1. Prove a version of the max-flow min-cut theorem for a network with multiple sources s_{1}, \ldots, s_{k} and sinks t_{1}, \ldots, t_{ℓ}. (One was outlined in lectures.)
2. Deduce Menger's Theorem from the Max-Flow-Min-Cut Theorem. [Hint: use the vertex form. Show that an acyclic flow of value k with $f(x y) \in\{0,1\}$ for all edges corresponds to k independent paths.]
3. (a) Is there a network (\vec{G}, s, t, c) containing edges $x y$ and $y x$ such that there are maximum value flows f_{i} with $f_{1}(x y)>0$ and $f_{2}(y x)>0$?
(b) Formulate and answer a better version of Q3(a). [Hint overleaf.]
(c) (Harder.) Formulate and answer an even better version of Q3(a).
4. Show that if G is an r-regular bipartite graph with $2 n$ vertices, where $r \geqslant 1$, then G contains a matching of size n (i.e., a matching with n edges). Deduce that $\chi^{\prime}(G)=r$.
5. Let G be a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$.
(a) For $0 \leqslant d \leqslant\left|V_{1}\right|$, show that G contains a matching of size $\left|V_{1}\right|-d$ if and only if $|\Gamma(S)| \geqslant|S|-d$ for every $S \subseteq V_{1}$.
(b) Show that G contains a 1-to- r matching (i.e., a 'pairing' of each $v \in V_{1}$ with a set $A_{v} \subseteq \Gamma(v)$ such that $\left|A_{v}\right|=r$ for all $v \in V_{1}$ and the sets A_{v} are disjoint) if and only if $|\Gamma(S)| \geqslant r|S|$ for every $S \subseteq V_{1}$.
6. Show that if e is an edge of a graph G then $\kappa(G)-1 \leqslant \kappa(G-e) \leqslant \kappa(G)$.
7. Let U be a set of k vertices in a k-connected graph G, and x a vertex not in U. Show that G contains k paths from x to vertices in U meeting only at the vertex x (a 'fan' from x to U).
8. Prove that if G is k-connected, where $k \geqslant 2$, then every set of k vertices of G lies on a cycle. Is the converse true?
9. Determine ex $\left(n, K_{1,3}\right)$ for every n. Describe the extremal graphs.
10. Determine ex $\left(n, 2 K_{2}\right)$ for every n. What are the extremal graphs? (Here $2 K_{2}$ means a pair of vertex-disjoint edges.)
11. Suppose that G is a graph with $n>r+1$ vertices and $t_{r}(n)+1$ edges.
(a) Prove that for every p with $r+1<p \leqslant n$ there is a subgraph H of G with $|H|=p$ and $e(H) \geqslant t_{r}(p)+1$. [Hint: Try to copy the proof of Turán's Theorem. You may wish to write $n=q r+x$ where $0 \leqslant x<r$, and consider the cases $x=0, x=1$ and $x \geqslant 2$.]
(b) Prove that G contains two copies of K_{r+1} with exactly r common vertices.

Optional bonus questions. These may not be covered in classes; MFoCS students should attempt them!
12. Let H be a graph, and define $c_{n}(H):=\operatorname{ex}(n, H) /\binom{n}{2}$. Prove that $c_{n}(H) \leqslant$ $c_{n-1}(H)$, and show that $\lim _{n \rightarrow \infty} c_{n}(H)$ exists.
13. Let $k \geqslant 2$ and let G be a graph with $|G|=n \geqslant 2 k-1$. Prove that if $e(G) \geqslant(2 k-3)(n-k+1)+1$ then G contains a subgraph H such that H is k-connected.
14. For those who did not do Part A Graph Theory: We say that an n-by-n matrix is doubly stochastic if all its entries are nonnegative and every row and every column sums to 1 . A matrix is a permutation matrix if it is doubly stochastic and all entries are 0 or 1 (i.e., every row and column contains a single 1 , and all other entries are 0).

Prove that every doubly stochastic matrix is a convex combination of permutation matrices.

Small hint for Q3(b): The answer to Q3(a) is 'yes' but for a very silly, simple reason. Rule this out to get a better question.

If you find an error please check the website, and if it has not already been corrected, e-mail riordan@maths.ox.ac.uk

