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Summary

I New difficulties emerge

I Continuity and convergence

I Integration

I The Fundamental Theorem of Calculus

I New ideas about integration



Recall from lecture VIII: Fourier series, 1822

Joseph Fourier, Théorie analytique de la chaleur [Analytic theory
of heat] (1822):

Suppose that φ(x) = a sin x + b sin 2x + c sin 3x + · · ·

and also that φ(x) = xφ′(0) + 1
6x

3φ′′′(0) + · · ·

After many pages of calculations, multiplying and comparing power
series, Fourier found that the coefficient of sin nx must be

2

π

∫ π

0
φ(x) sin nx dx

Fourier’s derivation was based on ‘naive’ manipulations of infinite
series. It was ingenious but non-rigorous, shaky.

BUT it led to profound results



New doubts in the early 19th century

Fourier’s work converged with more philosophical investigation to
stimulate questions concerning:

I functions — what exactly should they be?

I convergence — what exactly should it be?

I convergence of functions — what properties are preserved?

I integration — what exactly should it be?

I existence of limits — what are the essential properties of
real numbers? [Lecture XII]



Recall from Lecture VIII: Cauchy sequences, 1821

Augustin-Louis Cauchy, Cours d’analyse (1821), Ch. VI, pp. 124,
125:

In order for the series u0, u1, u2, . . . [that is,
∑

ui ] to be
convergent ... it is necessary and sufficient that the partial
sums

sn = u0 + u1 + u2 + &c . . . .+ un−1

converge to a fixed limit s: in other words, it is necessary
and sufficient that for infinitely large values of the number
n, the sums

sn, sn+1, sn+2, &c . . . .

differ from the limit s, and consequently from each other,
by infinitely small quantities.



Cauchy and continuity revisited

In Cours d’analyse, p. 34, Cauchy defined a function f to be
continuous between certain limits if, for each x between those
limits, the value of f (x) is unique and finite, and |f (x +α)− f (α)|,
where α is indefinitely small, decreases indefinitely with α.

In other words (p. 35): for x between the given limits, an infinitely
small increase in x produces and infinitely small increase in f (x).

So Cauchy defined continuity on an interval, rather than at a
point.

He went on to derive basic results concerning continuous functions:
that the composition of two continuous functions is continuous,
the Intermediate Value Theorem, etc.



A theorem of Cauchy (1821)

Cauchy, Cours d’analyse, pp. 131–132:

When the various terms of a series are functions of a vari-
able x , continuous with respect to this variable in the
neighbourhood of a particular value for which the series
is convergent, the sum s of the series is also, in the neigh-
bourhood of this value, a continuous function of x .

In other words: a convergent series of continuous functions
converges to a continuous function.

Not true!



Cauchy’s argument

Cauchy considered a sequence of continuous functions
u0(x), u1(x), u2(x), . . . on a given interval. He supposed that the
corresponding series converges to a function s(x). Partial sums are
denoted by sn(x) =

∑n−1
j=0 un(x). The nth remainder term rn(x) is

defined by s(x) = sn(x) + rn(x).

Cauchy noted that each sn is evidently continuous for values of x
in the given interval. Suppose that we increase x by an infinitely
small quantity α. For all values of n, the corresponding increase in
sn(x) will also be infinitely small. For n very large
(‘très-considérable’), the increase in rn(x) becomes ‘insensible’.
Therefore, the increase in s(x) can only be an infinitely small
quantity.

NB. All notation except ‘
∑

’ is Cauchy’s.



Cauchy’s argument



A modern counterexample
For each n ∈ N, define continuous functions fn by

fn(x) =


−1 if x ≤ − 1

n ;

nx if − 1
n ≤ x ≤ 1

n ;

+1 if x ≥ 1
n .

Now set u1(x) = f1(x), and define new functions un recursively by

un(x) = fn(x)− fn−1(x).

Notice then that

sn(x) =
n∑

j=1

uj(x) = fn(x).

But we see that sn → s as n→∞, where

s(x) =


−1 if x < 0;

0 if x = 0;

+1 if x > 0,

which is discontinuous at x = 0.



A modern counterexample

What happens to the remainders rn(x) = s(x)− sn(x)?

Outside the range − 1
n ≤ x ≤ 1

n , rn(x) = 0, but inside:

rn(x) =


−1− nx if − 1

n ≤ x < 0;

0 if x = 0;

1− nx if 0 < x ≤ 1
n .

For each x , rn(x)→ 0 as n→∞, but this does not happen
simultaneously for all values of x .



Cauchy’s remainders

Cauchy: For n very large, the increase in rn(x) becomes
‘insensible’. But what does this mean?

