
Covariant derivatives and notation

The notation ∇aX
b means the (a, b) component of the (1, 1)

tensor (field) ∇X . Annoyingly, we might sometimes want to take a
derivative of the scalar field X a (the a-th component of X with
respect to some chosen coordinate system), and this is, in general,
not the same thing. The only good notation for this is ∂bX

a. For
example,

∇XY = X a∇a(Y b∂b)

= X a(∂aY
b)∂b + X aY b(∇a∂b)

= X a(∂aY
b)∂b + X aY bΓc

ab∂c

= X a
(
∂aY

b + Γb
acY

c
)
∂b

= X a(∇aY
b)∂b



On the other hand, in the following derivation we are expanding
∇η using the Leibniz rule for ∇, and so when we write ∇aηb we
mean (as always) the (a, b) component of the (0, 2) tensor (field)
∇η, not the operator ∇a applied to the b-th component of η! (If
we had meant this, we would have simply written ∂aηb).

(∂aηb)X b + ηb(∂aX
b) = da(ηbX

b)

= ∇a(ηbX
b)

= (∇aηb)X b + ηb(∇aX
b)

= (∇aηb)X b + ηb(∂aX
b + Γb

acX
c).



An alternative way to keep everything clear would be to write
(∇X ) b

a for the (a, b)-th component of ∇X , and to write ∇aX
b to

mean the a-th component of ∇X b (where, since we have picked
coordinates, X b is simply a scalar function for each choice of b).

Unfortunately this is not the standard notation!



2021 Question 1 b)

A satellite orbits the Earth in a circular orbit at a radius rS (in
Schwarzschild coordinates), and Alice stands on the surface of the
Earth, which has radius rA. No external forces act on the satellite.
Each time the satellite passes directly above Alice, it emits a radial
light ray, which is then received by Alice.
Let the proper time along the worldline of the satellite be τS , and
let the proper time along Alice’s worldline be τA. At the moment
when the satellite first emits a light ray, its clock reads τS = 0, and
when Alice first receives the light ray, her clock reads τA = 0.
Subsequent signals are emitted by the satellite when its clock reads
τS = T(S ,n) (for n ∈ N), and received by Alice when her clock
reads τA = T(A,n).

(i) For fixed n ≥ 1, find T(A,n) as a function of T(S,n), rS and rA,
justifying all of your calculations.



Solution:
We will calculate τS and τA as functions of the Schwarzschild time
coordinate t. Then, let the Schwarzschild time for a radial light ray
to go from rS to rA be t0 (in the end we won’t have to calculate
this constant).
First we calculate τS(t). The worldline of the satellite, written in
Schwarzschild coordinates, is (t(τS), r(τS), θ(τS), φ(τS)). This
worldline extremises the Lagrangian

L = −
(

1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2,

where ‘dots’ are derivatives with respect to τS .



First we note that, without loss of generality, we can take the
worldline of the satellite to lie in the equatorial plane θ = π

2 . This
is because the Euler-Lagrange equation for θ is

r2θ̈ + 2r ṙ θ̇ − r2 sin θ cos θφ̇ = 0,

and θ ≡ π
2 is a solution to this ODE. Hence, if the initial

conditions are θ = π
2 , θ̇ = 0, then this is the (unique) solution, and

these initial conditions can be obtained by using the isometries
associated with spherical symmetry.



Next we note that, since the Lagrangian is independent of t, E is
constant, where

E = −1

2

∂L

∂ ṫ
=

(
1− 2M

r

)
ṫ.

Similarly, since the Lagrangian is independent of φ, Ω is constant,
where

Ω =
1

2

∂L

∂φ̇
= r2 sin2 θφ̇.

Finally, since τS is the proper time along the worldline of the
satellite, L = −1.



Putting this together, we find that

−1 = −
(

1− 2M

r

)−1

E 2 +

(
1− 2M

r

)−1

ṙ2 + r−2Ω2

⇒ 1

2
ṙ2 − M

r
+

Ω2

2r2
− MΩ2

r3
=

1

2
(E 2 − 1),

so the motion corresponds to the motion of a particle in one
dimension, with potential V (r) = −M

r + Ω2

2r2 − MΩ2

r3 and energy
1
2 (E 2 − 1).



