Model solutions and marking scheme for B4.4. March 2021

Question 1: (a) Since $a, b \in L^1(\mathbb{R})$ the rule, $\langle a, \phi \rangle := \int_{\mathbb{R}} a(x)\phi(x) \, dx$ and $\langle b, \phi \rangle := \int_{\mathbb{R}} b(x)\phi(x) \, dx$ for $\phi \in \mathscr{S}(\mathbb{R})$ yield well-defined linear functionals on $\mathscr{S}(\mathbb{R})$. Furthermore, $|\langle a, \phi \rangle| \leq ||a||_1 S_{0,0}(\phi)$ and similarly for b, so both are \mathscr{S} continuous, and thus tempered distributions. For c we note that $c(x)/(1+|x|) \in L^1(\mathbb{R})$, so c is a tempered L^1 function and is thus a tempered distribution by the definition $\langle c, \phi \rangle = \int_{\mathbb{R}} c(x)\phi(x) \, dx$ in view of the bound $|\langle c, \phi \rangle| \leq 2||c/(1+|\cdot|)||_1 \overline{S}_{1,0}(\phi)$. [2 marks]

The Fourier transform of a is easily calculated

$$\widehat{a}(\xi) = \int_0^\infty e^{-(1+i\xi)x} dx = \frac{1}{1+i\xi} = \frac{-i}{\xi-i}$$

[1 mark]

Note that

$$\frac{i}{\xi + i} + \frac{-i}{\xi - i} = \frac{2}{1 + \xi^2}$$

hence $b = \frac{1}{2} (\tilde{\hat{a}} + \hat{a})$ and so by the Fourier inversion formula in \mathscr{S}' ,

$$\widehat{b}(\xi) = \frac{1}{2} \left(2\pi \widetilde{\widetilde{a}} + 2\pi \widetilde{a} \right) = \pi \mathrm{e}^{-|\xi|}.$$

[2 marks]

Since c(x) = xb(x) we get by the differentiation rule,

$$\widehat{c}(\xi) = i\widehat{b}'(\xi) = -i\pi e^{-|\xi|} \operatorname{sgn}(\xi).$$

[2 marks]

[Standard examples + seen related examples before.]

(b) Using the dilation rules and (a), we have in $\mathscr{S}'(\mathbb{R})$,

$$\widehat{b_{\varepsilon}}(\xi) = \widehat{b}(\varepsilon\xi) = \pi e^{-\varepsilon|\xi|} \to \pi \mathbf{1}_{\mathbb{R}} \text{ as } \varepsilon \searrow 0.$$

[1 mark]

Hence by the Fourier inversion formula in \mathscr{S}' and \mathscr{S}' continuity of \mathcal{F}^{-1} ,

$$b_{\varepsilon} = \mathcal{F}_{\xi \to x}^{-1} \big(\pi \mathrm{e}^{-\varepsilon |\xi|} \big) \to \mathcal{F}^{-1} \big(\pi \mathbf{1}_{\mathbb{R}} \big) = \pi \delta_0 \text{ in } \mathscr{S}'(\mathbb{R}) \text{ as } \varepsilon \searrow 0.$$

[1 mark]

For c_{ε} we get similarly,

$$\widehat{c}_{\widehat{\varepsilon}}(\xi) = \widehat{c}(\varepsilon\xi) \to -i\pi \operatorname{sgn}(\xi) \text{ in } \mathscr{S}'(\mathbb{R}) \text{ as } \varepsilon \searrow 0,$$

hence

$$c_{\varepsilon}(x) \to \mathcal{F}_{\xi \to x}^{-1}(-\mathrm{i}\pi \mathrm{sgn}(\xi))$$
 in $\mathscr{S}'(\mathbb{R})$ as $\varepsilon \searrow 0$.

From an example in course lecture notes (or by calculation), $\widehat{\mathrm{pv}(\frac{1}{x})}(\xi) = -i\pi \mathrm{sgn}(\xi)$ so we find the limit of c_{ε} is $\mathrm{pv}(\frac{1}{x})$. [1 mark] (It is ok to normalize by π and use results about approximate units from the course to find limit for b_{ε} . One can also quite easily find limit of c_{ε} without use of Fourier transform.)

