Question 1: (a) Since $a, b \in \mathrm{~L}^{1}(\mathbb{R})$ the rule, $\langle a, \phi\rangle:=\int_{\mathbb{R}} a(x) \phi(x) \mathrm{d} x$ and $\langle b, \phi\rangle:=\int_{\mathbb{R}} b(x) \phi(x) \mathrm{d} x$ for $\phi \in \mathscr{S}(\mathbb{R})$ yield well-defined linear functionals on $\mathscr{S}(\mathbb{R})$. Furthermore, $|\langle a, \phi\rangle| \leq\|a\|_{1} \mathrm{~S}_{0,0}(\phi)$ and similarly for b, so both are \mathscr{S} continuous, and thus tempered distributions. For c we note that $c(x) /(1+|x|) \in \mathrm{L}^{1}(\mathbb{R})$, so c is a tempered L^{1} function and is thus a tempered distribution by the definition $\langle c, \phi\rangle=\int_{\mathbb{R}} c(x) \phi(x) \mathrm{d} x$ in view of the bound $|\langle c, \phi\rangle| \leq 2\|c /(1+|\cdot|)\|_{1} \bar{S}_{1,0}(\phi)$.
[2 marks]
The Fourier transform of a is easily calculated

$$
\widehat{a}(\xi)=\int_{0}^{\infty} \mathrm{e}^{-(1+\mathrm{i} \xi) x} \mathrm{~d} x=\frac{1}{1+\mathrm{i} \xi}=\frac{-\mathrm{i}}{\xi-\mathrm{i}}
$$

[1 mark]
Note that

$$
\frac{\mathrm{i}}{\xi+\mathrm{i}}+\frac{-\mathrm{i}}{\xi-\mathrm{i}}=\frac{2}{1+\xi^{2}}
$$

hence $b=\frac{1}{2}(\widetilde{\widehat{a}}+\widehat{a})$ and so by the Fourier inversion formula in \mathscr{S}^{\prime},

$$
\widehat{b}(\xi)=\frac{1}{2}(2 \pi \widetilde{\widetilde{a}}+2 \pi \widetilde{a})=\pi \mathrm{e}^{-|\xi|}
$$

[2 marks]
Since $c(x)=x b(x)$ we get by the differentiation rule,

$$
\widehat{c}(\xi)=\widehat{\mathrm{i}}^{\prime}(\xi)=-\mathrm{i} \pi \mathrm{e}^{-|\xi|} \operatorname{sgn}(\xi)
$$

[2 marks]
[Standard examples + seen related examples before.]
(b) Using the dilation rules and (a), we have in $\mathscr{S}^{\prime}(\mathbb{R})$,

$$
\widehat{b_{\varepsilon}}(\xi)=\widehat{b}(\varepsilon \xi)=\pi \mathrm{e}^{-\varepsilon|\xi|} \rightarrow \pi \mathbf{1}_{\mathbb{R}} \text { as } \varepsilon \searrow 0
$$

[1 mark]
Hence by the Fourier inversion formula in \mathscr{S}^{\prime} and \mathscr{S}^{\prime} continuity of \mathcal{F}^{-1},

$$
b_{\varepsilon}=\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\pi \mathrm{e}^{-\varepsilon|\xi|}\right) \rightarrow \mathcal{F}^{-1}\left(\pi \mathbf{1}_{\mathbb{R}}\right)=\pi \delta_{0} \text { in } \mathscr{S}^{\prime}(\mathbb{R}) \text { as } \varepsilon \searrow 0
$$

[1 mark]
For c_{ε} we get similarly,

$$
\widehat{c_{\varepsilon}}(\xi)=\widehat{c}(\varepsilon \xi) \rightarrow-\mathrm{i} \pi \operatorname{sgn}(\xi) \text { in } \mathscr{S}^{\prime}(\mathbb{R}) \text { as } \varepsilon \searrow 0
$$

hence

$$
c_{\varepsilon}(x) \rightarrow \mathcal{F}_{\xi \rightarrow x}^{-1}(-\mathrm{i} \pi \operatorname{sgn}(\xi)) \text { in } \mathscr{S}^{\prime}(\mathbb{R}) \text { as } \varepsilon \searrow 0
$$