For a circular orbit we must have ṙ = r̈ = 0, meaning that we must
be at a local extremum of the potential energy (since r̈ = −V ′(r)).
Since the satellite orbits at a radius rS , the extrema of V are at rS ,
where

Mr2
S − Ω2rS + 3MΩ2 = 0.

Hence the angular momentum of the satellite is given by

Ω2 =
Mr2

S

rS − 3M
.

Next, since ṙ = 0 the energy of the orbit is given by

E 2 =

(
1− 2M

rS

)(
1 + r−2

S Ω2
)

=
(rS − 2M)2

rS(rS − 3M)
.



Finally, recall that ṫ =
(

1− 2M
rS

)−1
E > 0. Hence

dt

dτS
=

√
rS

rS − 3M
.

Hence we have

τS = CS +

√
rS − 3M

rS
t,

for some constant CS .



Next we compute the proper time along the worldline of Alice.
Along Alice’s worldline, all of the spatial coordinates are constant,
and so we have

−1 = gab
dxa

dτA

dxb

dτA
= −

(
1− 2M

rA

)(
dt

dτA

)2

.

Hence we have

τA = CA +

√
rA − 2M

rA
t,

for some constant CA.
Now, since the coordinate time for a radial light ray to reach Alice
from Bob is t0, which is a constant independent of n, we find that

T(A,n) =

√
rS(rA − 2M)

rA(rS − 3M)
T(S ,n).



2020 Question 1. c)

A satellite moves in an ingoing radial direction along a geodesic in
the r > 2M region of Schwarzschild spacetime. An observer, Alice,
moves along a worldline where r = R, for some large constant
R � 2M. The angular coordinates along Alice’s worldline also take
constant values, which are the same as those along the satellite’s
geodesic.
The proper time along the satellite’s worldline is τS , while the
proper time along Alice’s worldline is τA.
(i) Assuming that τA = 0 when t = 0, show that the proper time
along Alice’s worldline is given by

τA = t + O

(
M

R

)
.



Solution

Alice’s worldline is given by

(t, r , θ, φ) = (t(τA),R, θ0, φ0)

where θ0 and φ0 are constants. Hence the tangent to Alice’s worldline is X ,
where

X =
dt

dτA
∂t .

Since τA is the proper time along Alice’s worldline, we must have
g(X ,X ) = −1. Hence

−1 = −
(

1− 2M

R

)(
dt

dτA

)2

⇒ dt

dτA
=

(
1− 2M

R

)− 1
2

= 1 + O

(
M

R

)
.

Integrating this, and using the fact that τA = 0 when t = 0, we obtain

t = τA + O

(
M

R

)
.



(ii) The satellite emits a (radial) light signal when τS = τ0.
Suppose that, at this proper time, the satellite is at the point
t = t0, r = r0 (where r0 > 2M). Show that this signal reaches
Alice when τA = τ1, where

τ1 = t0 + R − r0 + 2M log

(
R

r0 − 2M

)
+ O

(
M

R

)
.



Solution

Along a radial null geodesic with affine parameter λ we can use the
conserved quantity E (due to the fact that the Lagrangian is
independent of t) to find

dt

dλ
= E

(
1− 2M

r

)−1

.

But also, since this is an outgoing radial null geodesic, we have

dr

dλ
= E .

Putting these two together, we have

dr

dt
= 1− 2M

r

⇒ dt =

(
1 +

2M

r − 2M

)
dr .



Integrating from r = r0 (when t = t0) to r = R (when t = t1) we obtain

t1 − t0 = R − r0 + 2M log

(
R − 2M

r0 − 2M

)
.

