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1 Measures and integration

In this part, we review the theory of integration that you have learned in A4 paper with general

measures, so these notes should be read along with the lecture notes “A4 Integration (2017 HT)”

posted at

https://courses.maths.ox.ac.uk/node/view material/37658

The conventions about the extended real line [−∞,∞] will be applied in these notes, where

two symbols −∞ and ∞ are added to R, so that [−∞,∞] = {−∞}∪R∪{∞}. For every a ∈ R,

−∞ < a < ∞,

a+∞ = ∞+a = ∞, a−∞ =−∞+a =−∞.

a

−∞
=

a

∞
= 0,

but ∞
∞ , a

0 , ∞−∞, ∞+(−∞) and (−∞)+∞ are not defined, while 0 ·∞ =−∞ ·0 = 0, −∞+(−∞) =
−∞ and ∞+∞ = ∞.

1.1 Basic definitions and theorems

1. Measures. Let Ω be a (sample) space, and R be a collection of some subsets of Ω . Suppose R

contains an empty set ∅. A function µ : R → [0,∞] is called a measure on R if

1.1) µ(∅) = 0,

1.2) µ(A)≤ µ(B) if A,B ∈ R and A ⊆ B, and

1.3) µ is countably additive:

µ

(

∞
⋃

i=1

Ai

)

=
∞

∑
i=1

µ (Ai)

for any Ai ∈ R (i = 1,2, · · · ) which are disjoint, such that
⋃∞

i=1 Ai ∈ R.

2. Outer measures. If the condition 1.3) is replaced by countable sub-additivity, then we obtain

the definition of outer measures. That is, µ is an outer measure on R, if 1) and 2) hold, and µ is a

countably sub-additive:

µ (A)≤
∞

∑
i=1

µ (Ai)

for any Ai,A ∈ R (i = 1,2, · · · ) such that A ⊂ ∪∞
i=1Ai.

3. Finite measures and σ -finite measures. A measure µ on R is finite if µ(E) < ∞ for every

E ∈ R; µ is called σ -finite on R if there is a sequence of subsets Ei ∈ R such that
⋃∞

i=1 Ei = Ω
and µ(Ei)< ∞ for every i = 1,2, · · · . If µ(Ω) = 1, then µ is called a probability on R.

4. Ring, algebra, σ -algebras and measurable spaces. We haven’t imposed any algebraic struc-

tures yet on R. Several notions may be introduced via set-theoretic operations: ∪, ∩ and comple-

mentary operation \. A collection R of subsets of Ω is called a ring over Ω if E1 ∪E2 ∈ R and

E1 \E2 ∈ R for any E1,E2 ∈ R. A ring R is an algebra if the total space Ω ∈ R. An algebra

F over Ω is called a σ -algebra (or called a σ -field) if
⋃∞

i=1 Ei ∈ F for any Ei ∈ F . If F is a

σ -algebra over Ω , then (Ω ,F ) is called a measurable space.

If A is a non-empty collection of some subsets of Ω , then there is a unique σ -algebra over Ω ,

denoted by σ{A }, which possesses the following properties: (1) A ⊆ σ{A }, and (2) if F is a

σ -algebra over Ω containing A , then σ{A } ⊆ F . In fact

σ{A }=
⋂

{F : F is a σ -algebra containing A } .
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σ{A } is the smallest σ -algebra containing A , called the σ -algebra generated by A .

5. Measure spaces and probability spaces. If (Ω ,F ) is a measurable space and µ is a measure

on F , then (Ω ,F ,µ) is called a measure space. If µ(Ω) = 1 then (Ω ,F ,µ) is called a prob-

ability space. In this case Ω is called a sample space (of fundamental events), an element A in

the σ -algebra F is called an event, and µ(A) is called the probability that the event A occurs. A

probability measure µ is usually denoted by a blackboard letter P.

6. Measurable functions. B(Rn) denotes the Borel σ -algebra on R
n, which is the smallest

σ -algebra containing open subsets. A function f : Ω → [−∞,∞] is measurable with respect to a

σ -field F , or simply called F -measurable, if

f−1(G) = { f ∈ G} ≡ {ω ∈ Ω : f (ω) ∈ G}

belongs to F for every G ∈ B(R), and both f−1(∞) and f−1(−∞) belong to F as well.

