
.

Now, since the proper time measured by Alice matches the coordinate
time to leading order in M

R , we have

τ1 = t0 + R − r0 + 2M log

(
R − 2M

r0 − 2M

)
+ O

(
M

R

)
= t0 + R − r0 + 2M log

(
R

r0 − 2M

)
+ 2M log

(
R − 2M

R

)
+ O

(
M

R

)
= t0 + R − r0 + 2M log

(
R

r0 − 2M

)
+ 2M log

(
1− 2M

R

)
+ O

(
M

R

)
= t0 + R − r0 + 2M log

(
R

r0 − 2M

)
+ O

(
M

R

)
.



d) (i) The satellite emits a second light signal when
τS = τ0 + ∆τS . This signal is received by Alice when
τA = τ1 + ∆τA. Neglecting terms of order (∆τS)2 and terms of
order M/R, show that, if the energy of the geodesic on which the
satellite moves is E , then

∆τA =
Er0

r0 − 2M

(
1 +

√
1− E−2

(
r0 − 2M

r0

))
∆τS

+ O
(
(∆τS)2

)
+ O

(
M

R

)
.



Solution

The satellite emits the second signal at t = t(τ0 + ∆τS),
r = r(τ0 + ∆τS), where these are the points along the worldline of
the satellite, parametrised by its proper time τS .
Since we are neglecting terms of order (∆τS)2, we have

t(τ0 + ∆τS) = t0 +
dt

dτs
∆τS + O

(
(∆τS)2

)
r(τ0 + ∆τS) = r0 +

dr

dτs
∆τS + O

(
(∆τS)2

)
.

Furthermore, we have

τ1 + ∆τ1 = τ1(τ0 + ∆τ0)

⇒ ∆τ1 =
dτ1
dτ0

∆τ0 + O
(
(∆τS)2

)
,

where we are writing τ1 = τ1 (r0(τ0), t0(τ0)).



Differentiating the formula obtained in the previous part (r0 and t0 are
now functions of τS), we find

∆τA =

(
dt

dτS
− dr

dτS
− 2M

r0 − 2M

dr

dτS

)
∆τS +O

(
(∆τS)2

)
+O

(
M

R

)
(1)

where the various terms are evaluated at r = r0, t = t0.
Along the worldline of the satellite, the conserved energy gives us

dt

dτS
= E

(
1− 2M

r

)−1

so at r = r0,
dt

dτS
= E

(
r0

r0 − 2M

)
. (2)

Next, since the satellite moves along an ingoing radial timelike geodesic
parametrised by proper time τS , we have

−1 =

(
1− 2M

r

)−1
(
−E 2 +

(
dr

dτS

)2
)

⇒ dr

dτS
= E

√
1− E−2

(
r − 2M

r

)
.



Evaluating this at r = r0 and substituting the result, along with equation
(2) into equation (1), we obtain

∆τA =
Er0

r0 − 2M

(
1 +

√
1− E−2

(
r0 − 2M

r0

))
∆τS+O

(
(∆τS)2

)
+O

(
M

R

)
.



(ii) What happens to the satellite when r0 = 2M? What happens
to the signals received by Alice when this occurs?



Solution

∆τA =
Er0

r0 − 2M

(
1 +

√
1− E−2

(
r0 − 2M

r0

))
∆τS+O

(
(∆τS)2

)
+O

(
M

R

)
.

When r0 = 2M the satellite reaches the event horizon of the black hole.
At this point, ∆τA →∞, so the frequency of the signals received by
Alice tends to infinity – they are infinitely redshifted.



2013 Question 1

(a) State the weak and strong versions of the Principle of
Equivalence.
Weak – the trajectory of a point mass in a gravitational field depends only on
its initial position and velocity.

Strong: The gravitational motion of a small test body depends only on its initial

position in spacetime and velocity, and not on its constitution, and the outcome

of any local experiment (gravitational or not) in a freely falling laboratory is

independent of the velocity of the laboratory and its location in spacetime.