For z = x + iy in the upper half-plane we have

$$F(z) = \frac{y}{x^2 + y^2} + i\frac{x}{x^2 + y^2} = \frac{\overline{z}}{|z|^2} = \frac{1}{z}$$

so clearly holomorphic.

For real-valued $\varphi \in \mathscr{S}(\mathbb{R})$ we define

$$\Phi(z) = \frac{1}{\pi} \left((b_y * \varphi)(x) + i(c_y * \varphi)(x) \right)$$

[2 marks]

[1 mark]

[1 mark]

and since we can rewrite this as

$$\Phi(z) = \frac{1}{\pi} \left\langle F(z - \cdot), \varphi \right\rangle$$

[1 mark]

it follows from a theorem about differentiation behind the distribution sign that Φ is C¹ and satisfies the Cauchy-Riemann equation, and hence that it is holomorphic on the upper half-plane. [1 mark] Since φ is real-valued, $\operatorname{Re}(\Phi(z)) = (b_y * \varphi)(x)/\pi$ and so by the first part of (b) we get that it converges to $\varphi(x)$ pointwise in $x \in \mathbb{R}$ as $y \searrow 0$. [1 mark] For the imaginary part,

$$\operatorname{Im}(\Phi(z)) = \frac{1}{\pi} (c_y * \varphi)(x) \to \frac{1}{\pi} \left(\operatorname{pv}(\frac{1}{t}) * \varphi \right)(x) = \mathcal{H}(\varphi)(x)$$

pointwise in $x \in \mathbb{R}$ as $y \searrow 0$, where \mathcal{H} is the Hilbert transform. [2 marks] [Seen variants before]

(c) Note that the function f - c is continuous and that

$$f(x) - c(x) = O\left(\frac{1}{x^2}\right)$$
 as $|x| \to \infty$.

[2 marks]

It follows that $f - c \in L^1(\mathbb{R})$ and so by the Riemann-Lebesgue lemma, $\widehat{(f - c)} \in C_0(\mathbb{R}).$ [1 mark] Thus

$$\widehat{f}(\xi) = \widehat{(f-c)}(\xi) - i\pi e^{-|\xi|} \operatorname{sgn}(\xi).$$

[1 mark]

Consequently \hat{f} is continuous at each $\xi \neq 0$ and at 0 it has one-sided limits $\hat{f}(0^-) = i\pi$, $\hat{f}(0^+) = -i\pi$. Hence it has a jump discontinuity at 0 with jump $-2\pi i$. [2 marks]

[New example]

Question 2: (a) (i) The symbol for $p(\partial) = -\Delta - i\partial_1\partial_2 + 1$ is the polynomial $p(i\xi) = \xi_1^2 + \xi_2^2 + i\xi_1\xi_2 + 1$ and the principal symbol is $\xi_1^2 + \xi_2^2 + i\xi_1\xi_2$. It is clear that the principal symbol only vanishes at $\xi = 0$ in \mathbb{R}^2 , so the differential operator is elliptic.

[2 marks]

A fundamental solution for $p(\partial)$ is any distribution $E \in \mathscr{D}'(\mathbb{R}^2)$ satisfying $p(\partial)E = \delta_0$ in $\mathscr{D}'(\mathbb{R}^2)$. We consider this equation in $\mathscr{S}'(\mathbb{R}^2)$: if $E \in \mathscr{S}'(\mathbb{R}^2)$ and $p(\partial)E = \delta_0$ in $\mathscr{S}'(\mathbb{R}^2)$, then by Fourier transformation and the differentiation rule, $p(i\xi)\widehat{E} = 1$ in $\mathscr{S}'(\mathbb{R}^2)$. Because the symbol satisfies

$$|p(i\xi)| = \sqrt{(\xi_1^2 + \xi_2^2 + 1)^2 + (\xi_1\xi_2)^2} \ge \xi_1^2 + \xi_2^2 + 1 = |\xi|^2 + 1,$$

it follows that $\frac{1}{p(i\xi)}$ is a tempered L¹ function and so in particular a tempered distribution. We must therefore have that $\hat{E} = \frac{1}{p(i\xi)}$, and hence by the Fourier inversion formula in \mathscr{S}' that

$$E = \mathcal{F}^{-1}\left(\frac{1}{p(\mathrm{i}\xi)}\right) \in \mathscr{S}'(\mathbb{R}^2)$$

is uniquely determined. Conversely, it is easy to check that this is indeed a fundamental solution. [2 marks]