One of the following modern statements? (Denoting Cauchy’s
interval by I .)

∀ε > 0 : ∃N : ∀x ∈ I : n > N ⇒ |rn(x)| < ε

∀ε > 0 : ∀x ∈ I : ∃N : n > N ⇒ |rn(x)| < ε

The second is true for our modern counterexample, but the first is
not — so there really is a distinction between the two.

Cauchy clearly didn’t make this distinction — but should this really
be regarded as a ‘mistake’?



Reactions to Cauchy’s ‘mistake’

Abel (Crelle’s Journal, 1826) on the Cours d’analyse:

the excellent work of M. Cauchy . . . which must be read by
every analyst who aims at rigour in mathematical research

Four pages later, on Cauchy’s ‘theorem’ on sums of continuous
functions:

it seems to me that the theorem admits exceptions. For
example, the series

sin x − 1

2
sin 2x +

1

3
sin 3x − · · ·

is discontinuous for every value (2m + 1)π of x , m being
a whole number. There are, as one knows, many series of
this kind.



Abel’s counterexample

sin x − 1

2
sin 2x +

1

3
sin 3x − · · ·



Abel’s counterexample elsewhere

Abel to Holmboe, January 1826:

One applies all operations to infinite series as if they were
finite, but is this permissible? I think not. — Where is
it proved that one gets the differential of an infinite series
by differentiating each term? It is easy to give an example
for which this is not true, e.g.

1

2
x = sin x − 1

2
sin 2x +

1

3
sin 3x − · · · .

Differentiation gives

1

2
= cos x − cos 2x + cos 3x − · · · etc.

a result which is quite false because this series is divergent.



Can theorems have exceptions?
Abel was not the first to study this example:

I Euler had discussed it in 1783;

I Lacroix had included it in his Traité du Calcul Différentiel et
du Calcul Intégral of 1810;

I it had appeared in Fourier’s work — which is probably where
Abel found it.

Had Cauchy seen it?

Abel: Cauchy’s argument is essentially correct, only failing in
certain anomalous situations.

Cauchy: no (immediate) reaction reaction — so deemed the
example irrelevant?

(See: Henrik Kragh Sørensen, Exceptions and counterexamples:
Understanding Abel’s comment on Cauchy’s Theorem, Historia
Mathematica 32 (2005) 453–480)

https://doi.org/10.1016/j.hm.2004.11.010
https://doi.org/10.1016/j.hm.2004.11.010
https://doi.org/10.1016/j.hm.2004.11.010


Abel’s interpretation

Abel read Cauchy as: if the series is convergent at a point x0 and
the individual terms of the series are continuous on a
neighbourhood of x0, then the series is also continuous on that
neighbourhood.

But what did Cauchy mean by ‘continuity’ and ‘convergence’?

Note that he only ever defined continuity on an interval — so was
it in fact uniform continuity? If, in addition, we regard his notion
of convergence on an interval as being uniform convergence, then
the theorem holds in all cases.

Similarly, what did Abel mean by ‘continuity’ and ‘convergence’?
The same as Cauchy? Or did he use a similar form of words but
with a different meaning?



Conditions for Cauchy’s theorem to work

Dirichlet (1829): Fourier series can represent discontinuous
functions.

But the reason why Cauchy’s theorem fails (if indeed it does)
remained unclear.

The need for uniform convergence was gradually recognised:

I Karl Weierstrass (lectures in Berlin), 1841;

I Emmanuel Björling (Uppsala), 1846 (or not?);

I Gabriel Stokes (Cambridge), 1847;

I Phillip Seidel (Berlin), 1848.

See: G. H. Hardy, ‘Sir George Stokes and the concept of uniform
convergence’, Proc. Camb. Phil. Soc. 19 (1918) 148–156 (also:
Collected Papers of G. H. Hardy, vol. VII, 505–513)



Cauchy revisits his theorem (1853)

it is easy to see how one can modify the statement of the the-
orem so that it will no longer have any exception. This is what
I am going to explain in a few words.

Theorem. If the different terms of the series

u0, u1, u2, . . . , un, un+1, . . .

are functions of a real variable x , continuous with respect to this variable
within the given limits; and if, in addition, the sum

un + un+1 + · · ·+ un′

always becomes infinitely small for infinitely large values of the whole
numbers n and n′ > n, then the series will be convergent and the sum of
the series will be, within the given limits, a continuous function of the
variable x .

But it was becoming clear that the language of infinities and

infinitesimals was inadequate for expressing the problems at hand.



Integration

I Recall that in the 17th century, ‘integration’ was designed for
‘quadrature’, for measuring space or calculating area.

