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Summary

I Publication and acceptance of the calculus

I Some successes of the calculus

I Problems with the calculus

I Some responses: beginnings of ‘rigour’ in Analysis



Reminder: a comparison from lecture IV

Newton (1664–65): Leibniz (1673–76):

rules for quadrature rules for quadrature
rules for tangents rules for tangents
‘fundamental theorem’ ‘fundamental theorem’

dot notation ‘modern’ notation

physical intuition: algebraic intuition
rates of change rules and procedures

PROBLEM: PROBLEM:
vanishing quantities o vanishing quantities du, dv, ...



Newton’s publication (or not) of his calculus

1669: ‘De analysi’ shown to Barrow and Collins

1671: ‘Treatise on fluxions and infinite series’ withdrawn
before publication

1676: two long letters to Leibniz, plus a coded message

1685: partial publication of the letters to Leibniz by Wallis
in his Treatise of algebra

1693: further partial publication by Wallis in his
Opera mathematica

1704: ‘Treatise of quadrature’ appended to published Opticks



Newton’s coded message
CUL MS Add.3977 f. 3r

Letter from Isaac Newton to Henry
Oldenburg, 24 October 1676
(‘Epistola posterior’)

“The foundation of these operations
is evident enough, in fact; but
because I cannot proceed with the
explanation of it now, I have
preferred to conceal it thus:
6accdae13eff 7i3l9n4o4qrr4s8t12vx .”

“Data aequatione quotcunque
fluentes quantitates involvente,
fluxiones invenire: et vice versa.”

= “Given an equation involving any

number of fluent quantities, to find

the fluxions: and vice versa.”



Leibniz’s publication of his calculus

1680s: Papers in Acta
eruditorum (journal
founded 1682)

1691: Bernoulli brothers
(Johann and Jacob)
begin to apply
Leibniz’ methods

1696: Exposition by
L’Hôpital based
on teachings of
Johann Bernoulli



Challenge problems

1687: Isochrone — curve of uniform descent
(posed by Leibniz; solved by Jacob Bernoulli)

1691: Catenary — curve of a hanging chain
(posed by Jacob Bernoulli; solved by Johann Bernoulli,
Huygens, Leibniz)

Leibniz’ and
Huygens’ solutions,
Acta eruditorum,
1691.



Challenge problems

Solutions by Johann
& Jacob Bernoulli,
l’Hospital, and
Newton, Acta
eruditorum, 1696.

1696: Brachistochrone — curve of fastest descent
(posed by Johann Bernoulli; shown to be cycloid by
Jacob Bernoulli, Leibniz, Newton, l’Hôpital)

1697: Isoperimeter problems — find curve of given length
that maximises a certain integral (classical problem;
variant posed by Jacob Bernoulli, solved by him 1701)

And many others



People and connections

tutored (1670s)

corresponded (1690s)

tutored (1690s)

collaborated
(1730s)

tutored
(1720s)

Christiaan Huygens
(1629–1695)

Gottfried Wilhelm
von Leibniz
(1646–1716)

Johann Bernoulli
(1667–1748)

Jacob Bernoulli
(1655–1705)

Guillaume, Marquis
de l’Hôpital
(1661–1704)

Daniel
Bernoulli

(1700–1782)

Leonhard Euler
(1707–1783)



Leonhard Euler (1707–1783): a major 18th-century figure
1707: Euler born in Basel

1720: attended University of
Basel, taught by Johann
Bernoulli

1727: left Basel for Saint
Petersburg with Daniel
Bernoulli

1741: invited to Frederick the
Great’s new Academy in
Berlin

1766: returned to St Petersburg

1783: died in St Petersburg



Influence of the challenge problems

These challenge problems and others helped to

I consolidate and validate Leibnizian calculus

I introduce new questions about ‘functions’, ‘differentiability’,
‘continuity’, ...



Functions: isoperimeter problem

Classical Problem (Virgil’s Aeneid): Find the closed curve of
given length L that maximises the area enclosed.

Modern Formulation: Find
a function f and
corresponding curve y = f (x)
between (a, 0) and (b, 0) of
given length L (where
L > b − a) that maximises
the area beneath it.

But what is meant by ‘function’?



Functions: isoperimeter problem

Isoperimeter problem posed by Jacob Bernoulli to
Johann Bernoulli, May 1697, verbally and
geometrically (ratio and proportion)

December 1697: problem rephrased by Johann in terms of powers

Solved by Johann in June 1698; published in 1706, with problem
phrased in terms of functions (undefined)

In 1718, gave the following definition:

Here one calls a function of a variable magnitude, a quan-
tity composed in any manner possible from this variable
magnitude and constants.

(See Mathematics emerging, §9.1.1.)



Functions: the wave equation

Another success of calculus: the wave equation

∂2y

∂s2
= c2∂

2y

∂t2

Solved by d’Alembert (1747) and Euler (1748) with solutions of
the form

y = Ψ(s + ct)− Φ(s − ct).