(ii) First note,

$$\partial_1 \widehat{E} = -\frac{2\xi_1 + \mathrm{i}\xi_2}{p(\mathrm{i}\xi)^2} = -(2\xi_1 + \mathrm{i}\xi_2)\widehat{E}^2,$$

and so

$$\partial_1 \widehat{E}^k = k \widehat{E}^{k-1} \partial_1 \widehat{E} = -k(2\xi_1 + \mathrm{i}\xi_2) \widehat{E}^{k+1}.$$

Using Leibniz' rule we then find for m > 1,

$$\partial_1^m \widehat{E}^k = -k \partial_1^{m-1} \left((2\xi_1 + i\xi_2) \widehat{E}^{k+1} \right)$$

= $-k \sum_{j=0}^{m-1} {m-1 \choose j} \partial_1^j (2\xi_1 + i\xi_2) \partial_1^{m-1-j} \widehat{E}^{k+1}$
= $-k \left((2\xi_1 + i\xi_2) \partial_1^{m-1} \widehat{E}^{k+1} + 2(m-1) \partial_1^{m-2} \widehat{E}^{k+1} \right)$

as required. Next, note that for $k \in \mathbb{N}$,

$$\left|\widehat{E}^{k}\right| \leq \left(1 + |\xi|^{2}\right)^{-k} \text{ and } \left|\partial_{1}\widehat{E}^{k}\right| \leq 2k\left(1 + |\xi|^{2}\right)^{-k + \frac{1}{2}}.$$

Thus we have c(k, 0) = 1 and c(k, 1) = 2k. Assume that for some $s \in \mathbb{N}$ we have the inequality for $m \leq s$ and all $k \in \mathbb{N}$. Then we get from the above recurrence relation, the triangle inequality and the induction hypothesis:

$$\begin{aligned} \left| \partial_1^{s+1} \widehat{E}^k \right| &\leq k \left(2|\xi_1| + |\xi_2| \right) \left| \partial_1^s \widehat{E}^{k+1} \right| + 2ks \left| \partial_1^{s-1} \widehat{E}^{k+1} \right| \\ &\leq \left(2kc(k+1,s) + 2ksc(k+1,s-1) \right) \left(1 + |\xi|^2 \right)^{-k - \frac{s+1}{2}} \end{aligned}$$

This is the required bound with c(k, s+1) = 2kc(k+1, s) + 2ksc(k+1, s-1). The assertion now follows by induction. [5 marks] (iii) From (ii) we have for any multi-index c.

(iii) From (ii) we have for any multi-index α ,

$$\left|\xi^{\alpha}\partial_{1}^{m}\widehat{E}\right| \leq |\xi^{\alpha}|c_{m}\left(1+|\xi|^{2}\right)^{-1-\frac{m}{2}} \leq c_{m}\left(1+|\xi|^{2}\right)^{\frac{|\alpha|-m-2}{2}},$$

hence we have integrability over \mathbb{R}^2 provided $|\alpha| < m$. [2 marks] By the differentiation rules and the Riemann-Lebesgue lemma we therefore have

$$\partial^{\alpha} \left(\left(-\mathrm{i} x_1 \right)^m E \right) = \mathcal{F}_{\xi \to x}^{-1} \left(\left(\mathrm{i} \xi \right)^{\alpha} \partial_1^m \widehat{E} \right) \in \mathcal{C}_0(\mathbb{R}^2)$$

provided $|\alpha| < m$. Consequently, the function $x_1^m E$ is $C^{m-1}(\mathbb{R}^2)$ and so E is C^{m-1} away from the x_2 -axis. Since $m \in \mathbb{N}$ was arbitrary, we have shown that E is C^{∞} away from the x_2 -axis. [2 marks] Now note that \widehat{E} is symmetric in ξ_1 and ξ_2 , so that we can do exactly the same calculation with respect to ξ_2 to see that E is C^{∞} away from the x_1 -axis. We then conclude that E is C^{∞} away from the origin, and hence that sing.supp $(E) \subseteq \{0\}$. [2 marks]

