B8.1 Probability, Measure and Martingales

Problem Sheet 4, MT 2018

Q1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

a) Suppose $\{\mathcal{G}_{\alpha} : \alpha \in \Lambda\}$ is a family of sub σ -algebras of \mathcal{F} , and ξ is integrable. Let $X_{\alpha} = \mathbb{E}[\xi|\mathcal{G}_{\alpha}]$ for $\alpha \in \Lambda$. Show that $\{X_{\alpha} : \alpha \in \Lambda\}$ is uniformly integrable.

b) Suppose $\{Y_{\alpha} : \alpha \in \Lambda\}$ is a bounded subset of $L^{p}(\Omega, \mathcal{F}, \mathbb{P})$, where p > 1, show that $\{Y_{\alpha} : \alpha \in \Lambda\}$ is uniformly integrable.

Q2. Let $X = (X)_{n \ge 0}$ be a martingale and T be a *finite* stopping time. Suppose X_T is integrable. Show that $\mathbb{E}[X_T] = \mathbb{E}[X_0]$ if and only if

$$\lim_{n \to \infty} \mathbb{E}\left[X_n : T > n\right] = 0.$$

Hint. Note that since T is finite so that $X_{T \wedge n}$ tends X_T as $n \to \infty$. Therefore Theorem 10.4 may be useful.

Q3. Let $X = (X_n)_{n \ge 0}$ be a martingale such that $\sup_{n \ge 0} \mathbb{E}[X_n^2] < \infty$. Show that X_n converges to a random variable X_∞ with probability 1 and in L^2 as well.

Q4. Let $(Z_n)_{n\geq 0}$ be an adapted random sequence on $(\Omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$ such that each Z_n is integrable. Let N be a positive integer. Define recursively and backwards by

$$X_N = Z_N$$

and

$$X_n = \max\left\{Z_n, \mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right]\right\}$$

for $n = N - 1, \dots, 1, 0$. Show that $(X_n)_{0 \le n \le N}$ is a supermartingale, and that $X_n \ge Z_n$ for $n = 0, \dots, N$. $[(X_n)$ is called the Snell envelope of (Z_n) .]

Q5. a) By considering $h(t) = \ln t - \frac{t}{e}$ for t > 0 or otherwise, show that $\ln t \le t/e$ for t > 0. b) Define $\log^+(t) = \max\{0, \ln t\}$ for t > 0, that is, $\log^+ t = 1_{(1,\infty)}(t) \ln t$ for t > 0. Show that

$$a\log^+ b \le a\log^+ a + \frac{b}{e}$$

for any a, b > 0. c) $\rho(t) = (t-1)^+$ for all $t \in \mathbb{R}$ is continuous and increasing, with right derivative

$$\rho'_{+}(t) = \rho'(t+) = \mathbf{1}_{[1,\infty)}(t).$$

Show that the Lebesgue-Stieltjes measure $m_{\rho}(dt) = 1_{[1,\infty)}(t)dt$. [Hint. you may use the results in Q5 in Sheet 1.]

d) Suppose $X = (X_n)$ is a non-negative submartingale, and $X_n^* = \sup_{k \le n} X_k$ for every *n*. Show that, by using Doob's maximal inequality or otherwise,

$$\mathbb{E}\left[\rho\left(X_{n}^{*}\right)\right] \leq \mathbb{E}\left[X_{n}\int_{\left(0,X_{n}^{*}\right]}\frac{1}{t}m_{\rho}(dt)\right]$$

and conclude that

$$\mathbb{E}\left[X_{n}^{*}\right] \leq \frac{e}{e-1} \left(1 + \mathbb{E}\left[X_{n} \log^{+} X_{n}\right]\right)$$

for every n. [This is called Doob's L^1 -inequality.]

Q6. Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables with the same distribution given by

$$\mathbb{P}\left[X_n = 1\right] = \mathbb{P}\left[X_n = -1\right] = \frac{1}{2}.$$

Define S_0 and $S_n = \sum_{k=1}^n X_k$ for $n = 1, 2, \cdots$. Show that $S = (S_n)$ is a martingale [you should specify a filtration]. Let $\psi(t) = \mathbb{E}\left[e^{tX_1}\right]$. Show that $\psi(t) = \frac{e^t + e^{-t}}{2}$. a) Show that $M_n^{(t)} = e^{tS_n}\psi(t)^{-n}$ is a martingale [Hint. Question 4, Sheet 3]. Let $T = \inf\{n \ge 0 : S_n = 1\}$. Show that

$$\mathbb{E}\left[e^{tS_{T\wedge n}}\psi(t)^{-(T\wedge n)}\right] = 1$$

for every $n = 1, 2, \dots$, and for every t. b) Let t > 0. Show that $(e^{tS_{T \wedge n}})_{n \geq 0}$ is bounded by e^t ,

$$\lim_{n \to \infty} M_{T \wedge n}^{(t)} = M_T^{(t)} \mathbb{1}_{\{T < \infty\}}$$

and that

$$\mathbb{E}\left[M_T^{(t)} 1_{\{T < \infty\}}\right] = 1$$

for every t > 0.

c) Deduce that, from b), for t > 0,

$$\mathbb{E}\left[\psi(t)^{-T}\mathbf{1}_{\{T<\infty\}}\right] = e^{-t}$$

for all t > 0, and deduce that (by taking limit as $t \downarrow 0$ both sides, and using MCT)

$$\mathbb{P}\left[T<\infty\right]=1.$$

d) Therefore, by definition of T, show that $S_T = 1$ with probability 1, but $\mathbb{E}[S_T] \neq \mathbb{E}[S_0]$.

Q7. Let $(X_n)_{n\geq 1}$ be a sequence of independent real random variables, such that $\mathbb{E}[X_n] = 0$ for every n and $\sum_{n=1}^{\infty} \mathbb{E}[X_n^2] < \infty$. Show that $\sum_{n=1}^{\infty} X_n$ converges with probability one.