From an example in course lecture notes (or by calculation), $\frac{[\mathbf{1} \text { mark }]}{\operatorname{pv}\left(\frac{1}{x}\right)}(\xi)=$ $-\mathrm{i} \pi \operatorname{sgn}(\xi)$ so we find the limit of c_{ε} is $\operatorname{pv}\left(\frac{1}{x}\right)$.
[1 mark] (It is ok to normalize by π and use results about approximate units from the course to find limit for b_{ε}. One can also quite easily find limit of c_{ε} without use of Fourier transform.)
For $z=x+\mathrm{i} y$ in the upper half-plane we have

$$
F(z)=\frac{y}{x^{2}+y^{2}}+\mathrm{i} \frac{x}{x^{2}+y^{2}}=\frac{\bar{z}}{|z|^{2}}=\frac{1}{z}
$$

so clearly holomorphic.
[1 mark]
For real-valued $\varphi \in \mathscr{S}(\mathbb{R})$ we define

$$
\Phi(z)=\frac{1}{\pi}\left(\left(b_{y} * \varphi\right)(x)+\mathrm{i}\left(c_{y} * \varphi\right)(x)\right)
$$

[2 marks]
and since we can rewrite this as

$$
\Phi(z)=\frac{1}{\pi}\langle F(z-\cdot), \varphi\rangle
$$

[1 mark]
it follows from a theorem about differentiation behind the distribution sign that Φ is C^{1} and satisfies the Cauchy-Riemann equation, and hence that it is holomorphic on the upper half-plane.
[1 mark]
Since φ is real-valued, $\operatorname{Re}(\Phi(z))=\left(b_{y} * \varphi\right)(x) / \pi$ and so by the first part of (b) we get that it converges to $\varphi(x)$ pointwise in $x \in \mathbb{R}$ as $y \searrow 0$. [1 mark] For the imaginary part,

$$
\operatorname{Im}(\Phi(z))=\frac{1}{\pi}\left(c_{y} * \varphi\right)(x) \rightarrow \frac{1}{\pi}\left(\operatorname{pv}\left(\frac{1}{t}\right) * \varphi\right)(x)=\mathcal{H}(\varphi)(x)
$$

pointwise in $x \in \mathbb{R}$ as $y \searrow 0$, where \mathcal{H} is the Hilbert transform. [2 marks] [Seen variants before]
(c) Note that the function $f-c$ is continuous and that

$$
f(x)-c(x)=\mathrm{O}\left(\frac{1}{x^{2}}\right) \text { as }|x| \rightarrow \infty
$$

It follows that $f-c \in \mathrm{~L}^{1}(\mathbb{R})$ and so by the Riemann-Lebesgue lemma, $\widehat{(f-c)} \in \mathrm{C}_{0}(\mathbb{R})$.
[1 mark]
Thus

$$
\widehat{f}(\xi)=\widehat{(f-c})(\xi)-\mathrm{i} \pi \mathrm{e}^{-|\xi|} \operatorname{sgn}(\xi)
$$

