
Model solutions and marking scheme for B4.4. March 2021

Question 1: (a) Since a, b ∈ L1(R) the rule, ⟨a, ϕ⟩ :=
∫
Ra(x)ϕ(x) dx and

⟨b, ϕ⟩ :=
∫
Rb(x)ϕ(x) dx for ϕ ∈ S (R) yield well-defined linear functionals

on S (R). Furthermore,
∣∣⟨a, ϕ⟩∣∣ ≤ ∥a∥1S0,0(ϕ) and similarly for b, so both

are S continuous, and thus tempered distributions. For c we note that
c(x)/(1+ |x|) ∈ L1(R), so c is a tempered L1 function and is thus a tempered
distribution by the definition ⟨c, ϕ⟩ =

∫
Rc(x)ϕ(x) dx in view of the bound∣∣⟨c, ϕ⟩∣∣ ≤ 2∥c/(1 + | · |)∥1S1,0(ϕ). [2 marks]

The Fourier transform of a is easily calculated

â(ξ) =

∫ ∞

0
e−(1+iξ)x dx =

1

1 + iξ
=

−i

ξ − i
.

[1 mark]
Note that

i

ξ + i
+

−i

ξ − i
=

2

1 + ξ2
,

hence b = 1
2

(˜̂a+ â
)
and so by the Fourier inversion formula in S ′,

b̂(ξ) =
1

2

(
2π˜̃a+ 2πã

)
= πe−|ξ|.

[2 marks]
Since c(x) = xb(x) we get by the differentiation rule,

ĉ(ξ) = îb′(ξ) = −iπe−|ξ|sgn(ξ).

[2 marks]
[Standard examples + seen related examples before.]
(b) Using the dilation rules and (a), we have in S ′(R),

b̂ε(ξ) = b̂(εξ) = πe−ε|ξ| → π1R as ε ↘ 0.

[1 mark]
Hence by the Fourier inversion formula in S ′ and S ′ continuity of F−1,

bε = F−1
ξ→x

(
πe−ε|ξ|) → F−1

(
π1R

)
= πδ0 in S ′(R) as ε ↘ 0.

[1 mark]
For cε we get similarly,

ĉε(ξ) = ĉ(εξ) → −iπsgn(ξ) in S ′(R) as ε ↘ 0,
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hence
cε(x) → F−1

ξ→x

(
−iπsgn(ξ)

)
in S ′(R) as ε ↘ 0.

[1 mark]

From an example in course lecture notes (or by calculation), p̂v
(
1
x

)
(ξ) =

−iπsgn(ξ) so we find the limit of cε is pv
(
1
x

)
. [1 mark]

(It is ok to normalize by π and use results about approximate units from the
course to find limit for bε. One can also quite easily find limit of cε without
use of Fourier transform.)
For z = x+ iy in the upper half-plane we have

F (z) =
y

x2 + y2
+ i

x

x2 + y2
=

z

|z|2
=

1

z

so clearly holomorphic. [1 mark]
For real-valued φ ∈ S (R) we define

Φ(z) = 1
π

(
(by ∗ φ)(x) + i(cy ∗ φ)(x)

)
[2 marks]

and since we can rewrite this as

Φ(z) =
1

π

⟨
F (z − ·), φ

⟩
[1 mark]

it follows from a theorem about differentiation behind the distribution sign
that Φ is C1 and satisfies the Cauchy-Riemann equation, and hence that it
is holomorphic on the upper half-plane. [1 mark]
Since φ is real-valued, Re(Φ(z)) = (by ∗ φ)(x)/π and so by the first part of
(b) we get that it converges to φ(x) pointwise in x ∈ R as y ↘ 0. [1 mark]
For the imaginary part,

Im
(
Φ(z)

)
=

1

π

(
cy ∗ φ

)
(x) → 1

π

(
pv

(1
t

)
∗ φ

)
(x) = H(φ)(x)

pointwise in x ∈ R as y ↘ 0, where H is the Hilbert transform. [2 marks]
[Seen variants before]
(c) Note that the function f − c is continuous and that

f(x)− c(x) = O
( 1

x2
)
as |x| → ∞.

[2 marks]
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It follows that f − c ∈ L1(R) and so by the Riemann-Lebesgue lemma,
̂(f − c) ∈ C0(R). [1 mark]
Thus

f̂(ξ) = ̂(f − c)(ξ)− iπe−|ξ|sgn(ξ).

