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Summary

I Quadrature (finding areas)

I Indivisibles

I Infinitesimals

I The contributions of Newton & Leibniz



Archimedes: Κύκλου μέτρησις (Measurement of a circle)

Translated into Latin as Dimensio
circoli by Jacobus Cremonensis,
c. 1450–1460

Illustrated by Piero della
Francesca

Available online with other texts
by Archimedes

https://www.wdl.org/en/item/10646/
https://www.wdl.org/en/item/10646/


Archimedes: Κύκλου μέτρησις (Measurement of a circle)

Edition by John Wallis, Oxford, 1676



Archimedes: Κύκλου μέτρησις (Measurement of a circle)

(Archimedis opera, edited by
Commandino, 1558) — see
Mathematics emerging, §1.2.3

A circle is equal to a right-angled
triangle with height equal to the
circumference of the circle and base
equal to the radius.

Proof by exhaustion and double
contradiction

Later: the ratio of the circumference
to the diameter is greater than 310

71
and less than 31

7 .



Fermat’s quadrature of a hyperbola (c. 1636)

Worked out c. 1636, but only
published posthumously in Varia
opera mathematica, 1679.

In modern terms, this is the curve

described by y =
1
x2 .

See Mathematics emerging,
§3.2.1.



The rectangular (or ‘Apollonian’) hyperbola

In modern notation, y =
1
x

I Quadrature evaded Fermat

I Partial results obtained by Grégoire de Saint Vincent, c. 1625,
published in Opus geometricum, 1647

I Empirical observation that if A(x) is the area under the
hyperbola from 1 to x , then A(αβ) = A(α) + A(β)
(cf. logarithms)

I Problem solved in early 1650s by William Brouncker; published
in 1668 in volume 3 of Philosophical Transactions of the Royal
Society



Brouncker’s quadrature of the hyperbola (1668)

To put this into modern terms, take A as the origin, and AB , AE
as the x- and y -axes, respectively. Then the diagram represents the

area under
1

1+ x
from x = 0 to x = 1.

(See Mathematics emerging, §3.2.2.)



Brouncker’s article of 1668



New methods: indivisibles and infinitesimals

Indivisibles: geometric objects making up a higher-dimensional
object (e.g., points → line, lines → plane)

Infinitesimal: arbitrarily small but nonzero quantity

But distinction often blurred

During the 17th century, both concepts saw much use — despite
the fact that they appeared to contradict Euclidean principles



Indivisibles

Early treatments by de Saint Vincent in c. 1623 (but not published
until 1647) and Roberval in c. 1628–34 (but not published until
1693).

First published treatment by Bonaventura Cavalieri (1598–1647) in
Geometria indivisibilibus continuorum nova quadam ratione
promota [Geometry advanced in a new way by the indivisibles of
the continua] (1635).

Used by Evangelista Torricelli (1608–1647) in 1644 to calculate the
volume of an infinite hyperboloid of revolution.

Developed by John Wallis (1616–1703) and others.



Cavalieri’s Geometria



Torricelli’s hyperbolic solid (Opera geometrica, 1644)

(See Mathematics emerging, §3.3.1.)



John Wallis (1616–1703)

Studied at Emmanuel College,
Cambridge (BA 1637, MA 1640)

1643–1649: scribe for Westminster
Assembly

1644–1645: Fellow of Queens’
College, Cambridge

1643–1689: cryptographer to
Parliament, then to the Crown

1649–1703: Savilian Professor of
Geometry in Oxford



Arithmetica infinitorum

John Wallis,
Arithmetica infinitorum
(The arithmetic of infinitesimals)
Oxford, 1656

Translation by
Jacqueline A. Stedall
Springer, 2004



Arithmetica infinitorum

I Arithmetical methods rather than geometrical, but repeatedly
appealed to geometry for justification

I Investigation of sums of sequences of powers (or ratios of
these to a known fixed quantity) — usually decreasing

I Fixed an endpoint, dividing interval into infinite number of
arbitrarily small subintervals — these are the ‘infinitesimals’ of
Wallis’ title



Wallis and indivisibles

For the triangle . . . consists of an
infinite number of parallel lines in
arithmetic proportion . . .

(See Mathematics emerging,
§2.4.2.)



Wallis and indivisibles?

For it amounts to the same thing
as if, when an infinite number of
parallelograms are inscribed in (or
circumscribed about) a triangle,
it seems that they equal to
complete triangle . . .

(See Mathematics emerging,
§2.4.2.)