[1 mark]
Consequently \widehat{f} is continuous at each $\xi \neq 0$ and at 0 it has one-sided limits $\widehat{f}\left(0^{-}\right)=\mathrm{i} \pi, \widehat{f}\left(0^{+}\right)=-\mathrm{i} \pi$. Hence it has a jump discontinuity at 0 with jump $-2 \pi \mathrm{i}$.
[2 marks]
[New example]
Question 2: (a) (i) The symbol for $p(\partial)=-\Delta-\mathrm{i} \partial_{1} \partial_{2}+1$ is the polynomial $p(\mathrm{i} \xi)=\xi_{1}^{2}+\xi_{2}^{2}+\mathrm{i} \xi_{1} \xi_{2}+1$ and the principal symbol is $\xi_{1}^{2}+\xi_{2}^{2}+\mathrm{i} \xi_{1} \xi_{2}$. It is clear that the principal symbol only vanishes at $\xi=0$ in \mathbb{R}^{2}, so the differential operator is elliptic.
[2 marks]
A fundamental solution for $p(\partial)$ is any distribution $E \in \mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)$ satisfying $p(\partial) E=\delta_{0}$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)$. We consider this equation in $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$: if $E \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$ and $p(\partial) E=\delta_{0}$ in $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$, then by Fourier transformation and the differentiation rule, $p(\mathrm{i} \xi) \widehat{E}=1$ in $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$. Because the symbol satisfies

$$
|p(\mathrm{i} \xi)|=\sqrt{\left(\xi_{1}^{2}+\xi_{2}^{2}+1\right)^{2}+\left(\xi_{1} \xi_{2}\right)^{2}} \geq \xi_{1}^{2}+\xi_{2}^{2}+1=|\xi|^{2}+1
$$

it follows that $\frac{1}{p(i \xi)}$ is a tempered L^{1} function and so in particular a tempered distribution. We must therefore have that $\widehat{E}=\frac{1}{p(i \xi)}$, and hence by the Fourier inversion formula in \mathscr{S}^{\prime} that

$$
E=\mathcal{F}^{-1}\left(\frac{1}{p(\mathrm{i} \xi)}\right) \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)
$$

is uniquely determined. Conversely, it is easy to check that this is indeed a fundamental solution.
[2 marks]
(ii) First note,

$$
\partial_{1} \widehat{E}=-\frac{2 \xi_{1}+\mathrm{i} \xi_{2}}{p(\mathrm{i} \xi)^{2}}=-\left(2 \xi_{1}+\mathrm{i} \xi_{2}\right) \widehat{E}^{2}
$$

and so

$$
\partial_{1} \widehat{E}^{k}=k \widehat{E}^{k-1} \partial_{1} \widehat{E}=-k\left(2 \xi_{1}+\mathrm{i} \xi_{2}\right) \widehat{E}^{k+1}
$$

Using Leibniz' rule we then find for $m>1$,

$$
\begin{aligned}
\partial_{1}^{m} \widehat{E}^{k} & =-k \partial_{1}^{m-1}\left(\left(2 \xi_{1}+\mathrm{i} \xi_{2}\right) \widehat{E}^{k+1}\right) \\
& =-k \sum_{j=0}^{m-1}\binom{m-1}{j} \partial_{1}^{j}\left(2 \xi_{1}+\mathrm{i} \xi_{2}\right) \partial_{1}^{m-1-j} \widehat{E}^{k+1} \\
& =-k\left(\left(2 \xi_{1}+\mathrm{i} \xi_{2}\right) \partial_{1}^{m-1} \widehat{E}^{k+1}+2(m-1) \partial_{1}^{m-2} \widehat{E}^{k+1}\right)
\end{aligned}
$$

as required. Next, note that for $k \in \mathbb{N}$,

$$
\left|\widehat{E}^{k}\right| \leq\left(1+|\xi|^{2}\right)^{-k} \text { and }\left|\partial_{1} \widehat{E}^{k}\right| \leq 2 k\left(1+|\xi|^{2}\right)^{-k+\frac{1}{2}} .
$$

Thus we have $c(k, 0)=1$ and $c(k, 1)=2 k$. Assume that for some $s \in \mathbb{N}$ we have the inequality for $m \leq s$ and all $k \in \mathbb{N}$. Then we get from the above recurrence relation, the triangle inequality and the induction hypothesis:

$$
\begin{aligned}
\left|\partial_{1}^{s+1} \widehat{E}^{k}\right| & \leq k\left(2\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)\left|\partial_{1}^{s} \widehat{E}^{k+1}\right|+2 k s\left|\partial_{1}^{s-1} \widehat{E}^{k+1}\right| \\
& \leq(2 k c(k+1, s)+2 k s c(k+1, s-1))\left(1+|\xi|^{2}\right)^{-k-\frac{s+1}{2}}
\end{aligned}
$$

