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Summary

I Linear equations

I Determinants

I Eigenvalues

I Matrices

I Vector spaces



Difficulties in the historical study of linear algebra

Linear algebra may be mathematically simple but its his-
tory is more complicated than any other topic in this book.
. . . [Its development is] a very tangled tale.

(Mathematics Emerging, p. 548.)

I linear algebra is elementary but its manifestations are many
and sophisticated

I there are hardly any obvious starting points

I theory often lagged behind practice

I practice sometimes lagged behind theory

I 19th-century reliance on theory of quadratic and bilinear
forms — unfamiliar to students now

Warning: matrices (etc.) are primary in modern teaching,
determinants secondary. For about 200 years until 1940 (or
thereabouts) the reverse was the case: determinants came first.



On the history of linear algebra

(Princeton University Press, 2014)



Jiǔzhāng Suànshù (China, c. 150 BC)

Nine chapters of the mathematical
art (from a 16th-century
edition, derived from a 3rd-century
commentary by Liu Hui )

Content: calculation of areas
(π ≈ 3.14159), rates of exchange,
computation with fractions,
proportion, extraction of square
and cube roots, calculation of
volumes, systems of linear
equations, Pythagoras’ Theorem,
. . .



Chinese calculation

Base 10 system of rods on counting board: red for positive, black
for negative



Early linear equations in China

Chapter 7: solution of pairs of equations in two unknowns by the method
of false position

Chapter 8: solution of systems of n equations in n unknowns for n ≤ 5

There are three types of grain

3 bundles of the first, 2 of the second, and 1 of the third
contain 39 measures

2 of the first, 3 of the second, and 1 of the third contain 34
1 of the first, 2 of the second, and 3 of the third contain 26

How many measures in a bundle of each type?

Solved on a counting board by Gaussian elimination, known here as

‘fāngchéng’



Early linear equations in China

There are five families which share a well. 2 of A’s ropes
are short of the well’s depth by 1 of B’s ropes. 3 of B’s
ropes are short of the depth by 1 of C’s ropes. 4 of C’s
ropes are short by 1 of D’s ropes. 5 of D’s ropes are short
by 1 of E’s ropes. 6 of E’s ropes are short by 1 of A’s
ropes. Find the depth of the well and the length of each
rope.

Five equations in six unknowns, so indeterminate

Liu Hui: we can only give a solution in terms of proportions of the
lengths



Early linear equations in Europe

Jean Borrel [Ioannes Buteus]
Logistica, quæ et Arithmetica
vulgo dicitur in libros quinque
digesta (Logistic, also known as
Arithmetic, digested in five
books), 1559



Linear equations in Borrel’s Logistica

To find three numbers, of which the
first with a third of the rest makes
14. The second with a quarter of the
rest makes 8. Likewise the third with
a fifth part of the rest makes 8.

Put the first to be 1A, the second
1B, the third 1C . . . .

[Derives a system of equations with
‘.’ for addition and ‘[’ for equality.]

Multiply by 3, by 4 and by 5
respectively, etc.

(See Mathematics emerging,
§17.1.1.)



More unknowns

Guillaume Gosselin, De arte magna
seu de occulta parte numerorum
quae et Algebra et Almucabala vulgo
dicitur (On the great art or the
hidden part of numbers commonly
called Algebra and Almucabala),
1577
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A 17th-century example

After reading Gosselin . . .
John Pell to Sir Charles Cavendish (1646):

Exemplum . . . satis determinatis

3a− 4b + 5c = 2

5a + 3b − 2c = 58

7a− 5b + 4c = 14

(Solved via Pell’s ‘three-column method’)

Exemplum . . . non satis determinatis

5a + 3b − 2c = 24

−2a + 4b + 3c = 5

(a, b, c > 0; found bounds for the possible values: e.g., a < 15 9
11)



Linear equations — systematic practical methods

Gaussian elimination:

I The nine chapters of the mathematical art, China (c. 150 BC)

I Colin Maclaurin, A treatise of algebra (1748), §§82–85

C. F. Gauss: calculation of asteroid orbits (1810)

from surveying, e.g., Wilhelm Jordan, Handbuch der
Vermessungskunde, 3rd edition (1888)



Maclaurin on Gaussian elimination



Linear equations — systematic practical methods

Gaussian elimination:

I The nine chapters of the mathematical art, China (c. 150 BC)

I Colin Maclaurin, A treatise of algebra (1748), §§82–85

I C. F. Gauss: calculation of asteroid orbits (1810)

I from surveying, e.g., Wilhelm Jordan, Handbuch der
Vermessungskunde, 3rd edition (1888)



Maclaurin and linear equations
Colin Maclaurin, A treatise of
algebra, 1748, p. 83

Three equations in three
unknowns solved using a
‘determinant-like’ quantity

Notational difficulties — we run
out of letters! Elsewhere, Leibniz
introduced ‘aij ’



Determinants

Colin Maclaurin, A treatise of algebra, 1748, Ch. XII, pp. 81–85

Vandermonde, ‘Mémoire sur l’élimination’, Mémoires de
l’Académie des sciences, 1772: a recursive description of
determinants of any size (but without a name and in an
uncongenial notation — see Mathematics emerging, §17.1.3)

Gauss in Disquisitiones arithmeticae (1801) gave the name
‘determinant’ to what is now called the ‘discriminant’ B2 − AC of
the binary quadratic form Ax2 + 2Bxy + Cy2.



