B8.1 Probability, Measure and Martingales

Problem Sheet 2, 2018 MT

Q1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and \mathcal{G} be a sub σ -algebra. If X is integrable, then $\mathbb{E}[X|\mathcal{G}]$ is the conditional expectation of X given \mathcal{G} , as defined in the lectures, so that $\mathbb{E}[X|\mathcal{G}]$ is the unique Y (up to equal almost surely) which is \mathcal{G} -measurable and integrable, such that

 $\mathbb{E}[X:A] = \mathbb{E}[Y:A] \text{ for every } A \in \mathcal{G}.$

1) Give a definition for the conditional expectation $\mathbb{E}[X|\mathcal{G}]$ when X is a non-negative random variable.

2) Show that $\mathbb{E}[X_1|\mathcal{G}] \ge \mathbb{E}[X_2|\mathcal{G}]$ almost surely if X_1, X_2 are integrable and $X_1 \ge X_2$ almost surely.

Q2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $\mathcal{G}_1, \mathcal{G}_2$ be two independent sub σ -algebras of \mathcal{F} . Suppose X is an integrable random variable, and suppose $\{X, \mathcal{G}_1\}$ and \mathcal{G}_2 are independent [by definition, it means that the σ -algebra σ $\{X, \mathcal{G}_1\}$ and \mathcal{G}_2 are independent]. Show that

$$\mathbb{E}\left[X|\mathcal{G}_1,\mathcal{G}_2\right] = \mathbb{E}\left[X|\mathcal{G}_1\right],$$

where $\mathbb{E}[X|\mathcal{G}_1, \mathcal{G}_2]$ denotes the conditional expectation of X given $\sigma \{\mathcal{G}_1 \cup \mathcal{G}_2\}$.

Hence deduce that if $\{X_{\alpha}\}$ and $\{Y_{\beta}\}$ are two independent families of random variables [by definition, it means that $\sigma\{X_{\alpha}\}$ and $\sigma\{Y_{\beta}\}$ are independent], and suppose $\{X, X_{\alpha}\}$ and $\{Y_{\beta}\}$ are independent, then

$$\mathbb{E}\left[X|\left\{X_{\alpha}\right\},\left\{Y_{\beta}\right\}\right] = \mathbb{E}\left[X|\left\{X_{\alpha}\right\}\right].$$

Q3. 1) Let X and X_1, \dots, X_n be (real-valued) random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose X is integrable. Show that there is a Borel measurable function $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$\mathbb{E}\left[X|X_1,\cdots,X_n\right] = f(X_1,\cdots,X_n).$$

[*Hint*. You may use the results in Q3 in Problem Sheet 1.]

2) Suppose X and Y are two independent integrable random variables with the same distribution. Calculate

(a) $\mathbb{E}[X|X,Y]$ and $\mathbb{E}[X|Y]$;

(b) $\mathbb{E}[X|X+Y], \mathbb{E}[Y|X+Y];$

(c) $\mathbb{E}[h(X,Y)|X+Y,X-Y]$ for a Borel measurable function so that h(X,Y) is integrable.

Q4. 1) Let X and Y be discrete random variables taking values in $\{0, 1, \dots, N\}$. Suppose the joint distribution of (X, Y) is given by

$$\mathbb{P}\left[X=i, Y=j\right] = q_{ij} > 0$$

for all i, j. Derive a formula for $\mathbb{E}[f(X)|Y]$ where f is a function on $\{0, 1, \dots, N\}$, in terms of q_{ij} . Verify that $\mathbb{E}[f(X)|Y] = \mathbb{E}[f(X)]$ if X and Y are independent.

2) Let $\{A_n : n = 1, 2, \dots\}$ be a countable partition of the sample space Ω , where $A_n \in \mathcal{F}$ and $\bigcup_{n=1}^{\infty} A_n = \Omega$ with $\mathbb{P}(A_n) > 0$ for every n. Let X be an integrable variable. Show that

$$\mathbb{E}\left[X|\sigma\left\{A_n:n\geq 1\right\}\right] = \sum_{n=1}^{\infty} \frac{\mathbb{E}\left[X1_{A_n}\right]}{\mathbb{P}(A_n)} 1_{A_n}.$$

3) Suppose X_1, \dots, X_n are random variables taking values in a finite or countable set, and Z is another random variable. Prove that

$$\mathbb{E}\left[Z|X_1,\cdots,X_n\right] = f(X_1,\cdots,X_n)$$

where

$$f(x_1,\cdots,x_n) = \mathbb{E}\left[Z|X_1=x_1,\cdots,X_n=x_n\right].$$

Q5. Suppose $\{X_n : n = 1, 2, \dots\}$ is a sequence of independent and identically distributed random variables, and

$$\mathbb{P}\left[X_n = 1\right] = \mathbb{P}\left[X_n = -1\right] = \frac{1}{2}.$$

For every $z \in \mathbb{Z}$ define

 $A_z = \{S_n = z \text{ for infinitely many } n\},\$

$$B_{-} = \left\{ \liminf_{n \to \infty} S_n = -\infty \right\} \text{ and } B_{+} = \left\{ \limsup_{n \to \infty} S_n = \infty \right\}.$$

1) Let $\mathcal{G}_{\infty} = \bigcap_{n=1}^{\infty} \sigma \{X_k : k \ge n\}$ be the tail σ -algebra of $\{X_k : k \ge 1\}$. Show that both B_- and B_+ are tail events, i.e. belong to \mathcal{G}_{∞} , and show that $\mathbb{P}[B_{\pm}] = 0$ or 1. Show that $\mathbb{P}[B_-] = \mathbb{P}[B_+]$.

2) Using the Borel-Cantelli lemma to show that, for all $k \ge 1$

$$\limsup_{n \to \infty} \left(S_{n+k} - S_n \right) = k \text{ almost surely.}$$

[*Hint.* Let $A_n = \{S_{n+k} - S_n = k\}$, and compute $\mathbb{P}[A_n]$.]

3) Deduce that $\mathbb{P}\left[B_{-}^{c} \cap B_{+}^{c}\right] = 0$, and therefore $\mathbb{P}\left[B_{-}\right] = \mathbb{P}\left[B_{+}\right] = 1$. Hence conclude that $\mathbb{P}\left[A_{z}\right] = 1$ for every $z \in \mathbb{Z}$.

Q6. 1) Let Z be a random variable taking its values in \mathbb{Z}_+ . Show that $\mathbb{E}[Z] = \sum_{n=1}^{\infty} \mathbb{P}[Z \ge n]$. 2) Let X be an integrable random variable. Show that

$$\sum_{n=1}^{\infty} \mathbb{P}\left[|X| \ge \varepsilon n\right] < \infty.$$

[*Hint.* Consider $Z = [|X|/\varepsilon]$ the integer part of $|X|/\varepsilon$ which is integer valued, so 1) is applicable to Z.]

3) Let $\{X_n : n = 1, 2, \dots\}$ be a sequence of independent and identically distributed random variables and $M_n = \sup_{k \le n} |X_k|$ for $n = 1, 2, \dots$. Suppose X_1 is *p*-th integrable, i.e. $\mathbb{E}[|X_1|^p] < \infty$ for some $p \in (0, \infty)$. Show that

$$\frac{1}{n^{1/p}}M_n \to 0$$

with probability 1.

[*Hint*. Given any $\varepsilon > 0$, consider $A_n = \{ |X_n| \ge \varepsilon n^{1/p} \}$ and apply the Borel-Cantelli lemma.]