- 1. Find $\chi'(K_n)$ for each $n \ge 2$. (You should get different behaviour for n even and n odd.)
- 2. (a) Let $r \ge 2$ and suppose that G is a connected r-regular graph with $\chi'(G) = r$. Show that G does not contain any bridges.
 - (b) Construct a 3-regular graph with $\chi'(G) > 3$.
- 3. Let G be a 3-regular graph with $\chi'(G) = 3$, and suppose that there is a unique 3-edge colouring of G (up to permuting the colours). Prove that G has exactly 3 Hamilton cycles. Are there arbitrarily large graphs with this property?
- 4. Suppose that we 2-colour the edges of K_n , not necessarily properly. Show that there are monochromatic paths P_1 and P_2 such that $V(P_1) \cup V(P_2) = V(K_n)$.
- 5. Let G be a graph in which every vertex has even degree. Show that G can be written as the edge disjoint union of cycles, plus (possibly) some isolated vertices.
- 6. The girth g(G) of a graph G is the length of a shortest cycle (or ∞ if G is a forest). Show that if G is a planar graph with girth $g < \infty$ then $e(G) \leq \frac{g}{g-2}(|G|-2)$. Deduce that $K_{3,3}$ is not planar.
- 7. Show that every triangle-free planar graph is 4-colourable.
- 8. For which $n \ge 3$ does there exist a planar graph G with n vertices such that
 - (a) e(G) = 3n 6?
 - (b) G is triangle-free and e(G) = 2n 4?
- 9. Show that if G is a planar graph with $\delta(G) = 5$, then $|G| \ge 12$. Can we have equality?
- 10. A plane triangulation is a plane graph in which every face is a triangle. Given a plane triangulation with $n \ge 3$ vertices, show that we can add one vertex and three edges to form a triangulation with n+1 vertices. Can every triangulation be formed in this way? What is the point of this question?
- 11. Show that in any network $(\overrightarrow{G}, s, t, c)$ there is a flow f of maximum value which is *acyclic*: there is no directed cycle $x_1 \to x_2 \cdots \to x_t \to x_1$ with strictly positive flow along each edge.

Optional bonus questions. These may not be covered in classes; MFoCS students should attempt them! Some of these are hard!

- 12. A graph G is k-list colourable if, whenever each vertex v is assigned a list L(v) of at least k colours, it is possible to colour each vertex with a colour from its list so that adjacent vertices receive distinct colours.
 - (a) For each k, construct a graph which is 2-colourable but not k-list colourable.
 - (b)* Construct a planar graph which is not 4-list colourable.
- 13. (a) Prove that every (not necessarily proper) 2-colouring of the edges of K_{3n-1} contains n vertex-disjoint edges of the same colour.
 - (b) Show that this does not hold for K_{3n-2} .
- 14* For which n can you construct a planar graph G with $|G|=n, \, \delta(G)=5$ and $\Delta(G)=6$?

If you find an error please check the website, and if it has not already been corrected, e-mail riordan@maths.ox.ac.uk