B8.1 Probability, Measure and Martingales

Problem Sheet 2, 2018 MT

Q1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and \mathcal{G} be a sub σ-algebra. If X is integrable, then $\mathbb{E}[X \mid \mathcal{G}]$ is the conditional expectation of X given \mathcal{G}, as defined in the lectures, so that $\mathbb{E}[X \mid \mathcal{G}]$ is the unique Y (up to equal almost surely) which is \mathcal{G}-measurable and integrable, such that

$$
\mathbb{E}[X: A]=\mathbb{E}[Y: A] \text { for every } A \in \mathcal{G}
$$

1) Give a definition for the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$ when X is a non-negative random variable.
2) Show that $\mathbb{E}\left[X_{1} \mid \mathcal{G}\right] \geq \mathbb{E}\left[X_{2} \mid \mathcal{G}\right]$ almost surely if X_{1}, X_{2} are integrable and $X_{1} \geq X_{2}$ almost surely.

Q2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $\mathcal{G}_{1}, \mathcal{G}_{2}$ be two independent sub σ-algebras of \mathcal{F}. Suppose X is an integrable random variable, and suppose $\left\{X, \mathcal{G}_{1}\right\}$ and \mathcal{G}_{2} are independent [by definition, it means that the σ-algebra $\sigma\left\{X, \mathcal{G}_{1}\right\}$ and \mathcal{G}_{2} are independent]. Show that

$$
\mathbb{E}\left[X \mid \mathcal{G}_{1}, \mathcal{G}_{2}\right]=\mathbb{E}\left[X \mid \mathcal{G}_{1}\right],
$$

where $\mathbb{E}\left[X \mid \mathcal{G}_{1}, \mathcal{G}_{2}\right]$ denotes the conditional expectation of X given $\sigma\left\{\mathcal{G}_{1} \cup \mathcal{G}_{2}\right\}$.
Hence deduce that if $\left\{X_{\alpha}\right\}$ and $\left\{Y_{\beta}\right\}$ are two independent families of random variables [by definition, it means that $\sigma\left\{X_{\alpha}\right\}$ and $\sigma\left\{Y_{\beta}\right\}$ are independent], and suppose $\left\{X, X_{\alpha}\right\}$ and $\left\{Y_{\beta}\right\}$ are independent, then

$$
\mathbb{E}\left[X \mid\left\{X_{\alpha}\right\},\left\{Y_{\beta}\right\}\right]=\mathbb{E}\left[X \mid\left\{X_{\alpha}\right\}\right] .
$$

Q3. 1) Let X and X_{1}, \cdots, X_{n} be (real-valued) random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose X is integrable. Show that there is a Borel measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\mathbb{E}\left[X \mid X_{1}, \cdots, X_{n}\right]=f\left(X_{1}, \cdots, X_{n}\right)
$$

[Hint. You may use the results in Q3 in Problem Sheet 1.]
2) Suppose X and Y are two independent integrable random variables with the same distribution. Calculate
(a) $\mathbb{E}[X \mid X, Y]$ and $\mathbb{E}[X \mid Y]$;
(b) $\mathbb{E}[X \mid X+Y], \mathbb{E}[Y \mid X+Y]$;
(c) $\mathbb{E}[h(X, Y) \mid X+Y, X-Y]$ for a Borel measurable function so that $h(X, Y)$ is integrable.

Q4. 1) Let X and Y be discrete random variables taking values in $\{0,1, \cdots, N\}$. Suppose the joint distribution of (X, Y) is given by

$$
\mathbb{P}[X=i, Y=j]=q_{i j}>0
$$

for all i, j. Derive a formula for $\mathbb{E}[f(X) \mid Y]$ where f is a function on $\{0,1, \cdots, N\}$, in terms of $q_{i j}$. Verify that $\mathbb{E}[f(X) \mid Y]=\mathbb{E}[f(X)]$ if X and Y are independent.
2) Let $\left\{A_{n}: n=1,2, \cdots\right\}$ be a countable partition of the sample space Ω, where $A_{n} \in \mathcal{F}$ and $\bigcup_{n=1}^{\infty} A_{n}=\Omega$ with $\mathbb{P}\left(A_{n}\right)>0$ for every n. Let X be an integrable variable. Show that

$$
\mathbb{E}\left[X \mid \sigma\left\{A_{n}: n \geq 1\right\}\right]=\sum_{n=1}^{\infty} \frac{\mathbb{E}\left[X 1_{A_{n}}\right]}{\mathbb{P}\left(A_{n}\right)} 1_{A_{n}}
$$