Now, since the proper time measured by Alice matches the coordinate
time to leading order in M

R , we have

τ1 = t0 + R − r0 + 2M log

(
R − 2M

r0 − 2M

)
+ O

(
M

R

)
= t0 + R − r0 + 2M log

(
R

r0 − 2M

)
+ 2M log

(
R − 2M

R

)
+ O

(
M

R

)
= t0 + R − r0 + 2M log

(
R

r0 − 2M

)
+ 2M log

(
1− 2M

R

)
+ O

(
M

R

)
= t0 + R − r0 + 2M log

(
R

r0 − 2M

)
+ O

(
M

R

)
.



d) (i) The satellite emits a second light signal when
τS = τ0 + ∆τS . This signal is received by Alice when
τA = τ1 + ∆τA. Neglecting terms of order (∆τS)2 and terms of
order M/R, show that, if the energy of the geodesic on which the
satellite moves is E , then

∆τA =
Er0

r0 − 2M

(
1 +

√
1− E−2

(
r0 − 2M

r0

))
∆τS

+ O
(
(∆τS)2

)
+ O

(
M

R

)
.



Solution

The satellite emits the second signal at t = t(τ0 + ∆τS),
r = r(τ0 + ∆τS), where these are the points along the worldline of
the satellite, parametrised by its proper time τS .
Since we are neglecting terms of order (∆τS)2, we have

t(τ0 + ∆τS) = t0 +
dt

dτs
∆τS + O

(
(∆τS)2

)
r(τ0 + ∆τS) = r0 +

dr

dτs
∆τS + O

(
(∆τS)2

)
.

Furthermore, we have

τ1 + ∆τ1 = τ1(τ0 + ∆τ0)

⇒ ∆τ1 =
dτ1

dτ0
∆τ0 + O

(
(∆τS)2

)
,

where we are writing τ1 = τ1 (r0(τ0), t0(τ0)).



Differentiating the formula obtained in the previous part, we find

∆τA =

(
dt

dτS
− dr

dτS
− 2M

r0 − 2M

dr

dτS

)
∆τS +O

(
(∆τS)2

)
+O

(
M

R

)
(1)

where the various terms are evaluated at r = r0, t = t0.
Along the worldline of the satellite, the conserved energy gives us

dt

dτS
= E

(
1− 2M

r

)−1

so at r = r0,
dt

dτS
= E

(
r0

r0 − 2M

)
. (2)

Next, since the satellite moves along an ingoing radial timelike geodesic
parametrised by proper time τS , we have

−1 =

(
1− 2M

r

)−1
(
−E 2 +

(
dr

dτS

)2
)

⇒ dr

dτS
= E

√
1− E−2

(
r − 2M

r

)
.



Evaluating this at r = r0 and substituting the result, along with equation
(2) into equation (1), we obtain

∆τA =
Er0

r0 − 2M

(
1 +

√
1− E−2

(
r0 − 2M

r0

))
∆τS+O

(
(∆τS)2

)
+O

(
M

R

)
.



(ii) What happens to the satellite when r0 = 2M? What happens
to the signals received by Alice when this occurs?



Solution

∆τA =
Er0

r0 − 2M

(
1 +

√
1− E−2

(
r0 − 2M

r0

))
∆τS+O

(
(∆τS)2

)
+O

(
M

R

)
.

When r0 = M the satellite reaches the event horizon of the black hole.
At this point, ∆τA →∞, so the frequency of the signals received by
Alice tends to infinity – they are infinitely redshifted.



2014 Question 1

Consider a timelike geodesic in the following two-dimensional
spacetime:

ds2 = e2gξ(−dη2 + dξ2)

where g > 0.
(a) Show that

E = e2gξη̇

is conserved along the geodesic, where η̇ denotes the derivative of
η with respect to proper time. Show that

ξ̇2 = e−4gξ(E 2 − e2gξ).



Affinely parametrised geodesics extremise the action associated
with the Lagrangian

L = e2gξ(−η̇2 + ξ̇2).

Since ∂L/∂η = 0, the quantity ∂L/∂η̇ is constant, i.e. e2gξη̇ = E
is constant.
Then, since τ is the proper time (or since L is independent of τ)
we have L = −1, i.e.

−1 = −e−2gξE 2 + e2gξ ξ̇2

⇒ ξ̇2 = e−4gξ
(
E 2 − e2gξ

)



(b) Use your results in part (a) to obtain an equation for (dξ/dη)2

and explain why an observer following a timelike geodesic who
initially moves in the +ξ direction will eventually turn around and
approach ξ = −∞.



dξ

dη
=

dξ

dτ

dτ

dη
=

dξ

dτ

(
dη

dτ

)−1

=
ξ̇

η̇
.