This is the required bound with $c(k, s+1)=2 k c(k+1, s)+2 k s c(k+1, s-1)$. The assertion now follows by induction.
[5 marks] (iii) From (ii) we have for any multi-index α,

$$
\left|\xi^{\alpha} \partial_{1}^{m} \widehat{E}\right| \leq\left|\xi^{\alpha}\right| c_{m}\left(1+|\xi|^{2}\right)^{-1-\frac{m}{2}} \leq c_{m}\left(1+|\xi|^{2}\right)^{\frac{|\alpha|-m-2}{2}},
$$

hence we have integrability over \mathbb{R}^{2} provided $|\alpha|<m$.
[2 marks]
By the differentiation rules and the Riemann-Lebesgue lemma we therefore have

$$
\partial^{\alpha}\left(\left(-\mathrm{i} x_{1}\right)^{m} E\right)=\mathcal{F}_{\xi \rightarrow x}^{-1}\left((\mathrm{i} \xi)^{\alpha} \partial_{1}^{m} \widehat{E}\right) \in \mathrm{C}_{0}\left(\mathbb{R}^{2}\right)
$$

provided $|\alpha|<m$. Consequently, the function $x_{1}^{m} E$ is $C^{m-1}\left(\mathbb{R}^{2}\right)$ and so E is C^{m-1} away from the x_{2}-axis. Since $m \in \mathbb{N}$ was arbitrary, we have shown that E is C^{∞} away from the x_{2}-axis.
[2 marks] Now note that \widehat{E} is symmetric in ξ_{1} and ξ_{2}, so that we can do exactly the same calculation with respect to ξ_{2} to see that E is C^{∞} away from the x_{1} axis. We then conclude that E is C^{∞} away from the origin, and hence that sing. $\operatorname{supp}(E) \subseteq\{0\}$.
[(i) is straightforward. (ii) and (iii) are variants of a calculation for Bessel kernels done in course]
(b)(i) The PDE is by the Fourier inversion formula in \mathscr{S}^{\prime} equivalent to $p(\mathrm{i} \xi) \widehat{U}=\widehat{F}$, and because $\widehat{E}=1 / p(\mathrm{i} \xi)$ in particular is a moderate C^{∞} function we can rewrite this as $\widehat{U}=\widehat{E} \widehat{F}$, and so by the extended convolution rule and Fourier inversion,

$$
U=E * F \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)
$$

is the unique solution in $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$. Now

$$
\left|\left(1+|\xi|^{2}\right) \widehat{U}\right|=\left|\left(1+|\xi|^{2}\right) \widehat{E}\right||\widehat{F}| \leq|\widehat{F}|,
$$

so by the definition of the H^{2} norm and Plancherel's theorem,

$$
\|u\|_{\mathrm{H}^{2}} \leq\|\widehat{F}\|_{2}=2 \pi\|F\|_{2}
$$

as required.
[4 marks]
(ii) Suppose that $u \in \mathscr{D}^{\prime}(\Omega)$ is a solution. Fix $\omega \Subset \Omega$ and let $\chi=\rho_{\varepsilon} * \mathbf{1}_{B_{\varepsilon}(\omega)}$ for $\varepsilon>0$ so small that $\chi \in \mathscr{D}(\Omega)$. If we define $\chi f=0$ off Ω, then $\chi f \in$ $\mathrm{L}^{2}\left(\mathbb{R}^{2}\right)$ and we can use (i) with $F=\chi f$ to assert that $U=E *(\chi f) \in \mathrm{H}^{2}\left(\mathbb{R}^{2}\right)$ satisfies $p(\partial) U=\chi f$ in $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$. Because $\chi=1$ on ω we have for $\phi \in \mathscr{D}(\omega)$,