I In the 18th century, ‘integration’ was essentially regarded as
the inverse of differentiation.



Integration in the 18th century (1)

Leonhard Euler, Foundations of
integral calculus (1768):

Definition 1: Integral calculus is
the method of finding, from a
given relationship between
differentials, a relationship
between the quantities
themselves: and the operation by
which this is carried out is usually
called integration.

(See Mathematics emerging,
§14.2.1.)



Integration in the 18th century (2)

Corollary 1: Therefore where
differential calculus teaches us to
investigate the relationship between
differentials from a given
relationship between variable
quantities, integral calculus supplies
the inverse method.

Corollary 2: Clearly just as in

Analysis two operations are always

contrary to each other, as

subtraction to addition, division to

multiplication, extraction of roots to

raising of powers, so also by similar

reasoning integral calculus is

contrary to differential calculus.



Integration in the 18th century (3)

Definition 2: Since the differentiation
of any function of x has a form of this
kind: X dx , when such a differential
form X dx is proposed, in which X is
any function of x , that function whose
differential = X dx is called its integral,
and is usually indicated by the prefix

∫
,

so that
∫
X dx denotes that variable

quantity whose differential = X dx .

Corollary 2: Therefore just as the letter

d is the sign of differentiation, so we

use the letter
∫

as the sign of

integration, and thus these two signs are

mutually contrary to each other, as

though they destroy each other:

certainly
∫
dX = X , . . .



Integration in the 18th century (4)



Some 19th-century ideas

Recall that Fourier coefficients are given by
2

π

∫ π

0
φ(x) sin nx dx .

It is not always possible to solve such an integral algebraically.

Fourier (1822): but we can draw the curve of φ(x), and hence that
of φ(x) sin nx , under which there is clearly an area.

Fourier thus returned to the idea of integral as area and influenced
Cauchy almost immediately...



A theory of definite integrals (1823)

Cauchy’s Résumé, 1823, Lesson 21:

Suppose f (x) continuous between x = x0 and x = X . Choose
x1, x2, . . . , xn−1 between these limits. Define

S = (x1 − x0)f (x0) + (x2 − x1)f (x1) + · · ·+ (X − xn−1)f (xn−1)

[much discussion of dependence on partition followed by]

If the numerical values of the elements are made to decrease
indefinitely by increasing their number, the value of S will become
essentially constant, or in other words, it will finish by attaining a
certain limit which will depend only on the form of the function
f (x) and the boundary values x = x0, x = X given to the variable
x . This limit is what one calls a definite integral.

[further issues connected with uniform convergence]



Cauchy and integrals

Is it valid to use the symbol
∫

here?



Cauchy and the Fundamental Theorem of Calculus

If in the definite integral∫ X
x0

f (x) dx one makes one of
the two limits vary, for example
the quantity X , the integral
itself will vary with this
quantity; and if one replaces
the variable limit X by x , there
results a new function of x , . . .



Cauchy and the Fundamental Theorem of Calculus

Let

F (x) =

∫ x

x0

f (x) dx

be this new function.

Proved that F ′(x) = f (x), and
also that

$′(x) = 0⇒ $(x) = const,

which may be used to show
that if F ′(x) = f (x), then∫ X

x0

f (x) dx = F (X )− F (x0).



The Fundamental Theorem of Calculus

What is the Fundamental Theorem of Calculus?

I integration is the inverse of differentiation?

I integration ‘as a sum’ is the same as integration ‘by rule’?

I Cauchy’s integration is the same as Euler’s integration?

I 19th-century integration is the same as 18th-century
integration?

I . . .



Bernhard Riemann (1826–1866)



Riemann’s integral (1853)

Function f (x) no longer required to be continuous on [a, b]. Take
x1 < x2 < · · · < xn−1. Define δ1 := x1 − a, δ2 := x2 − x1, ...,
δn := b − xn−1. Choose numbers εi between 0 and 1. Then define

S := δ1f (a + ε1δ1) + δ2f (x1 + ε2δ2)

+ δ3f (x2 + ε3δ3) + · · ·+ δnf (an−1 + εnδn)

If this has the property that it comes infinitely close to a fixed
value A when all the δi become infinitely small, then this is the
value of

∫ b
a f (x) dx .

Many variants over the years, all called Riemann integral.



Lebesgue’s integral (1901)

Considers step functions on subsets that are not necessarily
intervals, thus requiring the notion of a measure (Borel, 1894).

Results in a notion of integral of wider applicability than
Riemann’s; for example:

can integrate highly discontinuous functions, such as the Dirichlet
function:

f (x) :=

{
1 if x is rational;
0 if x is irrational.