[(i) is straightforward. (ii) and (iii) are variants of a calculation for Bessel kernels done in course] (b)(i) The PDE is by the Fourier inversion formula in \mathscr{S}' equivalent to $p(i\xi)\hat{U} = \hat{F}$, and because $\hat{E} = 1/p(i\xi)$ in particular is a moderate C^{∞} function we can rewrite this as $\hat{U} = \hat{E}\hat{F}$, and so by the extended convolution rule and Fourier inversion,

$$U = E * F \in \mathscr{S}'(\mathbb{R}^2)$$

is the unique solution in $\mathscr{S}'(\mathbb{R}^2)$. Now

$$\left| \left(1 + |\xi|^2 \right) \widehat{U} \right| = \left| \left(1 + |\xi|^2 \right) \widehat{E} \right| |\widehat{F}| \le |\widehat{F}|,$$

so by the definition of the H² norm and Plancherel's theorem,

$$\|u\|_{\mathbf{H}^2} \le \|\widehat{F}\|_2 = 2\pi \|F\|_2,$$

as required.

[4 marks]

(ii) Suppose that $u \in \mathscr{D}'(\Omega)$ is a solution. Fix $\omega \in \Omega$ and let $\chi = \rho_{\varepsilon} * \mathbf{1}_{B_{\varepsilon}(\omega)}$ for $\varepsilon > 0$ so small that $\chi \in \mathscr{D}(\Omega)$. If we define $\chi f = 0$ off Ω , then $\chi f \in L^2(\mathbb{R}^2)$ and we can use (i) with $F = \chi f$ to assert that $U = E * (\chi f) \in H^2(\mathbb{R}^2)$ satisfies $p(\partial)U = \chi f$ in $\mathscr{S}'(\mathbb{R}^2)$. Because $\chi = 1$ on ω we have for $\phi \in \mathscr{D}(\omega)$,

$$\langle p(\partial)(u-U), \phi \rangle = \langle f - \chi f, \phi \rangle = \langle f, (1-\chi)\phi \rangle = 0$$

and thus, $p(\partial)(u - U) = 0$ in $\mathscr{D}'(\omega)$. By (a)(iii) and a result from the course the differential operator $p(\partial)$ is hypoelliptic, so u - U is C^{∞} on ω . It follows that u is locally H^2 on ω , and since $\omega \in \Omega$ was arbitrary the proof is complete. [6 marks]

[New example]

Question 3: (a) Let $\chi = \rho * \mathbf{1}_{(-1,2\pi+1]}$ and note that the 2π periodisation of χ , $P\chi$, is a \mathbb{C}^{∞} function with $P\chi \geq 1$. If $\Psi = \chi/P\chi$, then $\Psi \in \mathscr{D}(\mathbb{R})$ with periodisation $P\Psi = 1$. The 2π periodicity of u implies that $\langle u, \phi \rangle = \langle u, \Psi \phi \rangle$ holds for all $\phi \in \mathscr{D}(\mathbb{R})$, and this formula can be used to extend u to $\mathscr{S}(\mathbb{R})$ as a tempered distribution. (Candidates need not mention this.) The Fourier expansion of u is

$$u = \sum_{k \in \mathbb{Z}} c_k \mathrm{e}^{\mathrm{i}kx}, \quad c_k = \frac{1}{2\pi} \langle u, \Psi \mathrm{e}^{-\mathrm{i}k(\cdot)} \rangle$$

