Definitions, Notation and Terminology

Notational Conventions

$[n]=\{1,2, \ldots, n\}$.
$X^{(k)}=\{A \subseteq X:|A|=k\}$: set of k-element subsets of X.
For vertices $u \neq v: u v=\{u, v\}=v u$.
The endvertices or ends of an edge $u v$ are u and v.

Graphs

A graph is an ordered pair (V, E) where $V \neq \emptyset$ is a finite (for now) set and $E \subseteq V^{(2)}$.

In a graph $G=(V, E)$:
the vertex set is $V=V(G)$ and edge set is $E=E(G)$,
the order $|G|$ of G is $|V|$ - the number of vertices, and
the size $e(G)$ of G is $|E|$ - the number of edges.
Vertices u, v are adjacent if $u v \in E$,
a vertex v and edge e are incident if v is an endvertex of e, edges e and f meet if they share a vertex.
The neighbourhood of v is $\Gamma(v)=\Gamma_{G}(v)=\{u: u v \in E\}$ and,
the degree of v is $d(v)=d_{G}(v)=|\Gamma(v)|$.
v is isolated if $d(v)=0$.

Isomorphism

An isomorphism from a graph G to a graph H is a bijection $\phi: V(G) \rightarrow V(H)$ such that $\phi(v) \phi(w) \in E(H)$ iff $v w \in E(G)$.
G and H are isomorphic if such a ϕ exists.

Subgraphs

A graph H is a subgraph of a graph G, written $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

If $W \subseteq V(G)$ then $G[W]$, the subgraph induced by W, is $\left(W, E(G) \cap W^{(2)}\right.$), the graph formed by W and all edges of G with ends in W.

An induced subgraph of G is any such subgraph $G[W]$.
H is a spanning subgraph of G if $H \subseteq G$ and $V(H)=V(G)$.

Operations on graphs

The complement of $G=(V, E)$ is $\bar{G}=\left(V, V^{(2)} \backslash E\right)$.
A non-edge of G is an edge of \bar{G}.
For $e \in E$, the graph obtained by deleting e is $G-e=(V, E \backslash\{e\})$.
For $e \in V^{(2)} \backslash E$, the graph obtained by adding e is $G+e=(V, E \cup\{e\})$.
For $v \in V$, define $G-v=G[V \backslash\{v\}]$, i.e., delete v and any incident edges.

Standard graphs

K_{n} : complete graph on $n \geqslant 1$ vertices.
E_{n} : empty graph on $n \geqslant 1$ vertices.
P_{n} : path on $n \geqslant 0$ edges ($n+1$ vertices).
C_{n} : cycle on $n \geqslant 3$ vertices (also n edges).
$K_{a, b}$: complete bipartite graph with a vertices in one part and b in the other. Formally:
$K_{n}=\left([n],[n]^{(2)}\right)$.
$E_{n}=([n], \emptyset)$.
$P_{n}=(\{0,1, \ldots, n\},\{\{i-1, i\}: 1 \leqslant i \leqslant n\})$.
$C_{n}=([n],\{12,23, \ldots,\{n-1, n\}, n 1\})$.

Further definitions

A graph G is connected if any two vertices are joined by a path/walk.
The components of G are the maximal connected subgraphs.
A bridge in G is an edge e whose deletion would disconnect the component of G containing e

A graph G is bipartite if we can partition the vertex set into $X \cup Y$ so that every edge is of the form $x y, x \in X, y \in Y$.

A graph is acyclic if it has no subgraph that is a cycle (i.e., is isomorphic to some C_{n}).

A tree is a connected acyclic graph.
A forest is an acyclic graph.
A leaf (in a tree/forest) is a vertex v with $d(v)=1$.
If v is a vertex of $G=(V, E)$ and A and B are disjoint subsets of V we write
$\Gamma_{A}(v)=A \cap \Gamma(v)$ for the neighbourhood of v in A,
$d_{A}(v)=\left|\Gamma_{A}(v)\right|$ for the degree of v into A,
$e(A)=e(G[A])$ for the number of edges (of G) inside A and
$e(A, B)$ for the number of edges $a b$ of G with $a \in A$ and $b \in B$.

Warnings!!!!

In some books P_{n} has n vertices, not n edges.
In some books 'graph' is used to mean 'multi-graph' - a variant where multiple edges between two vertices are allowed, and maybe edges from a vertex to itself. In most such books a 'simple graph' is what we call a graph.

Some people write $G \backslash e(N O T G / e)$ for $G-e$, and $G \backslash v$ for $G-v$.
You may also see $v(G)$ instead of $|G|$.
The term size is used in different ways by different people. Best to avoid and stick with $e(G)$ or 'number of edges'.

If you find an error please check the website, and if it has not already been corrected, e-mail riordan@maths.ox.ac.uk