Sums of powers

Wallis’ method depended upon the summation rule

A∑
a=0

an ≈ An+1

n + 1

This was known to Fermat, Roberval, and Cavalieri in the 1630s for
positive integers n, but in the 1650s Wallis extended it to negative
and fractional n.



Simple ‘integrals’

Using the summation rule we can ‘integrate’

x2, x3, ..., x1/3, ..., x−4, ...

and
(1+ x)3 or (1+ x2)5 or ...

but what about
(1− x2)1/2 [for a circle]

or
(1+ x)−1 [for a hyperbola] ?



Enter Newton...

In his own words:

In the winter between the years 1664 and 1665 upon read-
ing Dr Wallis’s Arithmetica infinitorum and trying to inter-
pole his progressions for squaring the circle, I found out first
an infinite series for squaring the circle and then another
infinite series for squaring the Hyperbola ...

Newton extended Wallis’ method of interpolation...



Newton’s integration of (1+ x)−1

(1 + x)−1 (1 + x)0 (1 + x)1 (1 + x)2 (1 + x)3 (1 + x)4 · · ·

x ? 1 1 1 1 1 · · ·

x2

2
? 0 1 2 3 4 · · ·

x3

3
? 0 0 1 3 6 · · ·

x4

4
? 0 0 0 1 4 · · ·

x5

5
? 0 0 0 0 1 · · ·
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The entry in the row labelled xm

m
and the column labelled (1 + x)n is the coefficient of xm

m
in∫

(1 + x)ndx. (NB. Newton did not use the notation
∫
(1 + x)ndx.)



Newton’s integration of (1+ x)−1

(1 + x)−1 (1 + x)0 (1 + x)1 (1 + x)2 (1 + x)3 (1 + x)4 · · ·

x 1 1 1 1 1 1 · · ·

x2

2
-1 0 1 2 3 4 · · ·

x3

3
1 0 0 1 3 6 · · ·

x4

4
-1 0 0 0 1 4 · · ·

x5

5
1 0 0 0 0 1 · · ·
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The entry in the row labelled xm

m
and the column labelled (1 + x)n is the coefficient of xm

m
in∫

(1 + x)ndx. (NB. Newton did not use the notation
∫
(1 + x)ndx.)



The general binomial theorem

CUL Add. MS 3958.3, f. 72

See Mathematics emerging,
§8.1.1



Newton’s calculus: 1664–5

I rules for quadrature (influenced by Wallis’s ideas of
interpolation)

I rules for tangents (influenced by Descartes’ double root
method)

I recognition that these are inverse processes



Newton’s vocabulary and notation

Newton’s calculus 1664–5:

I fluents x , y , ... (quantities that vary with time t)

I fluxions ẋ , ẏ , ... (rate of change of those quantities)

I moments o (infinitesimal time in which x increases by ẋo)



Newton’s calculus in action (The method of fluxions, 1736)



Newton’s calculus in action (The method of fluxions, 1736)



Leibniz’s calculus

Independently, ten years later than Newton...

Leibniz’s calculus, 1673–76:

I rules for quadrature — especially the transformation theorem
(a.k.a. the transmutation theorem)

I rules for tangents — by characteristic (or differential) triangles

I recognition that these are inverse processes

Differentials: du, dv;

integrals: omn. l, later between S l and
∫

l



Supplementum Geometriae Dimensoriae . . . (1693)

A Supplement to the Geometry of Measurements, or the Most General of all Quadratures to be Effected

by a Motion: and likewise the various constructions of a curve from a given condition of the tangent

(Acta eruditorum, 1693)



Supplementum Geometriae Dimensoriae . . . (1693)

“I shall now show the general
problem of quadratures to be
reduced to the invention of a line
having a given law of declivity
. . .”

i.e., integration is reduced to the
finding of a curve with a
particular tangent — in modern
terms, the antiderivative

For Latin-readers: full paper
available online

https://www.maa.org/press/periodicals/convergence/mathematical-treasure-leibnizs-papers-on-calculus-fundamental-theorem
https://www.maa.org/press/periodicals/convergence/mathematical-treasure-leibnizs-papers-on-calculus-fundamental-theorem


Newton’s calculus and Leibniz’s calculus compared

Newton (1664–65): Leibniz (1673–76):

rules for quadrature rules for quadrature
rules for tangents rules for tangents
‘fundamental theorem’ ‘fundamental theorem’

dot notation ‘modern’ notation

physical intuition: algebraic intuition
rates of change rules and procedures

PROBLEM: PROBLEM:
vanishing quantities o vanishing quantities du, dv, ...