7. Structure of measurable functions. A simple (measurable) function ϕ on (Ω ,F ) is a (real

valued) function on Ω which can be written as ϕ = ∑n
k=1 ck1Ek

for some n, some constants ck and

some Ek ∈ F . A function f : Ω → [0,∞] is F -measurable, if and only if there is an increasing

sequence of non-negative, F -measurable simple functions ϕn such that ϕn ↑ f everywhere on Ω .

8. Definition of Lebesgue’s integrals. Let (Ω ,F ,µ) be a measure space. Lebesgue’s theory

of integration, developed in Part A Integration, may be applied to the measure µ . Let us recall

quickly the procedure of defining Lebesgue’s integrals. First define integrals for a simple function,

namely, if ϕ = ∑m
j=1 c j1E j is a non-negative (F -measurable) simple function on Ω , where ci ≥ 0

and Ei ∈ F for i = 1, · · · ,m, then
´

E ϕdµ = ∑m
i=1 ciµ(Ei). If f : Ω → [0,∞] is a non-negative

F -measurable function, then

ˆ

Ω
f dµ = sup

{

ˆ

E

ϕdµ : ϕ ≤ f where ϕ =
m

∑
i=1

ci1Ei and ci ≥ 0,Ei ∈ F

}

.

9. Integrable functions. If f is non-negative measurable and if
´

Ω f dµ < ∞, then we say f

is (Lebesgue) integrable on Ω with respect to the measure µ , denoted by f ∈ L1(Ω ,F ,µ), f ∈
L1(Ω ,µ), L1(Ω) or simply by f ∈ L1 if the measure space in question is clear. If f : Ω → [−∞,∞]
is F -measurable, so are f+ = f ∨ 0, f− = (− f )∨ 0 and | f | = f+− f−. If both f+ and f− are

integrable, then we say f is integrable, denoted by f ∈ L1(Ω ,F ,µ) etc., and define its (Lebesgue)

integral by
ˆ

Ω
f dµ =

ˆ

Ω
f+dµ −

ˆ

Ω
f−dµ.

If f : Ω →C is a complex, F -measurable function: f = u+
√
−1v, then f is integrable if both

real part u and imaginary part v are integrable against the measure µ , and in this case, the Lebesgue

integral of f is defined by
ˆ

Ω
f dµ =

ˆ

Ω
udµ +

√
−1

ˆ

Ω
vdµ.

L1(Ω ,F ,µ) denotes the vector space of all F -measuable (real or complex valued) integrable

function on (Ω ,F ,µ).

The convergence theorems are applicable to a measure space (Ω ,F ,µ), and they may be stated

as the following.
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10. Monotone Convergence Theorem (MCT, due to Lebesgue and Levi). Suppose fn : Ω →
[0,∞] are non-negative, measurable, and suppose fn+1 ≥ fn almost everywhere on Ω for all n, then

ˆ

Ω
lim
n→∞

fndµ = lim
n→∞

ˆ

Ω
fndµ = sup

n

ˆ

Ω
fndµ.

In particular, if
{´

Ω fndµ
}

is bounded above, then limn→∞ fn is integrable.

11. Series version of MCT (due to Lebesgue and Levi). This is very useful and is handy in

applications. If an are non-negative and measurable, then
ˆ

Ω
∑
n

andµ = ∑
n

ˆ

Ω
andµ.

12. Fatou’s Lemma. Suppose fn : Ω → [0,∞] are non-negative and measurable, then

ˆ

Ω
liminf

n→∞
fndµ ≤ liminf

n→∞

ˆ

Ω
fndµ.

13. Lebesgue’s Dominated Convergence Theorem (DCT). Suppose fn : Ω → [−∞,∞] (or fn :

Ω → C) are measurable, fn → f almost everywhere, and suppose there is an integrable (control)

function g such that | fn| ≤ g almost everywhere for all n, then fn are integrable and

lim
n→∞

ˆ

Ω
fndµ =

ˆ

Ω
f dµ.

14. Reverse Fatou’s Lemma. Suppose fn and g are integrable, and fn ≤ g almost surely for

n = 1,2, · · · . Then g− fnare non-negative, and liminf(g− fn) = g− limsup fn. Applying Fatou’s

lemma to g− fn we obtain

ˆ

Ω

[

g− limsup
n→∞

fn

]

dµ ≤ liminf
n→∞

[
ˆ

Ω
g−
ˆ

Ω
fndµ

]

=

ˆ

Ω
gdµ − limsup

n→∞

ˆ

Ω
fndµ

which in particular yields that
ˆ

Ω
gdµ − limsup

n→∞

ˆ

Ω
fndµ ≥ 0

so that limsupn→∞

´

Ω fndµ ≤
´

Ω gdµ . If limsupn→∞

´

Ω fndµ >−∞, then

ˆ

Ω
gdµ − limsup

n→∞

ˆ

Ω
fndµ < ∞

so that g− limsupn→∞ fn is integrable, and limsupn→∞

´

Ω fndµ ≤
´

Ω limsupn→∞ fndµ . Let us state

what we have proved as the following.