Vandermonde on elimination

α
a

denotes a single quantity, e.g.,

a coefficient in a linear equation

Define:
α β

a b
=
α β
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− α β
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Anachronistically, this is the
determinant of the matrix:
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b

β
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β
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Then continue recursively . . .



Determinants

Colin Maclaurin, A treatise of algebra, 1748, Ch. XII, pp. 81–85

Vandermonde, ‘Mémoire sur l’élimination’, Mémoires de
l’Académie des sciences, 1772: a recursive description of
determinants of any size (but without a name and in an
uncongenial notation — see Mathematics emerging, §17.1.3)

Gauss in Disquisitiones arithmeticae (1801) gave the name
‘determinant’ to what is now called the ‘discriminant’ B2 − AC of
the binary quadratic form Ax2 + 2Bxy + Cy2.



Cauchy on determinants

Cauchy, ‘Mémoire sur les fonctions
qui ne peuvent obtenir que deux
valeurs égales et de signes contraires
par suite des transpositions opérées
entre les variables qu’elles
renferment’, Journal de l’École
polytechnique, 1815

Referred to Laplace, Vandermonde,
Gauss, and others

Introduced the term determinant for
the function of n2 quantities (a sum
of n! signed products) that we now
know by that name.

(See Mathematics emerging,

§17.1.4.)



History of the theory of determinants

Determinants were studied
extensively in the 19th century.

Sir Thomas Muir, The theory of
determinants in the historical order
of development (1890–1906)

I Part I: Determinants in general:
Leibnitz (1693) to Cayley
(1841);

I Part II: Special determinants up
to 1841

Second edition in 4 volumes,
1906–1923; supplement, 1930.

https://archive.org/details/theoryofdetermin01muiruoft
https://archive.org/details/theoryofdetermin01muiruoft
https://archive.org/details/theoryofdetermin01muiruoft


‘Eigenvalue’ problems

Euler (1748): change of coordinates to reduce equation
of a quadric surface αz2 + βyz + γxz + δy2

+εxy + ζx2 + ηz + θy + ιx + χ = 0 to its
simplest form Ap2 + Bq2 + Cr2 + K = 0
(see: Mathematics emerging, §17.2.1.)

Laplace (1787): symmetry of coefficients in a set of linear
differential equations leads to real ‘eigenvalues’
(see: Mathematics emerging, §17.2.2.)

Cauchy (1829): a symmetric matrix is diagonalisable by a real
orthogonal change of variables
(see: Mathematics emerging, §17.2.3.)



Matrices and their determinants

Gauss, Disquisitiones arithmeticae (1801): transformation of
quadratic forms ax2 + 2bxy + cy2 by change of variables

x = αx ′ + βy ′, y = γx ′ + δy ′

followed by

x ′ = α′x ′′ + β′y ′′, y ′ = γ′x ′′ + δ′y ′′

comes to the same as

x = (αα′+βγ′)x ′′+(αβ′+βδ′)y ′′, y = (γα′+δγ′)x ′′+(γβ′+δδ′)y ′′

Moreover, the ‘determinants’ (our sense) multiply.

NB. All Gauss’ coefficients were integers

(See Mathematics emerging, §17.3.1.)



Early origins of matrices

The OED (3rd ed., March 2001) lists sense 2a of ‘matrix’ as

A place or medium in which something is originated, pro-
duced, or developed . . .

Thus, in 1850, J. J. Sylvester applied the word to the ‘thing’ from
which determinants originate:

For this purpose we must commence, not with a square,
but with an oblong arrangement of terms consisting, sup-
pose, of m lines and n columns. This will not in itself
represent a determinant, but is, as it were, a Matrix out
of which we may form various systems of determinants by
fixing upon a number p, and selecting at will p lines and
p columns, the squares corresponding of pth order.

But he did not operate with matrices



The definition of matrices
Arthur Cayley, ‘A memoir on the
theory of matrices’, Phil. Trans. Roy.
Soc., 1858:

I defined matrices and their
properties

I recognised connection to linear
equations

I stated the Cayley–Hamilton
Theorem

I investigated the matrices that
commute with a given one

“It will be seen that matrices
(attending only to those of the same
order) comport themselves as single
quantities...”

(See Mathematics emerging,

§17.3.2.)



Determinants persist
“I am aware that the word ‘Matrix’ is
already in use to express the very
meaning for which I use the word
‘Block’; but surely the former word
means rather the mould, or form, into
which algebraical quantities may be
introduced, than an actual assemblage
of such quantities . . .”