The convergence is in the sense of \mathscr{S}' :

$$\sum_{k=-m}^{n} c_k \mathrm{e}^{\mathrm{i}kx} \to u \text{ in } \mathscr{S}'(\mathbb{R})$$

as $m, n \to \infty$. We have uniqueness in the sense that when $\sum_{k \in \mathbb{Z}} c_k e^{ikx} = 0$ in $\mathscr{S}'(\mathbb{R})$, then $c_k = 0$ for all $k \in \mathbb{Z}$. [Book work. 2 marks] (i) $(c_k)_{k \in \mathbb{Z}}$ is the sequence of Fourier coefficients for a 2π periodic distribution if and only if there exist constants $c \ge 0, N \in \mathbb{N}_0$ such that

$$|c_k| \le c (1+|k|^2)^{\frac{N}{2}}$$

holds for all $k \in \mathbb{Z}$. Now assume $u = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$ in $\mathscr{S}'(\mathbb{R})$. If $\phi \in \mathscr{S}(\mathbb{R})$ we have, since $\hat{\phi} \in \mathscr{S}(\mathbb{R})$ too, that

$$\left|c_{k}\langle e^{ikx},\phi\rangle\right| \leq |c_{k}\widehat{\phi}(-k)| \leq c(1+|k|^{2})^{\frac{N}{2}}|\widehat{\phi}(-k)| \leq c2^{N+2}(1+|k|^{2})^{-1}\overline{S}_{N+2,0}(\widehat{\phi})$$

for all $k \in \mathbb{Z}$, hence

$$\sum_{k \in \mathbb{Z}} \left| c_k \langle \mathbf{e}^{\mathbf{i}kx}, \phi \rangle \right| \le c 2^{N+2} \sum_{k \in \mathbb{Z}} \left(1 + |k|^2 \right)^{-1} \overline{S}_{N+2,0}(\widehat{\phi}) < \infty.$$

The series $\sum_{k\in\mathbb{Z}} c_k \langle e^{ikx}, \phi \rangle$ is therefore absolutely convergent, and consequently

$$\sum_{k \in \mathbb{Z}} c_{\sigma(k)} \langle \mathrm{e}^{\mathrm{i}\sigma(k)x}, \phi \rangle = \langle u, \phi \rangle$$

as required.

[4 marks]

(ii) If $f \in L^1_{\text{loc}}(\mathbb{R})$ is 2π periodic, then we have for $k \neq 0$ that $e^{-ikx} = -e^{-ik(x-\frac{\pi}{k})}$ and hence

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = -\frac{1}{2\pi} \int_0^{2\pi} f(x + \frac{\pi}{k}) e^{-ikx} dx.$$

Therefore

$$c_k = \frac{1}{4\pi} \int_0^{2\pi} (f(x) - f(x + \frac{\pi}{k})) e^{-ikx} dx.$$

Consequently $|c_k| \leq \frac{1}{4\pi} \int_0^{2\pi} |f(x) - f(x + \frac{\pi}{k})| \, dx \to 0$ as $|k| \to \infty$. [4 marks] (iii) We have $v = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$ in $\mathscr{S}'(\mathbb{R})$. Because $\sum_{k \in \mathbb{Z}} |c_k| < \infty$ the Weierstrass M-test implies the Fourier series converges uniformly, and hence it follows that the function $f(x) := \sum_{k \in \mathbb{Z}} c_k e^{ikx}$ is continuous. Now for $\phi \in \mathscr{S}(\mathbb{R})$ we have by definition and by uniform convergence that

$$\langle v, \phi \rangle = \left\langle \sum_{k \in \mathbb{Z}} c_k \mathrm{e}^{\mathrm{i}kx}, \phi \right\rangle = \langle f, \phi \rangle$$

and so v = f as tempered distributions. In particular, $||v||_{\infty} = \max_{x \in [0,2\pi]} |f(x)| =$ $|f(x_0)|$ for $x_0 \in [0, 2\pi]$ say, and so

$$\|v\|_{\infty} = |f(x_0)| = \left|\sum_{k \in \mathbb{Z}} c_k \mathrm{e}^{\mathrm{i}kx_0}\right| \le \sum_{k \in \mathbb{Z}} |c_k|,$$

as required.