3) Suppose X_{1}, \cdots, X_{n} are random variables taking values in a finite or countable set, and Z is another random variable. Prove that

$$
\mathbb{E}\left[Z \mid X_{1}, \cdots, X_{n}\right]=f\left(X_{1}, \cdots, X_{n}\right)
$$

where

$$
f\left(x_{1}, \cdots, x_{n}\right)=\mathbb{E}\left[Z \mid X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right] .
$$

Q5. Suppose $\left\{X_{n}: n=1,2, \cdots\right\}$ is a sequence of independent and identically distributed random variables, and

$$
\mathbb{P}\left[X_{n}=1\right]=\mathbb{P}\left[X_{n}=-1\right]=\frac{1}{2}
$$

For every $z \in \mathbb{Z}$ define

$$
A_{z}=\left\{S_{n}=z \text { for infinitely many } n\right\}
$$

$$
B_{-}=\left\{\liminf _{n \rightarrow \infty} S_{n}=-\infty\right\} \text { and } B_{+}=\left\{\limsup _{n \rightarrow \infty} S_{n}=\infty\right\}
$$

1) Let $\mathcal{G}_{\infty}=\bigcap_{n=1}^{\infty} \sigma\left\{X_{k}: k \geq n\right\}$ be the tail σ-algebra of $\left\{X_{k}: k \geq 1\right\}$. Show that both B_{-}and B_{+}are tail events, i.e. belong to \mathcal{G}_{∞}, and show that $\mathbb{P}\left[B_{ \pm}\right]=0$ or 1 . Show that $\mathbb{P}\left[B_{-}\right]=\mathbb{P}\left[B_{+}\right]$.
2) Using the Borel-Cantelli lemma to show that, for all $k \geq 1$

$$
\limsup _{n \rightarrow \infty}\left(S_{n+k}-S_{n}\right)=k \text { almost surely }
$$

[Hint. Let $A_{n}=\left\{S_{n+k}-S_{n}=k\right\}$, and compute $\mathbb{P}\left[A_{n}\right]$.]
3) Deduce that $\mathbb{P}\left[B_{-}^{c} \cap B_{+}^{c}\right]=0$, and therefore $\mathbb{P}\left[B_{-}\right]=\mathbb{P}\left[B_{+}\right]=1$. Hence conclude that $\mathbb{P}\left[A_{z}\right]=1$ for every $z \in \mathbb{Z}$.

Q6. 1) Let Z be a random variable taking its values in \mathbb{Z}_{+}. Show that $\mathbb{E}[Z]=\sum_{n=1}^{\infty} \mathbb{P}[Z \geq n]$.
2) Let X be an integrable random variable. Show that

$$
\sum_{n=1}^{\infty} \mathbb{P}[|X| \geq \varepsilon n]<\infty
$$

[Hint. Consider $Z=[|X| / \varepsilon]$ the integer part of $|X| / \varepsilon$ which is integer valued, so 1) is applicable to Z.]
3) Let $\left\{X_{n}: n=1,2, \cdots\right\}$ be a sequence of independent and identically distributed random variables and $M_{n}=\sup _{k \leq n}\left|X_{k}\right|$ for $n=1,2, \cdots$. Suppose X_{1} is p-th integrable, i.e. $\mathbb{E}\left[\left|X_{1}\right|^{p}\right]<$ ∞ for some $p \in(0, \infty)$. Show that

$$
\frac{1}{n^{1 / p}} M_{n} \rightarrow 0
$$

with probability 1.
[Hint. Given any $\varepsilon>0$, consider $A_{n}=\left\{\left|X_{n}\right| \geq \varepsilon n^{1 / p}\right\}$ and apply the Borel-Cantelli lemma.]