(b) Consider the metric for 3-dimensional Minkowski space
(t ′, r ′, φ′) where t ′ is the time coordinate, and (r ′, φ′) are
2-dimensional polar coordinates:

ds2 = −(dt ′)2 + (dr ′)2 + (r ′)2(dφ′)2.

Now consider a coordinate transformation to a frame which is
rotating with constant angular velocity ω:

t ′ = t, r ′ = r , φ′ = φ+ ωt.

What is the metric in the rotating frame (t, r , φ)?



We have
dt′ = dt dr ′ = dr dφ′ = dφ+ ωdt,

so the line element is

ds2 = −dt2 + dr 2 + r 2 (dφ+ ωdt)2

= −(1− r 2ω2)dt2 + 2ωr 2dtdφ+ dr 2 + r 2dφ2



(c) Consider a static observer in the rotating frame who is located
at the position (r , φ) = (R, 0). How is the proper time of this
observer related to the coordinate time t? Explain the physical
significance of this result.



Since this observer moves along the curve (t, r , φ) = (t(τ),R, 0),
the tangent to this curve is ṫ∂t . Since τ is proper time, this vector
has norm −1, i.e. ṫ2gtt = −1, which means

−(1− R2ω2)ṫ2 = −1 ⇒ ṫ = (1− R2ω2)−
1
2

where we took the positive root because t increases as proper time
increases. Hence

t − t0 = (1− R2ω2)−
1
2 τ

where t0 is constant.
Hence time passes more slowly for the rotating observer relative an
observer at the origin (who measures proper time t).



(d) Compute the 4-acceleration of the static observer in part (c) in
(t, r , φ) coordinates, where the 4-acceleration is defined to be

aµ = uν∇νuµ

and uµ is the 4-velocity of the observer. Explain the physical
significance of this result.



We have

aµ = uν∇νuµ = (1− R2ω2)−
1
2
(
∂tu

µ + Γµtρu
ρ
)

= (1− R2ω2)−1Γµtt

=
1

2
(1− R2ω2)−1gµν (2∂tgtν − ∂νgtt)

= −1

2
(1− R2ω2)−1gµr (∂rgtt)

= − Rω2

1− R2ω2
δµr ,

so the observer accelerates towards the centre as expected.



(e) For a static metric gµν which is independent of the coordinate
time t, the metric for a t = constant spatial hypersurface as
measured by static observers is given by

γij = gij −
gtigtj
gtt

.

Using the metric you obtained in part (b), compute the spatial
metric γij for observers rotating with angular velocity ω in
3-dimensional Minkowski space. Using γij , compute the
circumference of a circle of radius R as measured by these
observers. Explain the physical significance of this result.



We have

γijdx
idx j = dr2 + r2dφ2 +

ω2r4

(1− r2ω2)
dφ2 = dr2 +

r2

(1− r2ω2)
dφ2,

so the circumference of a circle of radius R measured by these
observers is 2π R√

1−R2ω2
. Hence the geometry of the spatial slices

measured by rotating observers is non-Euclidean!



2015 Question 3

Consider the Schwarzschild line element,

ds2 = −
(

1− 2M

r

)
dt2+

(
1− 2M

r

)−1
dr2+r2

(
dθ2 + sin2 θdφ2

)
.

(a) Explain why we can take geodesics to lie in the equatorial
plane (θ = π/2) without loss of generality. Then show that a null
geodesic in the equatorial plane obeys

ṙ2 = E 2 −
(

1− 2M

r

)
J2

r2

where E =

(
1− 2M

r

)
ṫ , J = r2φ̇,

and show that E and J are constants of motion.



Consider a geodesic through the point p in the Schwarzschild geometry, with
tangent vector X at p. Then, since the metric is invariant under rotations, we
can perform a rotation so that p lies in the equatorial plane, and then another
rotation (if necessary) which fixes p and rotates X so that X is tangent to the
equatorial plane. Hence, without loss of generality, we can suppose that
initially θ = π

2
and θ̇ = 0. But the equation of motion for θ is

d

ds

(
r 2θ̇
)
− r 2 sin θ cos θφ̇2 = 0.