We also have
η̇ = Ee−2gξ,

hence (
dξ

dη

)2

= 1− E−2e2gξ

and we see that, if ξ is initially increasing with η, then eventually ξ
will become sufficiently large that we will have E−2e2gξ = 1, at
which point dξ

dη will have decreased to zero. After this, ξ̇ will

become negative (since ξ̇ is smooth).



(c) Consider an observer following a timelike geodesic with E = 1.
Find the trajectory ξ(η) which corresponds to the observer coming
in from ξ = −∞, turning around when η = 0, and going back out
to ξ = −∞.
[The integral∫

dx√
1− eαx

= − 2

α
tanh−1

√
1− eαx + constant

may be useful.]



Recall (
dξ

dη

)2

= 1− E−2e2gξ.

Set E = 1. While the geodesic is heading inward we have dξ
dη
> 0, so we take

the positive root:
dξ

dη
=
√

1− e2gξ.

Integrating this ∫
dη =

∫
dξ√

1− e2gξ

and using the hint

η = − 1

g
tanh−1

√
1− e2gξ + η0.

We are told that dξ/dη = 0 when η = 0, so ξ = 0 when η = 0. Hence η0 = 0.
We can invert the relationship above to find

ξ = − 1

g
log (cosh(gη)) .

Same formula holds for η > 0 by symmetry.



(d) Let

t =
1

g
egξ sinh(gη), x =

1

g
egξ cosh(gη).

What is the metric in (t, x) coordinates? What is the trajectory
that you computed in part (c) in (t, x) coordinates?
[The identities

cosh
(
tanh−1 x

)
=

1√
1− x2

, sinh
(
tanh−1 x

)
=

x√
1− x2

may be useful.]



We compute

dt = egξ sinh(gη)dξ + egξ cosh(gη)dη

dx = egξ cosh(gη)dξ + egξ sinh(gη)dη,

from which we see that

−dt2 + dx2 = e2gξ
(
−dη2 + dξ2

)
= ds2

Now recalling

ξ = − 1

g
log (cosh(gη)) ,

we find that, if we parametrise this curve by η, then

t =
1

g
e− log(cosh(gη)) sinh(gη) =

1

g
tanh(gη)

x =
1

g
e− log(cosh(gη)) cosh(gη) =

1

g
,

so the observer is at rest at x = 1/g .



(e) Explain the physical significance of proper time. What is the
proper time of the trajectory that you computed in part (c)?



Proper time along a timelike curve is the time that would be
measured by an accurate clock that travels along the curve.
The path computed in part (c), parametrised by proper time τ , is
given in (t, r) coordinates by

(t(τ), x(τ)) = (t(τ), 1/g).

Hence the tangent to this curve is (dt/dτ)∂t . Since τ is proper
time this should have length −1, i.e.

−1 = −
(
dt

dτ

)2

so τ = ±t + τ0, for some constant τ0. Since t increases to the
future we take the positive sign. In terms of the original
coordinates,

τ =
1

g
egξ sinh(gη) + τ0.



2016 Question 1

Consider the following two-dimensional metric

ds2 = −cosh2ρdt2 + dρ2

where −∞ < t <∞ and 0 ≤ ρ <∞.
(a) Write down a Lagrangian for affinely parametrized geodesics.
Show that

ε = cosh2 ρṫ

and the Lagrangian itself are conserved.
(b)Using the coordinate transformation v = tanh ρ, show that(

dv

dt

)2

+ v2 = 1− κ

ε2

where κ = 0 for a null geodesic, and κ > 0 for a time-like geodesic.



