Model solutions and marking scheme for B4.4. March 2021

Question 1: (a) Since a, b € L'(R) the rule, (a,) := [pa(z)d(z) dz and
(b,p) := [pb(x)¢(x)dx for ¢ € S (R) yield well-defined linear functionals
on .(R). Furthermore, |(a, ¢>’ < ||a]|1S0,0(¢) and similarly for b, so both
are . continuous, and thus tempered distributions. For ¢ we note that
c(z)/(1+]z]) € LY(R), so c is a tempered L! function and is thus a tempered
distribution by the definition (¢,$) = [pc(x)p(x)dz in view of the bound

(e, d)| < 2lle/(+ - Dll1S10(9)- [2 marks]
The Fourier transform of «a is easily calculated
0 14+i¢  £—i
[1 mark]
Note that ) )
i —i 2
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hence b = %(5 + @) and so by the Fourier inversion formula in .,

g(f) = %(27@ +2ma) = melél,

[2 marks]
Since ¢(x) = zb(z) we get by the differentiation rule,
2(€) = ib'(¢) = —ime ¥lsan(¢).
[2 marks]
[Standard examples + seen related examples before.]
(b) Using the dilation rules and (a), we have in .'(R),
6;(5) :/b\(aé) =me ¥l =5 71 as e\, 0.
[1 mark]

Hence by the Fourier inversion formula in .#” and .#’ continuity of F~!,

b = Fh (e ) o F (1) = my in (B) a5 < N0

E—a

[1 mark]
For ¢, we get similarly,

C=(§) = c(eg) — —imsgn(§) in S'(R) as e\, 0,



hence
c(z) = Fi L (—imsgn(¢)) in &'(R) ase \,0.

E—x
[1 mark]

From an example in course lecture notes (or by calculation), pv(1)(¢&) =
—imsgn(€) so we find the limit of ¢, is pv(%). [1 mark]
(It is ok to normalize by 7 and use results about approximate units from the
course to find limit for b.. One can also quite easily find limit of ¢. without
use of Fourier transform.)

For z = x + iy in the upper half-plane we have

Y .z z 1
F = = — = —

(2) x? 4 2 +1332+y2 ]2z
so clearly holomorphic. [1 mark]
For real-valued ¢ € .7 (R) we define

®(z) = %((by * ) () +i(cy * (P)(x))

[2 marks]
and since we can rewrite this as

2(:) = —(F(z~),0)

[1 mark]
it follows from a theorem about differentiation behind the distribution sign
that ® is C! and satisfies the Cauchy-Riemann equation, and hence that it
is holomorphic on the upper half-plane. [1 mark]
Since ¢ is real-valued, Re(®(z)) = (b, * ¢)(x)/m and so by the first part of
(b) we get that it converges to ¢(x) pointwise in x € R as y N\, 0. [1 mark]
For the imaginary part,

In(2(2) = 2oy 0)(0) = - (bv(§) + ) @) = o))

pointwise in z € R as y \, 0, where H is the Hilbert transform. [2 marks]

[Seen variants before]
(c) Note that the function f — ¢ is continuous and that

f@) = e(z) = o(%) as || — oo,

[2 marks]



It follows that f — ¢ € L'(R) and so by the Riemann-Lebesgue lemma,
(f —¢) € Cop(R). [1 mark]
Thus

F(€) = (f = )(€) — ime™Flsgn(e).
[1 mark]
Consequently ]?is continuous at each £ # 0 and at 0 it has one-sided limits
F(07) = im, f(07) = —ir. Hence it has a jump discontinuity at 0 with jump
—27i. [2 marks]
[New example]

Question 2: (a) (i) The symbol for p(9) = —A—i0102+1 is the polynomial
p(i€) = €1+ &3 +i€1€2+1 and the principal symbol is €3 +£3+i€1 €. Tt is clear
that the principal symbol only vanishes at ¢ = 0 in R?, so the differential
operator is elliptic.