[1 mark]
Consequently f̂ is continuous at each ξ ̸= 0 and at 0 it has one-sided limits
f̂(0−) = iπ, f̂(0+) = −iπ. Hence it has a jump discontinuity at 0 with jump
−2πi. [2 marks]
[New example]

Question 2: (a) (i) The symbol for p(∂) = −∆− i∂1∂2+1 is the polynomial
p(iξ) = ξ21+ξ22+iξ1ξ2+1 and the principal symbol is ξ21+ξ22+iξ1ξ2. It is clear
that the principal symbol only vanishes at ξ = 0 in R2, so the differential
operator is elliptic.

[2 marks]
A fundamental solution for p(∂) is any distribution E ∈ D ′(R2) satisfying
p(∂)E = δ0 in D ′(R2). We consider this equation in S ′(R2): if E ∈ S ′(R2)
and p(∂)E = δ0 in S ′(R2), then by Fourier transformation and the differ-
entiation rule, p(iξ)Ê = 1 in S ′(R2). Because the symbol satisfies∣∣p(iξ)∣∣ = √

(ξ21 + ξ22 + 1)2 + (ξ1ξ2)2 ≥ ξ21 + ξ22 + 1 = |ξ|2 + 1,

it follows that 1
p(iξ) is a tempered L1 function and so in particular a tempered

distribution. We must therefore have that Ê = 1
p(iξ) , and hence by the

Fourier inversion formula in S ′ that

E = F−1

(
1

p(iξ)

)
∈ S ′(R2)

is uniquely determined. Conversely, it is easy to check that this is indeed a
fundamental solution. [2 marks]
(ii) First note,

∂1Ê = −2ξ1 + iξ2
p(iξ)2

= −(2ξ1 + iξ2)Ê
2,

and so
∂1Ê

k = kÊk−1∂1Ê = −k(2ξ1 + iξ2)Ê
k+1.
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Using Leibniz’ rule we then find for m > 1,

∂m
1 Êk = −k∂m−1

1

(
(2ξ1 + iξ2)Ê

k+1

)
= −k

m−1∑
j=0

(
m− 1

j

)
∂j
1

(
2ξ1 + iξ2

)
∂m−1−j
1 Êk+1

= −k

((
2ξ1 + iξ2

)
∂m−1
1 Êk+1 + 2(m− 1)∂m−2

1 Êk+1

)
as required. Next, note that for k ∈ N,∣∣Êk

∣∣ ≤ (
1 + |ξ|2

)−k
and

∣∣∂1Êk
∣∣ ≤ 2k

(
1 + |ξ|2

)−k+ 1
2 .

Thus we have c(k, 0) = 1 and c(k, 1) = 2k. Assume that for some s ∈ N we
have the inequality for m ≤ s and all k ∈ N. Then we get from the above
recurrence relation, the triangle inequality and the induction hypothesis:∣∣∂s+1

1 Êk
∣∣ ≤ k

(
2|ξ1|+ |ξ2|

)∣∣∂s
1Ê

k+1
∣∣+ 2ks

∣∣∂s−1
1 Êk+1

∣∣
≤

(
2kc(k + 1, s) + 2ksc(k + 1, s− 1)

)(
1 + |ξ|2

)−k− s+1
2

This is the required bound with c(k, s+1) = 2kc(k+1, s)+2ksc(k+1, s−1).
The assertion now follows by induction. [5 marks]
(iii) From (ii) we have for any multi-index α,∣∣ξα∂m

1 Ê
∣∣ ≤ |ξα|cm

(
1 + |ξ|2

)−1−m
2 ≤ cm

(
1 + |ξ|2

) |α|−m−2
2 ,

hence we have integrability over R2 provided |α| < m. [2 marks]
By the differentiation rules and the Riemann-Lebesgue lemma we therefore
have