Functions: the wave equation

'Vab: VI adpacj.ZpS.
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Functions: the wave equation

But which ‘functions’ are admissible as solutions?

Must they be

I continuous?

I differentiable?

I ... whatever these mean ...



What is a function?

Euler’s definition of a function (1748):

A function of a variable quantity is an analytic expression
composed in any way from that variable quantity and from
numbers or constant quantities.

. . .

Functions are divided into algebraic and transcendental;
the former are those composed by algebraic operations
alone, but the latter are those in which transcendental
operations are involved.

L. Euler: Introductio in analysin infinitorum (1748) [Introduction
to the analysis of the infinite], available in translation,
Springer-Verlag, 1988.



What is a function?

Euler’s new definition of a function (1755):

Moreover, the quantities that depend in this way on others,
so that the latter having changed, they themselves also
undergo change, are usually called functions; which name
opens up most generally all the ways in which one quantity
may be determined from others involved with it.

L. Euler: Institutiones calculi differentialis [Foundations of
differential calculus] (1755)



What is a function?

In fact, this question took a long time to settle.

Nineteenth-century authors were split between those who preferred
Euler’s definition of 1748 and that of 1755 (see Mathematics
emerging, §9.3).

The idea of a function as a mapping began to emerge at the end
of the nineteenth century, in, for example, Dedekind’s Was sind
und was sollen die Zahlen? (1888), a text that we will come back
to in a later lecture.



More problems: infinitely small quantities

Thomas Hobbes, Six lessons to the Professors of Mathematicks
(1656):

The least Altitude is Somewhat or Nothing. If Somewhat,
then the first character of your Arithmeticall Progression
must not be zero;

. . .

If Nothing, then your whole figure is without Altitude and
consequently your Understanding nought.

Wallis tried to provide further explanation in his Due correction for
Mr. Hobbes (1656), but wasn’t too concerned by the problems



More problems: infinitely small quantities

George Berkeley (1734)

Qu. 43: Whether an algebraist, fluxionist,
geometrician, or demonstrator of any kind
can expect indulgence for obscure principles
or incorrect reasoning? And whether an
algebraical note or species can at the end of
a process be interpreted in a sense which
could not have been substituted for it at
the beginning?

Qu. 45: Whether, although geometry be a

science, and algebra allowed to be a

science, and the analytical a most excellent

method, in the application nevertheless of

the analysis to geometry, men may not have

admitted false principles and wrong

methods of reasoning?



Some responses to the difficulties

Guillaume Marquis de l’Hôpital, Analyse des infiniment petits
(1696)

Colin Maclaurin, A treatise of fluxions (1742)

Leonhard Euler, Institutiones calculi differentialis (1755)

John Landen, A discourse concerning the residual analysis (1758)

Joseph-Louis Lagrange, Théorie des fonctions analytiques (1797)



Responses to the difficulties: l’Hôpital
Guillaume, Marquis de l’Hôpital (1696)

Definition. The infinitely small part
whereby a variable quantity is continually
increased or decreased, is called the
differential of that quantity.

Postulate. Grant that two quantities whose

difference is an infinitely small quantity may

be taken (or used) indifferently for each

other: or (which is the same thing) that a

quantity which is increased or decreased

only by an infinitely small quantity may be

considered as remaining the same.



Responses to the difficulties: Maclaurin

Colin Maclaurin (1742)

I written in direct response to
Berkeley

I attempted to prove all
propositions of calculus by
classical Archimedean methods

(‘double contradiction’:
derive a contradiction from
the assumption that a > b;
derive a contradiction from
the assumption that b > a;
then it must be the case that
a = b).



Responses to the difficulties: Euler

Leonard Euler (1755):

An infinitely small quantity is
nothing other than a vanishing
quantity, and is therefore really
equal to 0.

. . .

If there occur different in-
finitely small quantities dx and
dy, although both are equal to
0, nevertheless their ratio is not
constant.



Responses to the difficulties: Landen

John Landen (1758)

I ‘Fluxions are not immediately
applicable to algebraic quantities
...’

I attempted a purely algebraic
development of calculus



Responses to the difficulties: Lagrange

Joseph-Louis Lagrange (1797)

Another attempt to avoid
‘infinitely small quantities’

(by taking functions to be defined
by power-series expansions)



‘Rigour’ and ‘professionalisation’

Finally, note the increasing ‘professionalisation’ of mathematics in
the eighteenth century:

I more university positions
I Jacob Bernoulli in Basel;
I Johann Bernoulli in Groningen, then Basel;

I new Academies in St Petersburg and Berlin provided positions
with salaries
I Euler at St Petersburg and Berlin;
I d’Alembert in Paris;
I Lagrange followed Euler to Berlin, later went to Paris;

I each Academy had its own ‘Mémoires’ or ‘Transactions’
enabling wider (and sometimes faster) circulation of new
ideas.


