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I French institutions

I Fourier series

I Early-19th-century rigour

I Limits, continuity, differentiability

I Mathematics of small quantities

I The baton passes from France to Germany



France at the turn of the 19th century

French revolution (1789) led to

I the establishment and prestige of the Grandes écoles

I a new concentration of mathematical talent in Paris:
Lagrange, Laplace, Ampère, Fourier, Legendre, Poisson,
Cauchy, ...

I a wealth of personal interactions

I a major new journal: Journal de l’École polytechnique

I and a new focus on rigour



Fourier series

Joseph Fourier, Analytic
theory of heat, 1822



Fourier series

Suppose that φ(x) = a sin x + b sin 2x + c sin 3x + · · ·

and also that φ(x) = xφ′(0) + 1
2x

2φ′′(0) + 1
6x

3φ′′′(0) + · · ·

After many pages of calculations, multiplying and comparing power
series, Fourier found that the coefficient of sin nx must be

2

π

∫ π

0
φ(x) sin nx dx

Fourier’s derivation was based on ‘naive’ manipulations of infinite
series. It was ingenious but non-rigorous and shaky (see:
Mathematics emerging, §8.4.1).

BUT it led to profound results



Establishing rigour

The development of ‘rigour’:

I Cauchy sequences

I continuity

I limits

I differentiability

I ε, δ notation



Cauchy sequences: Bolzano (1817)

Bernard Bolzano, Purely analytic
proof of the theorem that
between any two values which
give opposite values lies at least
one real root of the equation,
1817



Cauchy sequences: Bolzano (1817)

Began with a discussion of previous proofs of the Intermediate
Value Theorem (by “mathematicians of great repute”)

The most common kind of proof depends on a truth bor-
rowed from geometry, namely, that every continuous line
of simple curvature of which the ordinates are first positive
and then negative (or conversely) must necessarily inter-
sect the x-axis somewhere at a point that lies in between
those ordinates. There is certainly no question concerning
the correctness, nor indeed the obviousness, of this geo-
metrical propositon. But it is clear that it is an intolerable
offense against correct method to derive truths of pure (or
general) mathematics (i.e., arithmetic, algebra, analysis)
from considerations which belong to a merely applied (or
special) part, namely, geometry.



Cauchy sequences: Bolzano (1817)

If a series of quantities has the property that the differ-
ence between its n-th term and every later one remains
smaller than any given quantity . . . then there is always a
certain constant quantity . . . which the terms of this series
approach.

Proof: The hypothesis that there exists a quantity X which the
terms of this series approach . . . contains nothing impossible . . .

(See: Mathematics emerging, §16.1.1; for a full translation, see:
S. B. Russ, A translation of Bolzano’s paper on the intermediate
value theorem, Historia Mathematica 7(2) (1980), 156–185)

https://doi.org/10.1016/0315-0860(80)90036-1
https://doi.org/10.1016/0315-0860(80)90036-1


Cauchy’s Cours d’analyse
Augustin-Louis Cauchy, Cours d’analyse de l’École royale
polytechnique (1821)

(Annotated translation by Robert E. Bradley and C. Edward
Sandifer, Springer, 2009)



Cauchy sequences: Cauchy (1821)

Augustin-Louis Cauchy, Cours d’analyse (1821), Ch. VI, pp. 124,
125:

In order for the series u0, u1, u2, . . . [that is,
∑

ui ] to be
convergent ... it is necessary and sufficient that the partial
sums

sn = u0 + u1 + u2 + &c . . . .+ un−1

converge to a fixed limit s: in other words, it is necessary
and sufficient that for infinitely large values of the number
n, the sums

sn, sn+1, sn+2, &c . . . .

differ from the limit s, and consequently from each other,
by infinitely small quantities.

(See: Mathematics emerging, §16.1.2.)



More from Cauchy (1821)

Further results from Cauchy’s Cours d’analyse:

I ratio test;

I root test;

I alternating series test (proof uses Cauchy sequences);

I and many more.

(See Mathematics emerging, §16.1.2)



Cauchy sequences concluded

Early uses of Cauchy sequences:

I in da Cunha’s Principios mathematicos (1782)

I in Bolzano’s proof of the existence of a least upper bound
(1817)

I in Cauchy’s further results on sequences and series (1821)

I in Abel’s proof of the general binomial theorem (1826)

BUT the convergence of Cauchy sequences themselves remained
unproved



Continuity

Early definitions of continuity:

Wallis (1656): a curve that doesn’t ‘jump about’

Euler (1748): a curve described by a single expression

Later definitions of continuity:

Bolzano (1817): f (x + ω)− f (x) can be made smaller than
any given quantity, provided ω can be taken
as small as we please

Cauchy (1821): f (x + a)− f (x) decreases with a

[Question: dependence? plagiarism? or a common source?]