[2 marks]
A fundamental solution for p(d) is any distribution E € 2'(R?) satisfying
p(0)E = &y in 2'(R?). We consider this equation in .#”/(R?): if E € .7/(R?)
and p(0)E = dg in .#’'(R?), then by Fourier transformation and the differ-
entiation rule, p(if)E =1 in ./(R?). Because the symbol satisfies

9| = (@ + &+ 12 + (@& > G+ G+ 1= e +1,

it follows that @ is a tempered L! function and so in particular a tempered

distribution. We must therefore have that £ = ﬁ, and hence by the

Fourier inversion formula in .#’ that

1
E:f—1< : ) € ' (R?
p(i€) )
is uniquely determined. Conversely, it is easy to check that this is indeed a
fundamental solution. [2 marks]
(ii) First note,
- 261 + if? . =9
EFE=———"2"=—-(2 E
O p(1§)2 ( §1 + 152) )

and so R R R R
OEF = kEF 10 E = — k(26 + i&)EML.



Using Leibniz’ rule we then find for m > 1,
OPEF = kot <(2£1 + iﬁg)E’““)
m—1 m—1 ) N
e
— J
7=0
— _k((zgl +i&) T B 4 o(m — 1)8?—@“1)
as required. Next, note that for k € N,
~ _ ~ kgl
|E¥ < (1+[¢?) 7" and |0 B*| < 2k(1+ |¢[2) "2,
Thus we have ¢(k,0) = 1 and ¢(k,1) = 2k. Assume that for some s € N we

have the inequality for m < s and all £ € N. Then we get from the above
recurrence relation, the triangle inequality and the induction hypothesis:

IN

|93 L EF| k(20&1] + [€o]) |05 EFFY] + 2ks|o;~  EM Y|

(2ke(k +1,8) + 2kse(k + 1,5 — 1)) (1 + [¢[2) ¥

A

This is the required bound with ¢(k, s+1) = 2ke(k+1, s)+2ksc(k+1,s—1).
The assertion now follows by induction. [5 marks]
(iii) From (ii) we have for any multi-index a,

|a|—m—2
)

€207 E| < |6%em(1+1€2) 772 <em(1+]¢)2) 2

hence we have integrability over R? provided |a| < m. [2 marks]
By the differentiation rules and the Riemann-Lebesgue lemma we therefore

have 3a<(ix1)mE> _ f€_1m<(i§)°‘8{”E> € Co(R?)

provided |a| < m. Consequently, the function z7*E is C™1(R?) and so E
is C™~1 away from the z9-axis. Since m € N was arbitrary, we have shown
that E is C*° away from the x-axis. [2 marks]
Now note that E is symmetric in & and &2, so that we can do exactly the
same calculation with respect to & to see that E is C*° away from the x;-
axis. We then conclude that E is C* away from the origin, and hence that
sing.supp(E) C {0}. [2 marks]
[(i) is straightforward. (ii) and (iii) are variants of a calculation
for Bessel kernels done in course]



(b)(i) The PDE is by the Fourier inversion formula in .’ equivalent to
p(i€)U = F, and because E = 1/p(i§) in particular is a moderate C>
function we can rewrite this as U = E'F, and so by the extended convolution
rule and Fourier inversion,

U=ExFe.R?
is the unique solution in .#’(R?). Now
(1 + 1) 0] = [(1+[€P) B F| < |F),
so by the definition of the H2 norm and Plancherel’s theorem,
lullg < [1F]l2 = 27|,

as required. [4 marks]
(ii) Suppose that u € 2'(Q2) is a solution. Fix w € Q and let x = p. * 15_)
for € > 0 so small that x € 2(€2). If we define xf = 0 off Q, then xf €
L2(R?) and we can use (i) with F' = x f to assert that U = Ex(xf) € H*(R?)
satisfies p(0)U = xf in .#'(R?). Because x = 1 on w we have for ¢ € Z(w),

(pD)(u—U),¢) =(f—xf,6) = (f,(1=x)¢) =0

and thus, p(0)(u — U) = 0 in 2'(w). By (a)(iii) and a result from the
course the differential operator p(9) is hypoelliptic, so v — U is C* on w. It
follows that u is locally H? on w, and since w € § was arbitrary the proof
is complete. [6 marks]
[New example]

Question 3: (a) Let x = p* 1(_j or41) and note that the 27 periodisation
of x, Px, is a C* function with Py > 1. If ¥ = x/Px, then ¥ € 2(R) with
periodisation P¥ = 1. The 27 periodicity of w implies that (u, ¢) = (u, U¢)
holds for all ¢ € Z(R), and this formula can be used to extend u to . (R) as
a tempered distribution. (Candidates need not mention this.) The Fourier
expansion of u is