∂α

((
−ix1

)m
E

)
= F−1

ξ→x

((
iξ
)α

∂m
1 Ê

)
∈ C0(R2)

provided |α| < m. Consequently, the function xm1 E is Cm−1(R2) and so E
is Cm−1 away from the x2-axis. Since m ∈ N was arbitrary, we have shown
that E is C∞ away from the x2-axis. [2 marks]
Now note that Ê is symmetric in ξ1 and ξ2, so that we can do exactly the
same calculation with respect to ξ2 to see that E is C∞ away from the x1-
axis. We then conclude that E is C∞ away from the origin, and hence that
sing.supp(E) ⊆ {0}. [2 marks]
[(i) is straightforward. (ii) and (iii) are variants of a calculation
for Bessel kernels done in course]
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(b)(i) The PDE is by the Fourier inversion formula in S ′ equivalent to
p(iξ)Û = F̂ , and because Ê = 1/p(iξ) in particular is a moderate C∞

function we can rewrite this as Û = ÊF̂ , and so by the extended convolution
rule and Fourier inversion,

U = E ∗ F ∈ S ′(R2)

is the unique solution in S ′(R2). Now∣∣(1 + |ξ|2
)
Û
∣∣ = ∣∣(1 + |ξ|2

)
Ê
∣∣|F̂ | ≤ |F̂ |,

so by the definition of the H2 norm and Plancherel’s theorem,

∥u∥H2 ≤ ∥F̂∥2 = 2π∥F∥2,

as required. [4 marks]
(ii) Suppose that u ∈ D ′(Ω) is a solution. Fix ω ⋐ Ω and let χ = ρε ∗1Bε(ω)

for ε > 0 so small that χ ∈ D(Ω). If we define χf = 0 off Ω, then χf ∈
L2(R2) and we can use (i) with F = χf to assert that U = E∗(χf) ∈ H2(R2)
satisfies p(∂)U = χf in S ′(R2). Because χ = 1 on ω we have for ϕ ∈ D(ω),⟨

p(∂)(u− U), ϕ
⟩
=

⟨
f − χf, ϕ

⟩
=

⟨
f, (1− χ)ϕ

⟩
= 0

and thus, p(∂)(u − U) = 0 in D ′(ω). By (a)(iii) and a result from the
course the differential operator p(∂) is hypoelliptic, so u−U is C∞ on ω. It
follows that u is locally H2 on ω, and since ω ⋐ Ω was arbitrary the proof
is complete. [6 marks]
[New example]

Question 3: (a) Let χ = ρ ∗ 1(−1,2π+1] and note that the 2π periodisation
of χ, Pχ, is a C∞ function with Pχ ≥ 1. If Ψ = χ/Pχ, then Ψ ∈ D(R) with
periodisation PΨ = 1. The 2π periodicity of u implies that ⟨u, ϕ⟩ = ⟨u,Ψϕ⟩
holds for all ϕ ∈ D(R), and this formula can be used to extend u to S (R) as
a tempered distribution. (Candidates need not mention this.) The Fourier
expansion of u is

u =
∑
k∈Z

cke
ikx, ck =

1

2π

⟨
u,Ψe−ik(·)⟩

The convergence is in the sense of S ′:

n∑
k=−m

cke
ikx → u in S ′(R)
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as m, n → ∞. We have uniqueness in the sense that when
∑

k∈Z cke
ikx = 0

in S ′(R), then ck = 0 for all k ∈ Z. [Book work. 2 marks]
(i) (ck)k∈Z is the sequence of Fourier coefficients for a 2π periodic distribution
if and only if there exist constants c ≥ 0, N ∈ N0 such that

|ck| ≤ c
(
1 + |k|2

)N
2

holds for all k ∈ Z. Now assume u =
∑

k∈Z cke
ikx in S ′(R). If ϕ ∈ S (R)

we have, since ϕ̂ ∈ S (R) too, that∣∣ck⟨eikx, ϕ⟩∣∣ ≤ |ckϕ̂(−k)| ≤ c
(
1+|k|2

)N
2 |ϕ̂(−k)| ≤ c2N+2

(
1+|k|2

)−1
SN+2,0(ϕ̂)

for all k ∈ Z, hence∑
k∈Z

∣∣ck⟨eikx, ϕ⟩∣∣ ≤ c2N+2
∑
k∈Z

(
1 + |k|2

)−1
SN+2,0(ϕ̂) < ∞.

