B8.1 Probability, Measure and Martingales

Problem Sheet 3, MT 2018

Q1. Suppose X, Y and Z are three independent real random variables. Prove that X + Y and Z are independent.

Q2. Roll a fair die until we get a six. Let Y be the total number of rolls and X the number of 1's. Show that

$$\mathbb{E}[X|Y] = \frac{1}{5}(Y-1) \text{ and } \mathbb{E}[X^2|Y] = \frac{1}{25}(Y^2+2Y-3).$$

Hint. By definition $\mathbb{E}[X|Y] = \mathbb{E}[X|\sigma\{Y\}]$, which is different from the conditional expectation $\mathbb{E}[X|Y=y]$ used in Prelims Probability. The latter is defined to be

$$\mathbb{E}\left[X|Y=y\right] = \sum_{x} x \mathbb{P}\left[X=x|Y=y\right]$$

where the conditional probability

$$\mathbb{P}\left[X = x | Y = y\right] = \frac{\mathbb{P}\left[X = x, Y = y\right]}{\mathbb{P}\left[Y = y\right]}$$

On the other hand, $\mathbb{E}[X|Y]$ is a random variable, measurable with respect to $\sigma\{Y\}$. The relationship between these two notions are given by the following formula [Sheet 2]

$$\mathbb{E}[X|Y] = \sum_{y} \mathbb{E}[X|Y=y] \mathbf{1}_{\{Y=y\}}.$$

Q3. Let $(X_n)_{n\geq 1}$ be a sequence of independent real valued random variables. 1) Suppose

$$\mathbb{P}\left[\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = 1\right] > 0.$$

Show that

$$\frac{X_1 + \dots + X_n}{n} \to 1 \text{ with probability 1.}$$

2) Suppose

$$\mathbb{P}\left[X_n = n\right] = \mathbb{P}\left[X_n = -n\right] = \frac{1}{2(n+1)\log(n+1)}$$

and

$$\mathbb{P}[X_n = 0] = 1 - \frac{1}{(n+1)\log(n+1)}.$$

Let $S_n = \sum_{k=1}^n X_k$. Show that $\frac{S_n}{n} \to 0$ in probability, that is,

$$\mathbb{P}\left[\left|\frac{S_n}{n}\right| > \delta\right] \to 0$$

as $n \to \infty$ for every $\delta > 0$, but not almost surely.

[*Hint*. Calculate the variance of S_n to show the convergence in probability. Use the Borel-Cantelli lemmas to handle the almost sure convergence.]

Q4. 1) Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables with $\mathbb{E}[X_n] = 1$ for all n. Let $\mathcal{F}_n = \sigma \{X_m : m \leq n\}$ and

$$M_0 = 1, \ M_n = \prod_{k=1}^n X_k$$

for $n = 1, 2, \cdots$. Show that $M = (M_n)_{n>0}$ is a martingale w.r.t. (\mathcal{F}_n) .

2) Let $(Y_n)_{n\geq 1}$ be a sequence of independent, identically distributed random variables such that the moment generating function $\psi(t) = \mathbb{E}\left[e^{tY_1}\right] < \infty$ for all t. Let $S_0 = 0$ and $S_n = \sum_{k=1}^n Y_k$. Let

$$M_n = \frac{e^{tS_n}}{\psi(t)^n}$$
, $n = 0, 1, 2, \cdots$

Show that $M = (M_n)_{n\geq 0}$ is a martingale (which is called an *exponential martingale*), so that it is a positive martingale.

Q5. Let (\mathcal{F}_n) be a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$.

1) Show that a random variable T taking values in $\mathbb{Z} \cup \{\infty\}$ is a stopping time w.r.t. (\mathcal{F}_n) if and only if $\{T > n\} \in \mathcal{F}_n$ for every $n \in \mathbb{Z}$.

2) Let S and T be stopping times w.r.t. (\mathcal{F}_n) . Prove that S+T, max $\{S,T\}$ and min $\{S,T\}$ are stopping times too. Assuming it is always non-negative, must S-T be a stopping time?

Q6. Let $(\Omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$ be a filtered probability space. Suppose $Y = (Y_n)_{n \ge 1}$ is a submartingale and $V = (V_n)_{n \ge 0}$ is predictable, and $V_n \ge 0$ for all n. Show that (subject to integrability) $X_n = \sum_{k=1}^n V_k(Y_k - Y_{k-1}), Y_0 = 0$, is a submartingale.