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Question 1. Consider an inextensible, unshearable, planar filament subject
to thermal fluctuations. The filament has contour length L and is pinned
at one point = 0 and pulled at its end with a force F’ at « = [ (no couple
is exerted on the boundaries and [ is assumed to be much smaller than the
persistence length). The total mechanical energy of the system is

K l
£=3/ k2dx + F(L - 1),
0

where % fol 2 dz is the bending energy of a rod with curvature x and F (L-1)
represents the work associated with the change in length by a force F'.

(a) [5 marks] Show that, in the small gradient approximation, the fila-
ment can be described by its height above the z-axis v = u(z) and
that this energy can be written to first order as

l
E= 5/ [K (uge)? + Fu2] da.
0

(b) [5 marks] By expanding the height function as u = ) > ; a, sin(gnz)
where g, = nn/l, rewrite the energy as a function of n and a,, then
use the equipartition theorem to find (a2) as a function of n,l and F.

(c) [8 marks] Compute the shortening of the filament due to thermal
fluctuations only. To do so, give an expression for ((L — 1)) in the
small gradient approximation for all F (without computing explicitly
the sum) and determine its value in the absence of force (F = 0).
Similarly, give an expression for the height fluctuation ((3a2))Y/?
and compute it explicitly in the absence of force.

(d) [7 marks] Let /o be the length of the filament in the absence of force as
computed in the previous question and define the extension z = [ — [g.
Compute the mechanical response of the filament for small extension
F = Cz+ O(2?). Give an explicit expression for C in terms of the
system parameters (7, lo, K).

Hint: you may need, and use without proof, the identities Y ooy n ™2 = 72/6
and 302 n~t = m1/90.
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[B]: Book, [S]:Similar, [N]: New

Solution 1.
(a)[BS] The curvature is in small gradient approximation given by uz.
The length L can be written as

L:/l\/l—kugdx (1)
0

Therefore, in small gradient approximation

l l
L—-l—_-/o(«/l—l-u?c—l)dﬂ?%%/oUid$- (2)

and
1

i
£=: /0 (K (tg2)? + Fu) da (3)

(b)[BS] If u = sin(qz), we have (uy;)? = ¢*sin?(gx), u2 = ¢?cos?(qz).
Using the orthogonality of sin(gpz) and cos(gpz) on [0,!] (and fol sin? gz =
Lone?
Jo cos? gz = 1/2), we have

;&
€ =D nftyay(Kay + Fay) (4)
n=1
Since the energy is quadratic and diagonal in a,, the equipartition theorem
can be stated as

l 1
TN+ Fed) = ShaT 5)
so that kT
2 vB
- in— 6
) = K+ ) ©
(c) [SN] Next, consider
17t ! 2 2
L—l=—2— Ou_,vda::ZZanqn (7
therefore l kn T .
L-D==Y (a2)g =2 .
We can use ¢, = n7r/l and expand this last expression for small F' to obtain
kpT = [ 2 14 9
(L=10= 2 Z {Kn27r2 a FK2n47r4 +O(F7) 9)

n=1
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For F = 0, we use the identity Y oo ; n~2 = n?/6 to obtain

kBIYz
(L= lo) = 12K

(10)
Similarly, at FF =0
2kpT 2kgTI3 kpTI3
S =Y e = Y iy~ e D
lo(Kqd) (Knint) 45K
(d) [N] (Note that expansion on F should count for this section for 5pt
even if they used it before. The previous question can be answered without

expanding—just by setting F' = 0). We have L — | = L — [y — z. From (9),
we have

180K32

- R 12
kpTid " (12)
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Question 2. A micropipette experiment consists in sucking part of a lipid
bilayer vesicle through a capillary tube by a controlled pressure AP = P, —
Py > 0 (See Figure) and measuring the length L of the vesicle in the tube.
This experiment is used to measure the area compressibility modulus of the
vesicle (a measure of the ability of the lipid bilayer to resist change in area).

(a)

(b)

()

(d)

[5 marks| Give the general form of the Helfrich-Canham-Evans en-
ergy of a fluid bio-membrane and explain why the term involving the
Gaussian curvature can be neglected in the micropipette experiment.

[6 marks] Assuming that the unstressed shape of the bilayer is flat,
compute the energy of the vesicle in the Figure by approximating the
total energy as the sum of a sphere of radius R, a cylinder of length L,
and a piece of a sphere of radius r and the work done by the pressure
to aspirate the vesicle by a length L.

[10 marks] Minimise this elastic energy with respect to R under the
constraint that the total volume is conserved and show that the min-
imisation with respect to R leads to a form of the Young-Laplace
equation. Since the Young-Laplace equation also applies to the vesicle
in the pipette, show that the surface tension ¢ can be obtained as a
function of AP, r and R only.

[5 marks] Let Ag be the area for L = 0 and AA = (A — Ap)/Ao
the areal strain. For small areal strain, one can write ¢ = K,AA
where K, is the area compressibility modulus. Express K in terms of
all the geometric parameters and AP. Estimate K, for the following
values taken from an experiment on vesicles: » = 1,R = 10,L =
10 (all in pm) and AP = 2700 Pa. Compare this value with the
typical shear modulus of red blood cells (7uN/m) and discuss whether
it is reasonable to assume area incompressibility in a fluid membrane
model.