(Skip (a)) Since v = tanh ρ we have dv = 1
cosh2 ρ

dρ, so the metric is

ds2 = cosh2 ρ(−dt2 + cosh2 ρdv 2) = − 1

1− v 2
dt2 +

1

(1− v 2)2
dv 2)

Note that ε = 1
1−v2 ṫ. For affinely parametrised geodesics we have

−κ = − 1

1− v 2
ṫ2 +

1

(1− v 2)2
v̇ 2 = −(1− v 2)ε2 +

1

(1− v 2)2
v̇ 2

where κ is constant (affine parameter), κ = 0 for null geodesics and κ > 0 for
timelike geodesics.
Now we have

dv

dt
=

v̇

ṫ
= ε−1 1

1− v 2
v̇ ,

so

−κ = −ε2(1− v 2) + ε2

(
dv

dt

)2



(c) Explain why κ = 1 for a time-like geodesic parametrized by
proper time and hence show that ε ≥ 1 for such a geodesic. Find
the time-like geodesic with ε = 1 and hence explain the physical
meaning of the coordinate t.



For timelike geodesics parametrised by proper time, g(X ,X ) = −1
where X is tangent to the geodesic. But

g(X ,X ) = − 1

1− v2
ṫ2 +

1

(1− v2)2
v̇2 = −κ.

In this case, (
dv

dt

)2

+ v2 = 1− 1

ε2
,

and since the LHS is ≥ 0 we must have ε2 ≥ 1. Also, ε ≥ 0 since t
increases to the future, so in fact ε ≥ 1.



If ε = 1, (
dv

dt

)2

+ v2 = 0.

Hence v = 0 and dv
dt = 0.

In view of ε = 1, we find that ṫ = 1, i.e. the coordinate t agrees
(up to an additive constant) with the proper time τ along a
stationary geodesic through ρ = 0.



(d) Consider geodesics starting at the origin ρ = 0 with ρ̇ > 0.
Sketch the trajectories of both null and time-like geodesics in the
(v , t)-plane. Show that a null geodesic will reach ρ =∞ at an
infinite value of the affine parameter, whereas a time-like geodesic
will return to ρ = 0 after proper time π.
[You may use without proof the definite integral∫ π

0

dt

1− γ2 sin2 t
=

π

1− γ2

which is valid for 0 ≤ γ < 1.]
– skip (it’s just two integrals).



2015 Question 1

Consider the Maxwell equations in vacuum,

∇µFµν = 0, ∇[λFµν] = 0, with Fµν = Fνµ.

(a) Show that, for Minkowski spacetime, these equations imply
that Fµν satisfies a wave equation: ∂λ∂λFµν = 0.



Working in inertial coordinates in Minkowski space, ∇a = ∂a.
Using the antisymmetry of F , the second Maxwell equation is
equivalent to

∂λFµν + ∂µFνλ + ∂νFλµ = 0.

Taking a ∂λ derivative:

0 = ∂λ∂λFµν + ∂λ∂µFνλ + ∂λ∂νFλµ

= ∂λ∂λFµν + ∂µ∂
λFνλ + ∂ν∂

λFλµ

= ∂λ∂λFµν .



(b) Using local inertial coordinates, show that a (0, 2) tensor Tµν
satisfies

∇µ∇νTλρ −∇µ∇νTλρ = −RσλµνTσρ − RσρµνTλσ.

Using this result, show that the curved spacetime version of the
wave equation ∂λ∂λFµν = 0 from (a) is

∇λ∇λFµν + 2RλµρνF
ρ

λ − R λ
µ Fλν + R λ

ν Fλµ = 0.



With the definition of the Riemann tensor used in the course the first part of
this question is trivial, but the course at the time must have defined the
Riemann tensor in terms of derivatives of the Christoffel symbols.
Working in normal coordinates, where the Christoffel symbols (but not their
derivatives) vanish, we have

∇a∇bTcd −∇b∇aTcd = ∂a∂bTcd − ∂b∂aTcd − ∂a (Γe
bcTed + Γe

bdTce)

+ ∂b (Γe
acTed + Γe

adTce)

= (∂aΓe
bc)Ted + (∂aΓe

bd)Tce − (∂bΓe
ac)Ted − (∂bΓe

ad)Tce

= (∂aΓe
bc − ∂bΓe

ac)Ted + (∂aΓe
bd − ∂bΓe

ad)Tce ,

and, in normal coordinates,

∂aΓe
bc − ∂bΓe

ac = −Re
cab



Following the same ideas as in Minkowski space, we have

0 = ∇λ∇λFµν +∇λ∇µFνλ +∇λ∇νFλµ

= ∇λ∇λFµν + [∇λ,∇µ]Fνλ + [∇λ,∇ν ]Fλµ

= ∇λ∇λFµν − Rρ λ
ν µFρλ − Rρ λ

λ µFνρ − Rρ λ
λ νFρµ − Rρ λ

µ νFλρ

= ∇λ∇λFµν − 2Rρ λ
ν µFρλ + R ρ

µ Fνρ + R ρ
ν Fρµ.



