1. A deck of n cards in order $1,2, \ldots, n$ is provided. One card is removed at random and placed at a random position in the deck. What is the entropy of the resulting deck of cards?
2. (Pooling inequality)Let $a, b \geq 0$ with $a+b>0$. Show that

$$
-(a+b) \log (a+b) \leq-a \log a-b \log b \leq-(a+b) \log \frac{a+b}{2}
$$

and that the first inequality becomes an equality iff $a b=0$, the second inequality becomes an equality iff $a=b$.
3. (Log sum inequality)Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \geq 0$. Show that

$$
\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq\left(\sum_{i=1}^{n} a_{i}\right) \log \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}
$$

with equality iff $\frac{a_{i}}{b_{i}}$ is constant.
4. Let X, Y, Z be discrete random variables. Prove or provide a counterexample to the following statements:
(a) $H(X, Y)=H(X)+H(Y)$,
(b) $H(Y \mid X) \geq H(Y \mid X, Z)$,
(c) $H(X)=H(10 X)$,
5. Does there exist a discrete random variable X with a distribution such that $H(X)=\infty$? If so, describe it as explicit as possible.
6. Consider a sequence $X_{0}, X_{1}, X_{2}, \ldots$ of identically distributed and independent random variables that take values in a finite set \mathcal{X} with $\mathbb{P}\left(X_{i}=0\right)=\mathbb{P}\left(X_{i}=1\right)=\frac{1}{2}$. Let $N=\inf \left\{n \geq 1: X_{n}=1\right\}$.
(a) Calculate $\mathbb{E}[N]$,
(b) Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathbb{E}[\log N] \leq f\left(H\left(X_{0}\right)\right)$.
7. Partition the interval $[0,1]$ into n disjoint sub-intervals of length p_{1}, \ldots, p_{n}. Let X_{1}, X_{2}, \ldots be iid random variables, uniformly distributed on [0,1], and $Z_{m}(i)$ be the number of the X_{1}, \ldots, X_{m} that lie in the i th interval of the partition. Show that

$$
R_{m}=\prod_{i=1}^{n} p_{i}^{Z_{m}(i)} \text { fulfills } \frac{1}{m} \log R_{m} \rightarrow_{n \rightarrow \infty} \sum_{i=1}^{n} p_{i} \log p_{i} \text { with probability } 1 .
$$

8. Let X be a finite set, f a real-valued function $f: \mathcal{X} \rightarrow \mathbb{R}$ and fix $\alpha \in \mathbb{R}$. We want to maximise the entropy $H(X)$ of a random variable X taking values in \mathcal{X} subject to the constraint

$$
\begin{equation*}
\mathbb{E}[f(X)] \leq \alpha \tag{1}
\end{equation*}
$$

Therefore show that if U denotes a uniformly distributed random variable on \mathcal{X}, it holds that
(a) if $\max _{x \in \mathcal{X}} f(x) \geq \alpha \geq \mathbb{E}[f(U)]$ the entropy (1) is maximised if X is uniformly distributed on \mathcal{X}.
(b) if f is non-constant and $\min _{x \in \mathcal{X}} f(x) \leq \alpha<\mathbb{E}[f(U)]$, the entropy (1) is maximised under the distribution

$$
\mathbb{P}(X=x)=\frac{\exp (\lambda f(x))}{\sum_{x \in \mathcal{X}} \exp (\lambda f(x))} \text { for } x \in \mathcal{X}
$$

for $\lambda<0$ choosen such that $\mathbb{E}[f(X)]=\alpha$.