Limits: early definitions

Wallis (1656): a quantity ‘less than any assignable’
quantity is zero

Newton (1687): adopted and ‘proved’ Wallis’s definition;
also used ‘limit’ in the sense of a ‘bound’
or ‘ultimate value’;
developed theory of ‘first and last ratios’

D’Alembert (1751): ‘one may approach a limit as closely as
one wishes ... but never surpass it’;
example: polygons and circle;
he assumed that limAB = limA× limB;
a dictionary definition only — no theory



Limits: a later definition

Cauchy, Cours d’analyse (1821), p. 4:

When the values successively given to a variable approach
indefinitely to a fixed value, so as to finish by differing
from it by as little as one would wish, the latter is called
the limit of all the others.

Examples:

I an irrational number is a limit of rationals;

I in geometry a circle is a limit of polygons.

BUT still no formal definition of

I ‘as small as one wishes’,

I ‘as closely as one wishes’, ...



Differentiability: early ideas
For Leibniz and his immediate followers, any ‘function’ you could
write down was automatically differentiable (by the usual rules).

For Lagrange, the ‘Taylor’ series

f (x + h) = f (x) + f ′(x)h + · · ·

led naturally to consideration of

f (x + h)− f (x)

h

as an approximation to f ′(x), for small h

Ampère (1806) struggled with the meaning of

f (x + h)− f (x)

h

— why isn’t it just zero or infinite?



Differentiability: Cauchy’s Résumé

Cauchy, Résumé des leçons
données à l’École royale
polytechnique sur le calcul
infinitésimal, 1823

(Translation by Dennis
M. Cates, Fairview Academic
Press, 2012)



Differentiability: Cauchy’s Résumé

. . . those who read my book will I hope be convinced that
the principles of the differential calculus and its most im-
portant applications can easily be set out without the use
of series.

Defined the derivative as the limit of

f (x + h)− f (x)

h

with many particular examples: ax , a/x , sin x , log x , ...

but no concerns about existence in general

(See: Mathematics emerging, §14.1.4.)



Arbitrarily small intervals

A theorem of Lagrange (1797):

If the first derived function of a function f is strictly posi-
tive on an interval [a, b], then f (b) > f (a).

Proof: Divide the interval [a, b] into n subintervals, taking n as
large as necessary ...

Unconvincing to modern eyes, but a useful technique.

(See: Mathematics emerging, §11.2.3.)



IVT revisited

Cauchy, Cours d’analyse (1821), Note III, p. 460 (On the numerical
solution of equations):

Theorem: Let f be a real function of the variable x , which
remains continuous with respect to this variable between the limits
x = x0, x = X . If the two quantities f (x0), f (X ) are of opposite
signs, the equation f (x) = 0 will be satisfied by one or more real
values of x contained between x0 and X .

(See: Mathematics emerging, §11.2.6.)



IVT revisited
Cauchy’s proof:

Choose m > 1. Divide the interval [x0,X ] into m equal parts; find
neighbouring division points x1,X

′ such that f (x1), f (X ′) are of
opposite signs. Subdivide the interval [x1,X

′] into m equal parts;
find neighbouring division points x2,X

′′ such that f (x2), f (X ′′) are
of opposite signs. Continue in this way to obtain an increasing
sequence x0, x1, . . . and a decreasing sequence X , X ′, . . .. The
difference X (n) − xn is (X − x0)/mn, which may be made as small
as one wishes. The sequences x0, x1, . . . and X , X ′, . . . therefore
converge to a common limit a, at which f (a) = 0.

Note: Cauchy offered this as a fast method of approximation to
roots of equations.

But it also provides a much more convincing proof of the
Intermediate Value Theorem than that appearing earlier in
Cauchy’s text (Cours d’analyse, Ch. II, Theorem 4: p. 44).



ε and δ appear

A theorem of Cauchy, Résumé (1823):

Suppose that in the interval [x0,X ] we have A < f ′(x) < B. Then
we also have

A <
f (X )− f (x0)

X − x0
< B

Proof: Choose two quantities ε, δ, . . . such that for i < δ

f ′(x)− ε < f (x + i)− f (x)

i
< f ′(x) + ε

etc.

(See: Mathematics emerging, §14.1.5.)



Hints of a broader class of functions

If a Taylor series exists for a given function, and all the coefficients
vanish, then surely the function itself must vanish . . .

However, Cauchy gave the example f (x) = e−x
2

+ e−x
−2

, which is
clearly never zero, but all of its derivatives vanish

So not every function can be expanded into a Taylor series, and it
appears to be possible to conceive of functions to which the
calculus is not immediately or naturally applicable . . .



Modern rigour in analysis

Karl Weierstrass (1815–1897):

I taught at University of
Berlin from 1856 onwards

I completed the rigorisation of
calculus via systematic use
of ε/δ methods

BUT we have no direct sources,
only lecture notes or books by his
pupils and followers



From France to Germany

By the later 19th century the mathematical centre of gravity in
Europe had moved from the Parisian Écoles to the German
universities:

Göttingen (est. 1734): Gauss, Dirichlet, [Dedekind], Riemann,
Klein, Hilbert, ...

Berlin (est. 1810): Crelle (editor), Dirichlet, Eisenstein,
Kummer, [Jacobi], Kronecker,
Weierstrass, ...

with a focus on both research and teaching.