$$
\langle p(\partial)(u-U), \phi\rangle=\langle f-\chi f, \phi\rangle=\langle f,(1-\chi) \phi\rangle=0
$$

and thus, $p(\partial)(u-U)=0$ in $\mathscr{D}^{\prime}(\omega)$. By (a)(iii) and a result from the course the differential operator $p(\partial)$ is hypoelliptic, so $u-U$ is C^{∞} on ω. It follows that u is locally H^{2} on ω, and since $\omega \Subset \Omega$ was arbitrary the proof is complete.
[6 marks]

[New example]

Question 3: (a) Let $\chi=\rho * \mathbf{1}_{(-1,2 \pi+1]}$ and note that the 2π periodisation of $\chi, P \chi$, is a C^{∞} function with $P \chi \geq 1$. If $\Psi=\chi / P \chi$, then $\Psi \in \mathscr{D}(\mathbb{R})$ with periodisation $P \Psi=1$. The 2π periodicity of u implies that $\langle u, \phi\rangle=\langle u, \Psi \phi\rangle$ holds for all $\phi \in \mathscr{D}(\mathbb{R})$, and this formula can be used to extend u to $\mathscr{S}(\mathbb{R})$ as a tempered distribution. (Candidates need not mention this.) The Fourier expansion of u is

$$
u=\sum_{k \in \mathbb{Z}} c_{k} \mathrm{e}^{\mathrm{i} k x}, \quad c_{k}=\frac{1}{2 \pi}\left\langle u, \Psi \mathrm{e}^{-\mathrm{i} k(\cdot)}\right\rangle
$$

The convergence is in the sense of \mathscr{S}^{\prime} :

$$
\sum_{k=-m}^{n} c_{k} \mathrm{e}^{\mathrm{i} k x} \rightarrow u \text { in } \mathscr{S}^{\prime}(\mathbb{R})
$$

as $m, n \rightarrow \infty$. We have uniqueness in the sense that when $\sum_{k \in \mathbb{Z}} c_{k} \mathrm{e}^{\mathrm{i} k x}=0$ in $\mathscr{S}^{\prime}(\mathbb{R})$, then $c_{k}=0$ for all $k \in \mathbb{Z}$.
[Book work. 2 marks]
(i) $\left(c_{k}\right)_{k \in \mathbb{Z}}$ is the sequence of Fourier coefficients for a 2π periodic distribution if and only if there exist constants $c \geq 0, N \in \mathbb{N}_{0}$ such that

$$
\left|c_{k}\right| \leq c\left(1+|k|^{2}\right)^{\frac{N}{2}}
$$

holds for all $k \in \mathbb{Z}$. Now assume $u=\sum_{k \in \mathbb{Z}} c_{k} \mathrm{e}^{\mathrm{i} k x}$ in $\mathscr{S}^{\prime}(\mathbb{R})$. If $\phi \in \mathscr{S}(\mathbb{R})$ we have, since $\widehat{\phi} \in \mathscr{S}(\mathbb{R})$ too, that
$\left|c_{k}\left\langle\mathrm{e}^{\mathrm{i} k x}, \phi\right\rangle\right| \leq\left|c_{k} \widehat{\phi}(-k)\right| \leq c\left(1+|k|^{2}\right)^{\frac{N}{2}}|\widehat{\phi}(-k)| \leq c 2^{N+2}\left(1+|k|^{2}\right)^{-1} \bar{S}_{N+2,0}(\widehat{\phi})$
for all $k \in \mathbb{Z}$, hence

$$
\sum_{k \in \mathbb{Z}}\left|c_{k}\left\langle\mathrm{e}^{\mathrm{i} k x}, \phi\right\rangle\right| \leq c 2^{N+2} \sum_{k \in \mathbb{Z}}\left(1+|k|^{2}\right)^{-1} \bar{S}_{N+2,0}(\widehat{\phi})<\infty .
$$