The series
∑

k∈Z ck⟨eikx, ϕ⟩ is therefore absolutely convergent, and conse-
quently ∑

k∈Z
cσ(k)⟨eiσ(k)x, ϕ⟩ = ⟨u, ϕ⟩

as required. [4 marks]
(ii) If f ∈ L1

loc(R) is 2π periodic, then we have for k ̸= 0 that e−ikx =

−e−ik(x−π
k
) and hence

ck =
1

2π

∫ 2π

0
f(x)e−ikx dx = − 1

2π

∫ 2π

0
f(x+

π

k
)e−ikx dx.

Therefore

ck =
1

4π

∫ 2π

0

(
f(x)− f(x+

π

k
)
)
e−ikx dx.

Consequently |ck| ≤ 1
4π

∫ 2π
0 |f(x)− f(x+ π

k )| dx → 0 as |k| → ∞. [4 marks]
(iii) We have v =

∑
k∈Z cke

ikx in S ′(R). Because
∑

k∈Z |ck| < ∞ the Weier-
strass M-test implies the Fourier series converges uniformly, and hence it fol-
lows that the function f(x) :=

∑
k∈Z cke

ikx is continuous. Now for ϕ ∈ S (R)
we have by definition and by uniform convergence that

⟨v, ϕ⟩ =

⟨∑
k∈Z

cke
ikx, ϕ

⟩
= ⟨f, ϕ⟩
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and so v = f as tempered distributions. In particular, ∥v∥∞ = maxx∈[0,2π] |f(x)| =
|f(x0)| for x0 ∈ [0, 2π] say, and so

∥v∥∞ = |f(x0)| =
∣∣∣∣∑
k∈Z

cke
ikx0

∣∣∣∣ ≤ ∑
k∈Z

|ck|,

as required. [4 marks]
[(i) new example, but routine. (ii) seen before. (iii) new example,
but routine]
(b)(i) Put pn(x) = 1 + an cos

(
3nx+ θn

)
. Then

pn(x) = 1 +
an
2
eiθnei3

nx +
an
2
e−iθne−i3nx

and so we get by inspection and since the representation of each element in
Λ is unique,

p(x) =

N∏
n=1

pn(x) =
∑
λ∈Λ

( N∏
n=1

(an
2

)|εn|
eiεnθn

)
eiλx.

We infer from this that the Fourier coefficients Ak = 0 when k /∈ Λ.
[3 marks]

For λ = 0 ∈ Λ we have εn = 0 for all n, and so A0 = 1. Since λ = 3m ∈ Λ
when 1 ≤ m ≤ N we have εn = δm,n, and so A3m = am

2 eiθm . [2 marks]
(ii) Take for each n ∈ {1, . . . , N},

an = 1 and θn = Arg(cn).

Define

p(x) =

N∏
n=1

(
1 + an cos

(
3nx+ θn

))
.

[1 mark]
Then we have p(x) ≥ 0 and according to (i),

p(x) =
∑
λ∈Λ

Aλe
iλx,

where A0 = 1, A3n = 1
2e

iArg(cn) for n ∈ {1, . . . , N}. In particular we record

that 1
2π

∫ 2π
0 |p(x)| dx = 1. [1 mark]

By virtue of Plancherel’s theorem for Fourier series we get

1

2π

∫ 2π

0

( N∑
n=1

cne
i3nx

)
p(x) dx =

N∑
n=1

cn
1

2
e−iArg(cn) =

1

2

N∑
n=1

|cn|,
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and consequently

1

2

N∑
n=1

|cn| ≤ sup
x∈(0,2π]

∣∣∣∣ N∑
n=1

cne
i3nx

∣∣∣∣ 12π
∫ 2π

0
|p(x)| dx

= sup
x∈(0,2π]

∣∣∣∣ N∑
n=1

cne
i3nx

∣∣∣∣
as required. [2 marks]
If g is a 2π periodic L∞ function with Fourier expansion

g(x) =

∞∑
n=1

cne
i3nx in S ′(R),

then for N ∈ N we can define p(x) as above corresponding to the N -th
partial sum. Since in particular g ∈ L2

loc(R) and 3n /∈ Λ for n > N , we infer
from Plancherel’s theorem for Fourier series that

1

2π

∫ 2π

0
g(x)p(x) dx =

1

2

N∑
n=1

|cn|,

and therefore that

1

2

N∑
n=1

|cn| ≤ ∥g∥∞
1

2π

∫ 2π

0
|p(x)| dx = ∥g∥∞.

Because N ∈ N is arbitrary we are done. [2 marks]
[New example]
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