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The 17th century

The main mathematical innovations of the 17th century:

I symbolic notation

I analytic (algebraic) geometry

I calculus

I infinite series [to be treated in later lectures]

I mathematics of the physical world [to be treated in later
lectures]



Symbolic notation

Symbolic notation makes mathematics easier

I to read

I to write

I to communicate (though perhaps not orally)

I to think about — and thus stimulates mathematical
advances?

I BUT it took a long time to develop

I why did it develop when it did?



A cautionary tale: Levi Ben Gerson and sums of integers

Levi Ben Gerson (Gersonides), Ma’aseh Hoshev (The Work of the
Calculator), 1321 [picture is of a version printed in Venice in 1716]



A cautionary tale: Levi Ben Gerson and sums of integers



A cautionary tale: Levi Ben Gerson and sums of integers

Book I, Proposition 26:

If we add all consecutive numbers from one to any given
number and the given number is even, then the addition
equals the product of half the number of numbers that are
added up times the number that follows the given even
number.

Book I, Proposition 27:

If we add all consecutive numbers from one to any given
number and the given number is odd, then the addition
equals the product of the number at half way times the
last number that is added.

(Translations from Hebrew by Leo Corry.)



A cautionary tale: Levi Ben Gerson and sums of integers

Converting these into modern notation, we get:

Book I, Proposition 26:

If n is an even number, then 1 + 2 + 3 + · · ·+ n = n
2 (n + 1).

Book I, Proposition 27:

If n is an odd number, then 1 + 2 + 3 + · · ·+ n = n+1
2 n.

The formulae are clearly the same, so why are these treated as
separate propositions? The answer lies in the proofs, which, like
the results themselves, are entirely verbal.



A cautionary tale: Levi Ben Gerson and sums of integers

A fundamental problem here lies in the difficulty of expressing the
notion of ‘any given number’ (our ‘n’).

A commonly adopted solution was to outline the proof for a
specific example, on the understanding that the reader should then
be able to adapt the method to any other instance.

Ben Gerson’s proof of Proposition 26 takes this approach, and is
based on the idea of forming pairs of numbers with equal sums.*

*You might have heard a story about the young Gauss doing the same

thing.



A cautionary tale: Levi Ben Gerson and sums of integers

Proof of Proposition 26:

Take the example of 6. If we add 1 and 6, we get 7 (‘the number
that follows the given even number’). Notice that 2 is obtained
from 1 by adding 1, and that 5 is obtained from 6 by subtracting
1, so 2 added to 5 is the same as 1 added to 6, namely 7. The only
remaining pair is 3 and 4, which also add to give 7. The number of
pairs is half the given even number, hence the total sum is half the
number of numbers that are added up times the number that
follows the given even number.

This proof is clearly not valid when the given number is odd, since
Ben Gerson would have been required to halve it — but he was
working only with (positive) integers



A cautionary tale: Levi Ben Gerson and sums of integers

Proposition 27 therefore needs a separate proof, which similarly
does not apply when the given number is even (see Leo Corry, A
brief history of numbers, OUP, 2015, p. 119)

As Corry notes:

For Gersonides, the two cases were really different, and
there was no way he could realize that the two situations
. . . were one and the same as they are for us.

Moral: take care when converting historical mathematics into
modern terms!



Notation: compare Cardano (Ars magna, 1545)...

Having raised a third part of the
number of things to a cube, to
which you add the square of half
the number in the equation and
take the root of the total, consider
the square [root], which you will
take twice; and to one of them you
add half of the same, and you will
have the binome with its apotome,
whence taking the cube root of
the apotome from the cube root
of its binome, the difference that
comes from this, is the value of
the thing.

(Mathematics emerging, p. 327)



... with Viète (c. 1590)...

François Viète
(Francisci Vieta)
Opera mathematica
1646, p. 130



... with Viète (c. 1590)...



... and with Harriot (c. 1600)

British Library
Add MS 6784 f. 323
available at
Thomas Harriot Online

http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?tocMode=thumbs&tocPN=1&url=/mpiwg/online/permanent/library/XT0KZ8QC&viewMode=images&start=641&searchPN=1&characterNormalization=reg&query=&queryType=&pn=645


... and with Harriot (c. 1600)



And here is Harriot’s own comparison

British Library Add MS 6782 f. 277; Thomas Harriot Online

http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/mpiwg/online/permanent/library/HSPGZ0AE&start=551&viewMode=image&pn=554


Notation: Viète (Tours, c. 1590)

François Viète (1540–1603, France):

A, E, ... (i.e., vowels) for unknowns

B, C, D, ... (i.e., consonants) for known
or given quantities

symbols + , −

but otherwise verbal descriptions and
connections: quadratum (squared),
cubus (cubed), aequatur (be equal), ...



Notation: Harriot (London, c. 1600)

Thomas Harriot (1560–1621, England):

a, e, ... for unknowns

b, c, d, ... for known or given quantities

+, −

ab, aa, aaa

and many symbols: =, >, ...

(For another example of Harriot’s use of
notation, see Mathematics emerging,
§2.2.1.)



Notation: Descartes (Netherlands, 1637)

René Descartes (1596–1650, France and
Holland):

x, y, ... for unknowns

a, b, c, ... for known or given quantities

+, −

xx, x3, x4, ...

Descartes’ notation was widely adopted,
although his ‘ ∝’ for equality eventually
gave way to ‘=’, and his ‘

√
C ’ to ‘ 3

√
’.



Descartes’ notation



Symbolism established in algebra

Frontispiece to: Johannes
Faulhaber, Ingenieurs-Schul,
Anderer Theil, Ulm, 1633
(on fortification)

See: Volker Remmert,
‘Antiquity, nobility, and
utility: picturing the Early
Modern mathematical
sciences’, in The Oxford
handbook of the history of
mathematics (Eleanor Robson
& Jacqueline Stedall, eds.),
OUP, 2009, pp. 537–563



Analytic (algebraic) geometry

La géométrie (1637)

Solution of geometric problems
by algebraic methods

Appendix to
Discours de la méthode

“by commencing with objects the
simplest and easiest to know, I
might ascend by little and little”



Descartes’ analytic geometry

We may label lines (line segments) with letters a, b, c , ...

Then a + b, a− b, ab, a/b,
√
a may be constructed by ruler and

compass.



Descartes’ method

I represent all lines by letters

I use the conditions of the problem to form equations

I reduce the equations to a single equation

I solve

I construct the solution geometrically

For examples, see Katz (brief), §10.2, or Katz (3rd ed.), §14.2



Algebraic methods in geometry: some objections

Pierre de Fermat (1656, France):

I do not know why he has preferred this method with al-
gebraic notation to the older way which is both more con-
vincing and more elegant ...

Thomas Hobbes (1656, England):

... a scab of symbols ...



The beginnings of calculus: tangent methods

Calculus:

I finding tangents;

I finding areas.



Descartes’ method for finding tangents (1637)

I based on finding a circle that touches the curve at the given
point — a tangent to the circle is then a tangent to the curve

I used his algebraic approach geometry to find double roots to
equation of intersection

I was in principle a general method — but laborious



Fermat’s method for finding tangents

Pierre de Fermat (1601–1665):

I steeped in classical mathematics

I like Descartes, investigated problems of Pappus

I devised a tangent method (1629) quite different from that of
Descartes



Fermat’s tangent method (1629)

Worked out c. 1629, but only
published posthumously in Varia
opera mathematica, 1679.

See Mathematics emerging,
§3.1.1.