The series $\sum_{k \in \mathbb{Z}} c_{k}\left\langle\mathrm{e}^{\mathrm{i} k x}, \phi\right\rangle$ is therefore absolutely convergent, and consequently

$$
\sum_{k \in \mathbb{Z}} c_{\sigma(k)}\left\langle\mathrm{e}^{\mathrm{i} \sigma(k) x}, \phi\right\rangle=\langle u, \phi\rangle
$$

as required.
[4 marks]
(ii) If $f \in \mathrm{~L}_{\text {loc }}^{1}(\mathbb{R})$ is 2π periodic, then we have for $k \neq 0$ that $\mathrm{e}^{-\mathrm{i} k x}=$ $-\mathrm{e}^{-\mathrm{i} k\left(x-\frac{\pi}{k}\right)}$ and hence

$$
c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=-\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(x+\frac{\pi}{k}\right) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x .
$$

Therefore

$$
c_{k}=\frac{1}{4 \pi} \int_{0}^{2 \pi}\left(f(x)-f\left(x+\frac{\pi}{k}\right)\right) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x .
$$

Consequently $\left|c_{k}\right| \leq \frac{1}{4 \pi} \int_{0}^{2 \pi}\left|f(x)-f\left(x+\frac{\pi}{k}\right)\right| \mathrm{d} x \rightarrow 0$ as $|k| \rightarrow \infty$. [4 marks] (iii) We have $v=\sum_{k \in \mathbb{Z}} c_{k} \mathrm{e}^{\mathrm{i} k x}$ in $\mathscr{S}^{\prime}(\mathbb{R})$. Because $\sum_{k \in \mathbb{Z}}\left|c_{k}\right|<\infty$ the Weierstrass M-test implies the Fourier series converges uniformly, and hence it follows that the function $f(x):=\sum_{k \in \mathbb{Z}} c_{k} \mathrm{e}^{\mathrm{i} k x}$ is continuous. Now for $\phi \in \mathscr{S}(\mathbb{R})$ we have by definition and by uniform convergence that

$$
\langle v, \phi\rangle=\left\langle\sum_{k \in \mathbb{Z}} c_{k} \mathrm{e}^{\mathrm{i} k x}, \phi\right\rangle=\langle f, \phi\rangle
$$

and so $v=f$ as tempered distributions. In particular, $\|v\|_{\infty}=\max _{x \in[0,2 \pi]}|f(x)|=$ $\left|f\left(x_{0}\right)\right|$ for $x_{0} \in[0,2 \pi]$ say, and so

$$
\|v\|_{\infty}=\left|f\left(x_{0}\right)\right|=\left|\sum_{k \in \mathbb{Z}} c_{k} \mathrm{e}^{\mathrm{i} k x_{0}}\right| \leq \sum_{k \in \mathbb{Z}}\left|c_{k}\right|,
$$

as required.
[4 marks]
[(i) new example, but routine. (ii) seen before. (iii) new example, but routine]
(b)(i) Put $p_{n}(x)=1+a_{n} \cos \left(3^{n} x+\theta_{n}\right)$. Then

$$
p_{n}(x)=1+\frac{a_{n}}{2} \mathrm{e}^{\mathrm{i} \theta_{n}} \mathrm{e}^{\mathrm{i} 3^{n} x}+\frac{a_{n}}{2} \mathrm{e}^{-\mathrm{i} \theta_{n}} \mathrm{e}^{-\mathrm{i} 3^{n} x}
$$

and so we get by inspection and since the representation of each element in Λ is unique,

$$
p(x)=\prod_{n=1}^{N} p_{n}(x)=\sum_{\lambda \in \Lambda}\left(\prod_{n=1}^{N}\left(\frac{a_{n}}{2}\right)^{\left|\varepsilon_{n}\right|} \mathrm{e}^{\mathrm{i} \varepsilon_{n} \theta_{n}}\right) \mathrm{e}^{\mathrm{i} \lambda x} .
$$