(Note: In a typical experiment one cannot measure the change of ra-
dius R as a function of L. It is therefore a reasonable approzimation
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to assume that the surface area of the original sphere is equal to the
sum of the area of the current sphere and the small hemispherical cap.)
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Solutions

(a)[B] The elastic energy of a fluid biomembrane with surface X is given by
&= / dS [0 + 2x(H — Ho)? + kK¢ (13)
b))

where
e H and K¢ are the mean and Gaussian curvatures,
e o is the surface tension,
¢ x is the bending modulus,
e K is the saddle-splay modulus,
e Hy is the intrinsic mean curvature of the biomembrane.

In our case Hy = 0 (the unstressed shape of bilayer is flat) and we can
ignore the contribution of K¢ the Gaussian curvatures since in our exper-
iment there is no change of topology and the surface is closed. Therefore,
according to Gauss-Bonnet theorem the contribution to the elastic energy
is constant.

(b) [BS} We have Etot = Ebend + Estreteh + W, where

Fhend = (47T * 2”{; * 2”) (14)
Estretch = 0 (47{'R2 + 2w Lr + 27‘-7-2) (15)
e (WLTQ * §”T3> (16)

(¢)[SN] The functional is & = &t — pV where p is a Lagrange multiplier
and V is the total volume

V= %wR?’ +wLr? + §7r7’3. (17)
The first variation of £ with respect to R leads to
—4rR(pR —20) =0 (18)
That is, ”
P=2§=P1—P2- (19)

This is the Young-Laplace equation with parameter p, a pressure, that can
be identified with P, — P5. The law also applies to the small hemisphere in

with case -
P—-F= 2;. (20)

6
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Assuming o is constant on the vesicle, we have

__ (R -P)rR

21
2(r — R) (21)
(d)[N] The change in areal strain is
Lr
Therefore (Po— Py) R®
K =x0—"2/7 9
N L(r — R) (23)

The choice of the value leads to K, = 0.03N/m which is 4 x 10? times greater
than the shear rigidity. Hence it is reasonable to approximate the vesicle as
an area incompressible object in most experiments.
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Question 3. Consider a rod of initial length Ly at time ¢ = 0. The rod
is constrained between two walls and is not subject to body loads. It can
only deform along its axis through stretch or growth (see Figure). The rod
is parameterised by Sy € [0, Lo| but has two domains referred to as (a) and
(b): the rod in the interval (b) is a passive structure (it does not grow),
whereas the rod in the interval (a) grows. The the growth law for the entire
rod is

_8_7_{/67(0—0) S 0,do) ool (o

8t o if Sp € [do, Lo,

where k is the growth rate, v = v(So, ) is the growth stretch and o* < 0
is a constant homeostatic stress. Defining o = 0(Sp,t) to be the stress and
a = a(Sp, t) the elastic stretch, the elastic response of the rod is

B {Ea(a— 1) if Sy € [0, do) (25)

B Eb(a - 1) if Sy € [do,Lo]

where E,;, are the extensional moduli of the rod.

(a) [10 marks] Assuming that growth is slow so that the system is in
mechanical equilibrium at all time, obtain an equation for the dy-
namic of v which only involves v and the constants of the problem
(LO) dO, Ea’ Eln k)

(b) [10 marks] Assuming |0*| < Eg4, show that this equation has two
stationary states v, and 2 > 1 and compute the length of the two
intervals (a) and (b) for these two solutions.

(c) [5 marks] Show that as t — 0o, ¥(t) = 72, and that o(t) = o*.
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Solutions

(a)[BS] (Similar as the two problems in the problem sheet on growth under
gravity) The mechanical equilibrium satisfies dg,0 = 0 hence ¢ is uniform
and so is « and v in each interval. We define «; and +; to be the growth
and elastic stretches in interval ¢ = a,b (obviously v, = 1), we also define
A=dy = Loy and B = Ly — dy = Lgp and we have

o= Ea(a'a - 1) = Eb(ab - 1). (26)

The current length of each interval is I; = a;y; Lo; and since the length does
not change we have

Lo =1+ 1y = aavad + o4 B. (27)
The solution of the system (26-27) is
BE, + AE,

= 28
¢~ BE, + 1AEy (28)
BE,+AE,+ A -F
ab — a + a + 7&(Eb a’) (29)
BE, + v,AEy
so that the equation for «, is
AE Ey(1 — .
OV = kYa —al_)_(____')’_az -0 (30)

BE, + 1, AE,

(b) [SN] The stationary states are y; = 0 (with length I, = 0, Ly = Lo)

and
E, AE, — Bo*

T AE, E,+o*
Note that since 0* < 0 and |0*| < Eq, we have y2 > 0. We compute the
length using (27) to find

(31)

Y2

o* o*
la gy =A E, do — (Lo — dp) B, (32)
and N %
=B+ =) = (Lo — do)(1 + =) (33)
’ Ey ONTE

(c)[N} It can be shown (graphically or by inequalities) that 0yy > 0 for
T <y <2 and 8y < 0 for v > 7y, and therefore conclude that y(t) — ¥z
as t — oo. Obviously, o — ¢* but it is nice to check it.