(c) The Maxwell action is

S =

∫
d4x
√
−g
(
−1

4
FµνFµν

)
.

Show that this action is invariant for a conformal transformation of
the metric, that is, show that S [gµν ,Fλρ] = S [g̃µν ,Fλρ] for
g̃µν = Ω2gµν , where Ω(x) is a function.



We have
√
−g̃ =

√
− det g̃ = Ω4√−g . On the other hand, we

have

−1

4
(g̃−1)µρ(g̃−1)νσFρσFµν = Ω−4

(
−1

4
(g−1)µρ(g−1)νσFρσFµν

)
,

so the action S is invariant under g 7→ g̃ .



(d) Show that, in four spacetime dimensions, the Maxwell
energy-momentum tensor,

Tµν = FµλF
λ

ν −
1

4
gµνF

λρFλρ,

is traceless, that is, Tµ
µ = 0. Considering the definition of Tµν in

terms of the action, relate this result to the invariance of the
action for conformal transformations, from (c).



We have

Tµ
µ = FµνFµν −

1

4
gµ

µF
λρFλρ = 0,

since we are in four dimensions.
The energy-momentum tensor is defined in terms of the Lagrangian density L
(where S =

∫
d4xL) by

Tµν = − 2√
−g

δL
(δg−1)µν

,

and so, varying the inverse metric

δS =

∫
d4xδL = −1

2

∫
d4x
√
−gTµν(δg−1)µν

Now consider an infinitesimal conformal transformation, gµν 7→ gµν + δgµν

where δgµν = ωgµν . In this case, δgµν = −ωgµν , and we see that the action
varies by

δS =
1

2

∫
d4x
√
−gωTµ

µ,

but, since the action is invariant under conformal transformations, and since ω
is arbitrary, we must have Tµ

µ = 0.



2015 Question 2

There is a class of metrics which admit coordinates such that

gµν = ηµν + φkµkν ,

with kµ satisfying ηµνkµkν = 0 , where
ηµν = ηµν = diag(−1, 1, 1, 1) is the Minkowski metric.
(a) Look for gµν of the form gµν = ηµν + θkµkν , and then show
that the covector kµ is null with respect to the metric gµν .



If we define kµ = ηµνkν , then the inverse metric should satisfy
gµνgνρ = δµρ , i.e.

δµρ = (ηµν + θkµkν) (ηνρ + φkνkρ)

= δµρ + (φ+ θ + φθkνkν) kµkρ

⇒ θ = −φ.

Hence
gµνkµkν = (ηµν − φkµkν)kµkν = 0.

Note that this means we can raise or lower indices on k using
either g or η.



(b) Show that Γλµνk
µkν = 0 and Γλµνkλk

µ = 0. Use this to show
that if kµ is geodesic with respect to the Minkowski metric,
kµη

µλ∂λkν = 0 , then it is also geodesic with respect to the curved
metric gµν , kµ∇µkν = 0 .



We have

Γλ
µν =

1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν)

=
1

2
(ηλρ − φkλkρ) (∂µ(φkνkρ) + ∂ν(φkµkρ)− ∂ρ(φkµkν)) ,

so

Γλ
µνk

µkν =
1

2
(ηλρ − φkλkρ) (∂µ(φkνkρ) + ∂ν(φkµkρ)− ∂ρ(φkµkν)) kµkν

Using the fact that kµkµ = 0 and that we can raise/lower using η (and
∂η = 0), we find

(∂µ(φkνkρ) + ∂ν(φkµkρ)− ∂ρ(φkµkν)) kµkν = φkµ(∂µkν)kνkρ + φkν(∂νkµ)kµkρ

= φkµ∂µ (kνk
ν) kρ = 0



Similarly we have

Γλ
µνkλk

µ =
1

2
kρkµ (∂µ(φkνkρ) + ∂ν(φkµkρ)− ∂ρ(φkµkν))

=
1

2
φkνk

µ(∂µkρ)kρ − 1

2
φkνk

ρ(∂ρkµ)kµ = 0

Next we calculate

kµ∇µkν = kµ∂µkν − kµΓλ
µνkλ = kµ∂µkν ,

so if k is geodesic w.r.t. η then it is geodesic w.r.t. g .



