B8.1 Probability, Measure and Martingales

Problem Sheet 3, MT 2018

Q1. Suppose X, Y and Z are three independent real random variables. Prove that $X + Y$ and Z are independent.

Q2. Roll a fair die until we get a six. Let Y be the total number of rolls and X the number of 1's. Show that

$$
\mathbb{E}[X|Y] = \frac{1}{5}(Y-1)
$$
 and
$$
\mathbb{E}[X^2|Y] = \frac{1}{25}(Y^2 + 2Y - 3).
$$

Hint. By definition $\mathbb{E}[X|Y] = \mathbb{E}[X|\sigma\{Y\}]$, which is different from the conditional expectation $\mathbb{E}[X|Y=y]$ used in Prelims Probability. The latter is defined to be

$$
\mathbb{E}[X|Y=y] = \sum_{x} x \mathbb{P}[X=x|Y=y]
$$

where the conditional probability

$$
\mathbb{P}[X = x | Y = y] = \frac{\mathbb{P}[X = x, Y = y]}{\mathbb{P}[Y = y]}.
$$

On the other hand, $\mathbb{E}[X|Y]$ is a random variable, measurable with respect to $\sigma\{Y\}$. The relationship between these two notions are given by the following formula [Sheet 2]

$$
\mathbb{E}[X|Y] = \sum_{y} \mathbb{E}[X|Y=y] 1_{\{Y=y\}}.
$$

Q3. Let $(X_n)_{n\geq 1}$ be a sequence of independent real valued random variables. 1) Suppose

$$
\mathbb{P}\left[\lim_{n\to\infty}\frac{X_1+\cdots+X_n}{n}=1\right]>0.
$$

Show that

$$
\frac{X_1 + \dots + X_n}{n} \to 1
$$
 with probability 1.

2) Suppose

$$
\mathbb{P}[X_n = n] = \mathbb{P}[X_n = -n] = \frac{1}{2(n+1)\log(n+1)}
$$

and

$$
\mathbb{P}[X_n = 0] = 1 - \frac{1}{(n+1)\log(n+1)}.
$$

Let $S_n = \sum_{k=1}^n X_k$. Show that $\frac{S_n}{n} \to 0$ in probability, that is,

$$
\mathbb{P}\left[\left|\frac{S_n}{n}\right| > \delta\right] \to 0
$$

as $n \to \infty$ for every $\delta > 0$, but not almost surely.

[Hint. Calculate the variance of S_n to show the convergence in probability. Use the Borel-Cantelli lemmas to handle the almost sure convergence.]

Q4. 1) Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables with $\mathbb{E}[X_n] = 1$ for all n. Let $\mathcal{F}_n = \sigma\{X_m : m \leq n\}$ and

$$
M_0 = 1, \, M_n = \prod_{k=1}^n X_k
$$

for $n = 1, 2, \cdots$. Show that $M = (M_n)_{n \geq 0}$ is a martingale w.r.t. (\mathcal{F}_n) .

2) Let $(Y_n)_{n>1}$ be a sequence of independent, identically distributed random variables such that the moment generating function $\psi(t) = \mathbb{E}\left[e^{tY_1}\right] < \infty$ for all t. Let $S_0 = 0$ and $S_n =$ $\sum_{k=1}^{n} Y_k$. Let

$$
M_n = \frac{e^{tS_n}}{\psi(t)^n} , n = 0, 1, 2, \cdots.
$$

Show that $M = (M_n)_{n \geq 0}$ is a martingale (which is called an *exponential martingale*), so that it is a positive martingale.

Q5. Let (\mathcal{F}_n) be a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$.

1) Show that a random variable T taking values in $\mathbb{Z} \cup \{\infty\}$ is a stopping time w.r.t. (\mathcal{F}_n) if and only if $\{T > n\} \in \mathcal{F}_n$ for every $n \in \mathbb{Z}$.

2) Let S and T be stopping times w.r.t. (\mathcal{F}_n) . Prove that $S + T$, max $\{S, T\}$ and min $\{S, T\}$ are stopping times too. Assuming it is always non-negative, must $S - T$ be a stopping time?

Q6. Let $(\Omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$ be a filtered probability space. Suppose $Y = (Y_n)_{n \geq 1}$ is a submartingale and $V = (V_n)_{n \geq 0}$ is predictable, and $V_n \geq 0$ for all n. Show that (subject to integrability) $X_n = \sum_{k=1}^n V_k(\overline{Y}_k - Y_{k-1}), Y_0 = 0$, is a submartingale.