We infer from this that the Fourier coefficients $A_{k}=0$ when $k \notin \Lambda$.
[3 marks]
For $\lambda=0 \in \Lambda$ we have $\varepsilon_{n}=0$ for all n, and so $A_{0}=1$. Since $\lambda=3^{m} \in \Lambda$ when $1 \leq m \leq N$ we have $\varepsilon_{n}=\delta_{m, n}$, and so $A_{3^{m}}=\frac{a_{m}}{2} \mathrm{e}^{\mathrm{i} \theta_{m}}$.
[2 marks] (ii) Take for each $n \in\{1, \ldots, N\}$,

$$
a_{n}=1 \text { and } \theta_{n}=\operatorname{Arg}\left(c_{n}\right) .
$$

Define

$$
p(x)=\prod_{n=1}^{N}\left(1+a_{n} \cos \left(3^{n} x+\theta_{n}\right)\right) .
$$

Then we have $p(x) \geq 0$ and according to (i),

$$
p(x)=\sum_{\lambda \in \Lambda} A_{\lambda} \mathrm{e}^{\mathrm{i} \lambda x}
$$

where $A_{0}=1, A_{3^{n}}=\frac{1}{2} \mathrm{e}^{\mathrm{i} \operatorname{Arg}\left(c_{n}\right)}$ for $n \in\{1, \ldots, N\}$. In particular we record that $\frac{1}{2 \pi} \int_{0}^{2 \pi}|p(x)| \mathrm{d} x=1$.
[1 mark]
By virtue of Plancherel's theorem for Fourier series we get

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{n=1}^{N} c_{n} \mathrm{e}^{\mathrm{i} 3^{n} x}\right) \overline{p(x)} \mathrm{d} x=\sum_{n=1}^{N} c_{n} \frac{1}{2} \mathrm{e}^{-\mathrm{i} \operatorname{Arg}\left(c_{n}\right)}=\frac{1}{2} \sum_{n=1}^{N}\left|c_{n}\right|
$$

and consequently

$$
\begin{aligned}
\frac{1}{2} \sum_{n=1}^{N}\left|c_{n}\right| & \leq \sup _{x \in(0,2 \pi]}\left|\sum_{n=1}^{N} c_{n} \mathrm{e}^{\mathrm{i} 3^{n} x}\right| \frac{1}{2 \pi} \int_{0}^{2 \pi}|p(x)| \mathrm{d} x \\
& =\sup _{x \in(0,2 \pi]}\left|\sum_{n=1}^{N} c_{n} \mathrm{e}^{\mathrm{i} 3^{n} x}\right|
\end{aligned}
$$

as required.
[2 marks]
If g is a 2π periodic L^{∞} function with Fourier expansion

$$
g(x)=\sum_{n=1}^{\infty} c_{n} \mathrm{e}^{\mathrm{i} 3^{n} x} \text { in } \mathscr{S}^{\prime}(\mathbb{R}),
$$

then for $N \in \mathbb{N}$ we can define $p(x)$ as above corresponding to the N-th partial sum. Since in particular $g \in \mathrm{~L}_{\text {loc }}^{2}(\mathbb{R})$ and $3^{n} \notin \Lambda$ for $n>N$, we infer from Plancherel's theorem for Fourier series that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} g(x) \overline{p(x)} \mathrm{d} x=\frac{1}{2} \sum_{n=1}^{N}\left|c_{n}\right|
$$

and therefore that

$$
\frac{1}{2} \sum_{n=1}^{N}\left|c_{n}\right| \leq\|g\|_{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}|p(x)| \mathrm{d} x=\|g\|_{\infty} .
$$

Because $N \in \mathbb{N}$ is arbitrary we are done.