(c) Consider the metric gµν in this class for which

φ =
2M

r
, kµ =

(
1,

x

r
,
y

r
,
z

r

)
,

where r =
√

x2 + y2 + z2. Using the result in (b), show that kµ is
geodesic. Show also that kµdx

µ = dt̃ + dr , where x0 = t̃. Finally,
show that the spacetime in question is the Schwarzschild
spacetime, by putting the metric in the form

ds2 = −
(

1− 2M

r

)
dt2+

(
1− 2M

r

)−1

dr2+r2
(
dθ2 + sin2 θdφ2

)
.

[Hint: Look for a coordinate change of the type t̃ = t + h(r).]



kµ is geodesic in Minkowski space, as it is tangent to the family of geodesics
r = t, at fixed angular coordinates. Hence, by (b), it is geodesic in the curved
space.

kµdx
µ = dt̃ +

x

r
dx +

y

r
dy +

z

r
dz = dt̃ + dr

Now, the metric is

g = −dt̃2 + dx2 + dy 2 + dz2 + φ (dt̃ + dr)
2

= −
(

1− 2M

r

)
dt̃2 +

4M

r
dt̃dr +

(
1 +

2M

r

)
dr 2 + r 2

(
dθ2 + sin2 θdφ2

)
,

transitioning standard spherical polars. Now setting t̃ = t + h(r), we find that
the metric is

ds2 = −
(

1− 2M

r

)
dt2 +

(
4M

r
− 2h′

(
1− 2M

r

))
dtdr

+

((
1 +

2M

r

)
(1− (h′)2) +

4M

r
h′
)
dr 2 + r 2

(
dθ2 + sin2 θdφ2

)
.



ds2 = −
(

1− 2M

r

)
dt2 +

(
4M

r
− 2h′

(
1− 2M

r

))
dtdr

+

(
1 +

2M

r
−
(

1− 2M

r

)
(h′)2 +

4M

r
h′
)
dr 2 + r 2

(
dθ2 + sin2 θdφ2

)
.

We can eliminate the cross term by setting h′ = 2M
r

(
1− 2M

r

)−1
= 2M

r−2M
, i.e.

h = 2M log(r − 2M) + C . In this case the coefficient of dr 2 is

1 +
2M

r
− 4M2

r(r − 2M)
+

8M2

r(r − 2M)
=

r 2 − 2Mr + 2Mr − 4M2 + 4M2

r(r − 2M)

=
r

r − 2M
=

(
1− 2M

r

)−1

So the metric is the Schwarzschild metric.



Showing an object is a tensor

Without assuming the connection is torsion-free, show that

T (X ,Y , µ) := µ (∇XY −∇YX − [X ,Y ])

is a tensor, where X and Y are vector fields and µ is a covector
field.

Need to show linearity in all three arguments. Linearity in third
argument is obvious (covectors form a vector space at each point).
Linearity in second argument will follow from linearity in the first
argument together with antisymmetry:

T (X ,Y , µ) = −T (Y ,X , µ).



Now we expand (for a vector field X ′ and scalar field a)

T (aX + X ′,Y , µ) = µ
(
∇aX+X ′Y −∇Y (aX + X ′)− [aX + X ′,Y ]

)
= µ

(
a∇XY +∇X ′Y − Y (a)X − a∇YX

−∇YX
′ − a[X ,Y ] + Y (a)X − [X ′,Y ]

)
= aµ (∇XY −∇YX − [X ,Y ])

+ µ
(
∇X ′Y −∇YX

′ − [X ′,Y ]
)

= aT (X ,Y , µ) + T (X ′,Y , µ).