This is a second order ODE for θ(s). θ(s) = π
2

solves this ODE and has the
required initial data, hence it is the unique solution, and so the geodesic will
remain in the equatorial plane for all time.



Affinely parametrised null geodesics in the equatorial plane
extremise the action associated with the Lagrangian

L = −
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1
ṙ2 + r2φ̇2.

Since the Lagrangian is independent of t, ∂L
∂ ṫ

is constant, so E is
constant. Similarly, the Lagrangian is independent of φ, so J is
constant. Finally, the Lagrangian satisfies L = 0 for affinely
parametrised null geodesics. Substituting for E and J, we find that

0 = −
(

1− 2M

r

)−1
E 2 +

(
1− 2M

r

)−1
ṙ2 + r−2J2

⇒ ṙ2 = E 2 −
(

1− 2M

r

)
J2

r2



(b) Describe briefly what types of geodesics are allowed. If a
circular orbit is possible, determine the value of its radius and
comment on its stability.



We can write the equation derived above as 1
2
ṙ 2 + V (r) = 1

2
E 2, with

V (r) = (1− 2M/r)J2/(2r 2). This describes a particle with unit mass and total
energy 1

2
E 2 moving in a potential V (r).

Considering this potential V , we see that, if J = 0 then light rays move in
straight lines in the radial direction. Otherwise we see that V has a maximum

at r = 3M (when V = J2

54M2 ) and decreases like J2/r 2 at large r .
Circular null geodesics are only possible at r = 3M. They are unstable since
this is a local maximum of the potential. Otherwise, if E 2 > J2/(27M2), then
null geodesics can come in from infinity, pass over the maximum of the
potential and fall into the black hole. On the other hand, if E 2 < J2/(27M2),
then null geodesics can come in towards r = 0 before being reflected off the
potential, and then heading out in the direction of increasing r .



(c) Consider now the propagation of an electromagnetic signal
between two satellites, according to the figure (the figure shows a
null geodesic travelling between satellites at radii r1 and r2). The
point r = r0 is the point of closest approach to the Sun for the
signal propagation.
Using the geodesic equation from problem (a), find the relation
between the ratio E/J and r0. Then, rewrite that equation in
terms of dr/dt and r0, instead of ṙ , E and J.
Finally, determine the coordinate time ∆t required for the
propagation of the signal between the two satellites, in terms of r0,
r1 and r2. It is enough to specify ∆t in terms of an integral
expression, which you need not attempt to solve in general. Solve
it only in the flat spacetime case M = 0, and interpret that result.



Recall

ṙ 2 = E 2 −
(

1− 2M

r

)
J2

r 2
.

At the point of closest approach, ṙ = 0 and r = r0, so

E 2 =

(
1− 2M

r0

)
J2

r 20
⇒ E

J
= ± 1

r0

√
1− 2M

r0

Now we note that dr/dt = ṙ/ṫ = ṙ
E

(
1− 2M

r

)
. Hence the equation for dr/dt is(

dr

dt

)2

=

(
1− 2M

r

)2

− 1

r 2

(
1− 2M

r

)3
J2

E 2

=

(
1− 2M

r

)2(
1− r 30

r 3

(
r − 2M

r0 − 2M

))
,

and so we see that

∆t =

∫ r1

r0

(
1− 2M

r

)−1(
1− r 30

r 3

(
r − 2M

r0 − 2M

))− 1
2

dr

+

∫ r2

r0

(
1− 2M

r

)−1(
1− r 30

r 3

(
r − 2M

r0 − 2M

))− 1
2

dr



In the case M = 0 we find that

∆t =

∫ r1

r0

r√
r2 − r20

dr +

∫ r2

r0

r√
r2 − r20

dr =
√

r21 − r20 +
√

r22 − r20

which is the standard formula from trigonometry, if we assume
that the light ray travels in a straight line.


