Communication Theory MT17

Sheet 4

1. Let $\mathcal{X}, \boldsymbol{Y}$ be finite sets and X a \mathcal{X}-valued random variable.
(a) Show that for any instantaneous code $c: \mathcal{X} \rightarrow \mathcal{Y}^{\star}$, only finitely many instantaneous codes $c^{\prime}: \mathcal{X} \rightarrow \boldsymbol{Y}^{\star}$ exist such that $\mathbb{E}\left[\left|c^{\prime}(X)\right|\right] \leq \mathbb{E}[|c(X)|]$.
(b) Conclude that an optimal code always exists.
2. (Fano's inequality) Let X, Y be discrete random variables that take values in a finite state space \mathcal{X}.
(a) Show that $H(X \mid Y) \leq H\left(1_{X \neq Y}\right)+\mathbb{P}(X \neq Y)(\log |X|-1)$.
[Hint: $H(X \mid Y)=H(X \mid Y)+H\left(1_{X \neq Y} \mid X, Y\right)=H\left(X, 1_{X \neq Y} \mid Y\right)=H\left(1_{X \neq Y} \mid Y\right)+H\left(X \mid Y, 1_{X \neq Y}\right) \leq$...].
(b) Show that $H(X \mid Y)<1+\mathbb{P}(X \neq Y) \log |X|$,
(c) Use the above (as in the proof of Shannon's NCT) to derive a lower bound for the arithmetic error $\bar{\epsilon}$ of a channel code (c, d) with rate $\rho(c, d)>C$. Plot how this bound varies with the rate.
3. Set $Y=(X+Z) \bmod 11, Z$ is independent of X and has $\operatorname{pmf} p_{Z}(i)=3^{-1}$ for $i \in\{1,2,3\}$. Consider a DMC with $\mathcal{X}=\boldsymbol{y}=\{0,1, \ldots, 10\}$ and $M=(\mathbb{P}(Y=y \mid X=x))_{x \in X, y \in \mathcal{Y}}$. Find the capacity of this channel and the distribution of X that achieves capacity.
4. (Time varying channel) Let $\mathcal{X}=\mathcal{Y}=\{0,1\}$ and for each time $i \in\{1, \ldots, n\}$ we can use a DMC

$\mathcal{X} \backslash \boldsymbol{y}$	0	1
0	$1-q_{i}$	q_{i}
1	q_{i}	$1-q_{i}$

to transmit a symbol. This is an example of a time-varying discrete memoryless channel. Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right), \boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ with conditional pmf $p(\boldsymbol{y} \mid \boldsymbol{x})=\prod_{i=1}^{n} p_{i}\left(y_{i} \mid x_{i}\right)$ where p_{i} is the conditional distribution of above symmetric binary noisy channel ($\left.p_{i}(0 \mid 0)=p_{i}(1 \mid 1)=1-q_{i}\right)$. Calculate $\max _{p_{\boldsymbol{X}}} \mathrm{I}(\boldsymbol{X} ; \boldsymbol{Y})$ (subject to the usual constraint that $\left.\boldsymbol{Y} \mid \boldsymbol{X} \sim p(\boldsymbol{y} \mid \boldsymbol{x})\right)$.
5. (Hamming code) Consider the binary noisy channel, i.e. $\mathcal{X}=\boldsymbol{Y}=\{0,1\}$ and

$\boldsymbol{X} \backslash \boldsymbol{y}$	0	1
0	$1-q$	q
1	q	$1-q$

Let $i \in\{1, \ldots, 16\}$ define an encoder $c(i)=\left(s_{1}, s_{2}, s_{3}, s_{4}, p_{1}, p_{2}, p_{3}\right) \in \boldsymbol{y}^{7}$ by letting $s_{1} s_{2} s_{3} s_{4}$ be the binary expansion of i and $p_{1}:=s_{1} \oplus s_{2} \oplus s_{3}, p_{2}:=s_{2} \oplus s_{3} \oplus s_{4}, p_{3}:=s_{1} \oplus s_{3} \oplus s_{4}$ where $\oplus:\{0,1\} \rightarrow\{0,1\}$ denotes exclusive OR $\left(a \oplus b=1\right.$ iff $a \neq b$; e.g. $c(1)=0001011$ since $s_{1} s_{2} s_{3} s_{3}=0001$, $c(4)=0100110$ since $\left.s_{1} s_{2} s_{3} s_{4}=0100\right)$. We call p_{1}, p_{2}, p_{3} parity bits (they show if the sum of bits is even or odd).
(a) Visualize this by drawing three intersecting circles [Hint: put the first four bits into regions intersecting at least two of these circles. Put the parity bits in the remaining regions]. Use this, to find a good decoder $d: \boldsymbol{y}^{7} \rightarrow\{1, \ldots, 16\}$,
(b) Decode the outputs 1100101, 1000001,
(c) Calculate the rate of this channel code.
6. (Hamming code and finite fields) Let $\mathbb{F}_{2}=\{0,1\}$ and define the usual modulo 2 arithmetic on \mathbb{F}_{2} $(0+0=1+1=0,0+1=1+0=1,0 \cdot 0=0 \cdot 1=1 \cdot 0=0,1 \cdot 1=0)$.
(a) Show that $\left(\mathbb{F}_{2},+, \cdot\right)$ is a field, and describe how $\mathbb{F}_{2}^{n}=\{0,1\}^{n}$ can be seen as a vector space over the field \mathbb{F}_{2},
(b) A linear code is a channel code with a codebook that is a linear subspace \mathbb{F}_{2}^{n}. Consider the Hamming code from Example 5 and the generator matrix