[4 marks]

[(i) new example, but routine. (ii) seen before. (iii) new example, but routine]

(b)(i) Put $p_n(x) = 1 + a_n \cos(3^n x + \theta_n)$. Then

$$p_n(x) = 1 + \frac{a_n}{2} e^{\mathrm{i}\theta_n} e^{\mathrm{i}3^n x} + \frac{a_n}{2} e^{-\mathrm{i}\theta_n} e^{-\mathrm{i}3^n x}$$

and so we get by inspection and since the representation of each element in Λ is unique,

$$p(x) = \prod_{n=1}^{N} p_n(x) = \sum_{\lambda \in \Lambda} \left(\prod_{n=1}^{N} \left(\frac{a_n}{2} \right)^{|\varepsilon_n|} e^{i\varepsilon_n \theta_n} \right) e^{i\lambda x}.$$

We infer from this that the Fourier coefficients $A_k = 0$ when $k \notin \Lambda$.

[3 marks] For $\lambda = 0 \in \Lambda$ we have $\varepsilon_n = 0$ for all n, and so $A_0 = 1$. Since $\lambda = 3^m \in \Lambda$ when $1 \le m \le N$ we have $\varepsilon_n = \delta_{m,n}$, and so $A_{3^m} = \frac{a_m}{2} e^{i\theta_m}$. [2 marks] (ii) Take for each $n \in \{1, \ldots, N\}$,

$$a_n = 1$$
 and $\theta_n = \operatorname{Arg}(c_n)$.

Define

$$p(x) = \prod_{n=1}^{N} \left(1 + a_n \cos(3^n x + \theta_n) \right).$$

[1 mark]

Then we have $p(x) \ge 0$ and according to (i),

$$p(x) = \sum_{\lambda \in \Lambda} A_{\lambda} \mathrm{e}^{\mathrm{i}\lambda x},$$

where $A_0 = 1$, $A_{3^n} = \frac{1}{2} e^{i\operatorname{Arg}(c_n)}$ for $n \in \{1, \ldots, N\}$. In particular we record that $\frac{1}{2\pi} \int_0^{2\pi} |p(x)| \, \mathrm{d}x = 1.$ [1 mark]

By virtue of Plancherel's theorem for Fourier series we get

$$\frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{n=1}^N c_n e^{i3^n x} \right) \overline{p(x)} \, \mathrm{d}x = \sum_{n=1}^N c_n \frac{1}{2} e^{-i\operatorname{Arg}(c_n)} = \frac{1}{2} \sum_{n=1}^N |c_n|,$$

and consequently

$$\frac{1}{2} \sum_{n=1}^{N} |c_n| \leq \sup_{x \in (0,2\pi]} \left| \sum_{n=1}^{N} c_n e^{i3^n x} \right| \frac{1}{2\pi} \int_0^{2\pi} |p(x)| \, dx$$
$$= \sup_{x \in (0,2\pi]} \left| \sum_{n=1}^{N} c_n e^{i3^n x} \right|$$

[2 marks]

as required. If
$$g$$
 is a 2π periodic \mathcal{L}^∞ function with Fourier expansion

$$g(x) = \sum_{n=1}^{\infty} c_n e^{i3^n x}$$
 in $\mathscr{S}'(\mathbb{R})$,

then for $N \in \mathbb{N}$ we can define p(x) as above corresponding to the N-th partial sum. Since in particular $g \in L^2_{loc}(\mathbb{R})$ and $3^n \notin \Lambda$ for n > N, we infer from Plancherel's theorem for Fourier series that

$$\frac{1}{2\pi} \int_0^{2\pi} g(x)\overline{p(x)} \,\mathrm{d}x = \frac{1}{2} \sum_{n=1}^N |c_n|,$$

and therefore that

$$\frac{1}{2}\sum_{n=1}^{N} |c_n| \le \|g\|_{\infty} \frac{1}{2\pi} \int_0^{2\pi} |p(x)| \, \mathrm{d}x = \|g\|_{\infty}.$$

Because $N \in \mathbb{N}$ is arbitrary we are done. [New example]

[2 marks]