. 1 .
k —ik(-
u:che‘ z, ck:%@,\lle ! ()>
keZ
The convergence is in the sense of .

n
Z cre™® — u in ' (R)

k=—m



as m, n — oo. We have uniqueness in the sense that when ), _, cpelf® =0
in 5”’( ), then ¢ = 0 for all k € Z. [Book work. 2 marks]
(1) (cx)rez is the sequence of Fourier coefficients for a 27 periodic distribution
if and only if there exist constants ¢ > 0, N € Ny such that

P N

k| < c(1+ [k]7) 2

holds for all k € Z. Now assume u = > .., cke'*® in 7' (R). If ¢ € S (R)
we have, since ¢ € % (R) too, that

N
2

ek (@, 0)| < exd(—k)| < e(14+]kI?) 2 |6(—k)| < 2V P2 (1+[k[2) ™ Sn20(0)

for all k € Z, hence

Z\Ck(eikz, p)| < c2VF2 Z(l + |k|2)_1§N+2,0($) < 0.
k€EZ k€EZ

The series ) ;5 cr(e*® @) is therefore absolutely convergent, and conse-
quently

Z Co (k) <eia(k):v7 ¢> = <U, ¢>

keZ

as required. [4 marks]

(i) If f € Li (R) is 27 periodic, then we have for k # 0 that e k¢ =

—e *(==%) and hence

1 —ikx 1 2 —ikx
k= 5o f( Je dw——QW ; f(:c+k) dz.
Therefore
- L %(f( )~ st D)
Ck = i x z 2 € x.
Consequently |c;| < 5= f f(x+7)|dzr — 0 as |[k| = oco. [4 marks]

(iii) We have v = ZkeZ cpe' k”” in 5”’( ) Because > kez ek < oo the Weier-
strass M-test implies the Fourier series converges uniformly, and hence it fol-
lows that the function f(z) := Y, cke*® is continuous. Now for ¢ € .7 (R)
we have by definition and by uniform convergence that

<chel’“,¢> (f.6)

kEZ



and so v = f as tempered distributions. In particular, [|v]|occ = max,e(oox [f(7)] =
| f(zo)]| for =g € [0, 27] say, and so

[0]lcc = [f (o) =

§ :Ckelkxo

keZ

<D lel,

kEZ

as required. [4 marks]
[(i) new example, but routine. (ii) seen before. (iii) new example,
but routine]

(b)(i) Put pp(z) =1+ ancos(3"z + 6,). Then

14 %neienemx + %ne—iene—iS”m

and so we get by inspection and since the representation of each element in
A is unique,

pn(T) =

al sl an\lenl 0\ e
) = [Lmn) = SO (TL (%) e e
n=1

AEA n=1
We infer from this that the Fourier coefficients Ay = 0 when k ¢ A.
[3 marks]
For A =0 € A we have e, = 0 for all n, and so Ag = 1. Since A = 3" € A
when 1 <m < N we have ¢, = 6, and so Azm = C‘Tmeiem. [2 marks]
(ii) Take for each n € {1, ..., N},
an =1 and 0,, = Arg(cy,).
Define
N
p(x) = H (1 + ay, cos(3"z + Qn)>
n=1
[1 mark]
Then we have p(z) > 0 and according to (i),
plw) =) Axe™,
AEA
where Ag =1, Agn = %eiArg(cn) forn € {1, ..., N}. In particular we record
that o= [Z7|p(z)|dz = 1. [1 mark]

By virtue of Plancherel’s theorem for Fourier series we get
1 7L\ 1 a1
— cn€"® ) p(z) dz = cpoe B = — c
7y (o et = Yoo 125l

7



and consequently

1 Y 1
=Y el < sup e / lp(x)| dz
2= ve(0,27]1 21 Jo
N
= sup e
z€ (0,271,
as required. [2 marks]

If g is a 27 periodic L* function with Fourier expansion
o0
g(x) = Z cne®'® in S (R),
n=1

then for N € N we can define p(x) as above corresponding to the N-th
partial sum. Since in particular g € L2 (R) and 3" ¢ A for n > N, we infer

loc
from Plancherel’s theorem for Fourier series that

1 2

N
— 1
37 J, #E Az =5 Pl

and therefore that

1 N 1 2
= < — dz = .
5 2 o < ol | p@ldz = gl

Because N € N is arbitrary we are done. [2 marks]
[New example]