$$
G^{T}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

Use G to show that the Hamming code is a linear code [Hint: multiply with 0000, 0001, $0010, \ldots]$. Define P as $\binom{I_{4}}{P}:=G^{T}$ and set $H=\left(P, I_{3}\right)\left(I_{n}\right.$ is the $n \times n$ identity matrix over \mathbb{F}_{2}). Show that all codewords are in the kernel of H. We call H the parity matrix.
7. m horses run a race, the i th horse wins with probability p_{i}. An investment of one pound returns $o(i)$ pounds if horse i wins, otherwise the investment is lost. A gambler distributes all of his wealth across the horses: $b(i) \geq 0$ denotes the fraction of the gambler's wealth that he bets on horse i and $\sum_{i=1}^{m} b(i)=1$. We now consider repeating this game over and over. If S_{n} denotes the gambler's wealth after the nth race, then

$$
S_{n}=\prod_{i=1}^{n} b\left(X_{i}\right) o\left(X_{i}\right)
$$

where X_{i} is the horse that wins the i-th race and $s_{0} \in \mathbb{R}$ is the start capital.
(a) If X_{i} are iid, show that for given $\boldsymbol{b}=(b(1), \ldots, b(m)), \boldsymbol{p}=\left(p_{1}, \ldots, p_{m}\right)$ the wealth grows exponentially, i.e. $\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{S_{n}}{2^{n W(\boldsymbol{b}, \boldsymbol{p})}}=0$, where $W(\boldsymbol{b}, \boldsymbol{p})$ is to be determined. [Hint: Weak law of large numbers]
(b) Define $W^{\star}(\boldsymbol{p}):=\max _{\boldsymbol{b}: \sum b(i)=1, b(i) \geq 0} W(\boldsymbol{b}, \boldsymbol{p})$ and find \boldsymbol{b} that achieves this maximum. [Hint: Once you found an extremum, express $W(\boldsymbol{b}, \boldsymbol{p})$ using $H(\boldsymbol{p})$ and $D(\boldsymbol{p} \| \boldsymbol{b})$ to verify that it is a maximum]
(c) We can regard $q(i):=\frac{1}{o(i)}$ as the "probabilities" the bookmaker implicitily assigns to outcomes. Consider the cases $\sum q_{i}=1, \sum q_{i}<1$ and $\sum q_{i}>1$ and argue which is a fair game, which favours the gambler, which favours the bookmaker?
8. A stock market is represented as $\boldsymbol{X}=\left(X_{1}, \ldots, X_{m}\right)$ where each random variable X_{i} is non-negative and represents the ratio of prices for stock at i at the end of the day to the beginning of the day (e.g. $\left\{X_{i}=1.03\right\}$ is the event that stock i went up 3percent). A portfolio $\boldsymbol{b}=(b(1), \ldots, b(m))$ consists of numbers $b(i) \geq 0, \sum_{i=1}^{m} b(i)=1$, where $b(i)$ denotes the fraction the investor's wealth that is invested in stock i. Hence, using a portfolio \boldsymbol{b} on the stock market \boldsymbol{X}, leads to a relative wealth change of $S=\boldsymbol{b}^{T} \boldsymbol{X}=\sum_{i=1}^{m} b_{i} X_{i}$. The wealth change after n trading days using the same portfolio \boldsymbol{b} is therefore $S_{n}=\prod_{i=1}^{n} \boldsymbol{b}^{T} \boldsymbol{X}_{i}$.
(a) If $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ are iid with cdf F, show that for given $\boldsymbol{b}, \lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{S_{n}}{2^{n W(b, F)}}=0$, where $W(\boldsymbol{b}, F)$ is to be determined.
(b) Show that $W(\boldsymbol{b}, F)$ is concave in \boldsymbol{b} and linear in F. Show that $W^{\star}(F)=\max _{\boldsymbol{b}} W(\boldsymbol{b}, F)$ is convex in F. [\boldsymbol{b} that achieves this maximum is called a growth optimal portfolio].
(c) Show that the set of growth optimal portfolios (with respect to F) is convex.