Criticised notation ‘aij ’:
“it seems a fatal objection to this
system that most of the space is
occupied by a number of a’s, which are
wholly superfluous, while the only
important part of the notation is
reduced to minute subscripts, alike
difficult to the writer and the reader.”

Proposed i
∫
j instead



Matrices elsewhere

Matrix algebra appears in
Hamilton’s Lectures on
Quaternions (1853) as ‘linear and
vector functions’ (including his
version of the Cayley–Hamilton
Theorem, stated and proved in
terms of quaternions)

Matrices were also devised by
Laguerre in his paper ‘Sur le
calcul des systèmes linéaires’
(J. École polytechnique, 1867)



Jordan and linear substitutions

Camille Jordan, Traité des
substitutions, 1870:

I studied matrices over integers
modulo n as part of an
extensive study of linear
substitutions (in connection
with Galois theory); developed
‘canonical forms’ to study
conjugacy classes in these
groups

I developed his ideas to ‘Jordan
canonical form’ for complex
matrices in his studies 1872–4
of linear differential equations



German contributions

Georg Frobenius, in 1878, working
with bilinear forms, produced more
canonical forms, and gave a
satisfactory proof of the
Cayley–Hamilton Theorem

(See Mathematics emerging,
§17.3.3.)

Other mathematicians in Germany
(e.g., Kronecker, Hurwitz)
contributed similarly

A recommended secondary source:

Thomas Hawkins, ‘Another look at

Cayley and the theory of matrices’,

Archives internationales d’histoire

des sciences 26 (1977), 82–112



Vectors
Newton (1687): parallelogram of forces

Argand (1806): complex numbers as directed quantities in the
plane



Vectors

Word applied mostly to radius
vectors

e.g., as rayon vecteur in Laplace’s
Mécanique Céleste (1799–1825)

Also in Cauchy’s Leçons sur les
Applications du Calcul
Infinitésimal à la Géométrie
(1826), p. 14:

A line AB, taken from a point A,
supposed to be fixed, to a
moving point B, will in general
be referred to as a radius vector.



Hamilton and vectors

Sir William Rowan Hamilton drew a distinction between a ‘vector’
and a ‘radius vector’:

Between 1843–1866, developed quaternions — 4-dimensional
quantities a + bi + cj + dk , where i2 = j2 = k2 = ijk = −1,
designed for use in mechanics (and geometry of 3 dimensions)

“A vector is thus . . . a sort of natural triplet (suggested
by Geometry): and accordingly we shall find that quaternions
offer an easy mode of symbolically representing every vector by a
trinomial form (ix + jy + kz); which form brings the
conception and expression of such a vector into the closest possible
connexions with Cartesian and rectangular co-coordinates.”

So a quaternion is a scalar + a vector (giving rise to Hamilton’s
notion of the quaternions as an “algebra of the science of pure
time”)



Vector spaces appear



Grassmann’s ‘doctrine of extension’

Die Ausdehnungslehre [Doctrine of
extension] (1862) is a heavily reworked
version of an earlier (1844) work:

The Science of Extensive Quantities, or
the Doctrine of Extension, a New
Mathematical Discipline, Presented and
Explained through Examples

Introduced idea of objects generated by
motion — a single element generates an
object of order 1, an object of order 1
generates an object of order 2, etc.

Objects of the same order can be added
together or scaled by real numbers

Little impact at the time



Grassmann’s ‘extensive quantities’

The 1862 text contains a theory of
extensive quantities

a1e1 + a2e2 + · · · ,

where the ei are ‘units’ and the ai are
real numbers, including

I rules for the arithmetic of such
quantities

I a notion of linear independence

I dimension

I . . .

But still had little impact

(See Mathematics emerging, §17.4.1.)



Vector spaces defined

On the way towards developing a
‘geometric calculus’, Guiseppe
Peano axiomatised Grassmann’s
collections of extensive quantities
as linear systems (sistemi lineari),
and moved to a fully abstract
setting

Clarified connection between
dimension and linear
independence — noted existence
of linear systems with infinite
dimension

Also no immediate impact!



Vector spaces develop

Dedekind (1879): fields and
‘modules’ needed for algebraic
number theory in famous appendices
to his third edition of Dirichlet,
Vorlesungen über Zahlentheorie
[Lectures on number theory ];
published also separately in France,
1876–77

Ernst Steinitz (1910), ‘Algebraische
Theorie der Körper’ [‘Algebraic
theory of fields’] — contains a
beautifully crystallised theory of
linear dependence and independence,
bases, dimension, etc., in the form it
is now taught



Vector spaces develop

B. L. van der Waerden (1930–31),
Moderne Algebra, incorporating
material from lectures by Emil Artin
and Emmy Noether (1926–1928)

Paul Halmos (1942),
Finite-dimensional vector spaces —
made the subject accessible to 1st
and 2nd year undergraduates