Theorem 1.1 (Reversed Fatou’s Lemma) Suppose fn and g are integrable, and fn ≤ g almost

surely for n = 1,2, · · · , and suppose limsupn→∞

´

Ω fndµ > −∞, then limsupn→∞ fn is integrable

and
ˆ

Ω
limsup

n→∞
fndµ ≥ limsup

n→∞

ˆ

Ω
fndµ.
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15. Notations. If f ∈ L1(Ω ,F ,µ) or if f is non-negative and measurable, then we also use

E
µ( f ), µ( f ) or E( f ) to denote Lebesgue integral

´

Ω f dµ . If A ∈ F , then (A,A∩F ,µ) is a mea-

sure space too. In this case
´

A f dµ coincides with
´

Ω f 1Adµ , which will be denoted by E
µ [ f : A]

or by E [ f : A] if the measure in question is clear.

16. The Lpspace for p ∈ [1,∞] can be defined over a measure space. When dealing with

Lp-spaces, we identify an F -measurable function f on (Ω ,F ,µ) with its equivalent class of all

F -measurable functions which are equal to f almost surely on Ω . Then Lp(Ω ,F ,µ) is the vector

space of all F -measurable functions f such that | f |p is µ-integrable, equipped with the Lp-norm:

if p ∈ [1,∞), then

‖ f‖p =

(
ˆ

Ω
| f |pdµ

)
1
p

= (E| f |p)
1
p .

If p = ∞, then

‖ f‖∞ = inf{K : | f | ≤ K on Ω \N for some N ∈ F such that µ(N) = 0}

which is called the µ-essential supremum of | f |.
17. Convergence in Lp-spaces. Lp(Ω ,F ,µ) are Banach spaces. f → || f ||p is a norm on

Lp(Ω ,F ,µ), and Lp(Ω ,F ,µ) is a complete metric space under the induced distance ( f ,g) →
|| f −g||p. We say a sequence fn converges to f in Lp(Ω ,F ,µ) if fn and f belong to Lp(Ω ,F ,µ)
and || fn − f ||p → 0, which is equivalent to that

´

Ω | fn − f |pdµ → 0.

Let us give a short discussion about the convergence in L1-space, and we will come back to

this topic by introducing the notion of uniform integrability. The following simple fact about L1-

convergence, it is quite useful though, and its proof is a good exercise about DCT.

Theorem 1.2 (Scheffe’s Lemma) Suppose fn and f are integrable, and fn → f almost surely.

Then fn → f in L1(Ω ,F ,µ) if and only if Eµ [| fn|]→ E
µ [| f |].

Proof. “Only if” part is easy. In fact, if fn → f in L1, then, by the triangle inequality,

|| fn|− | f || ≤ | fn − f |

so that

0 ≤
∣

∣

∣

∣

ˆ

Ω
| fn|dµ −

ˆ

Ω
| f |dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

Ω
(| fn|− | f |)

∣

∣

∣

∣

≤
ˆ

Ω
| fn − f |dµ → 0

which implies that
´

Ω | fn|dµ →
´

Ω | f |dµ .

Proof of “If” part. Assume that fn → f almost surely and
´

Ω | fn|dµ →
´

Ω | f |dµ . We want to

show that fn → f in L1. To this end, we decompose the sample space Ω into two components for

each n: An = { fn f ≥ 0}, Bn = { fn f < 0}. Then

| fn − f |= || fn|− | f || on An

and, by the triangle inequality,

| fn − f |= || fn|+ | f || ≤ || fn|− | f ||+2| f | on Bn.
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Hence
ˆ

Ω
| fn − f |dµ =

ˆ

An

| fn − f |dµ +

ˆ

Bn

| fn − f |dµ

≤
ˆ

An

|| fn|− | f ||dµ +

ˆ

Bn

[|| fn|− | f ||+2| f |]dµ

=

ˆ

Ω
|| fn|− | f ||dµ +2

ˆ

Bn

| f |dµ

=

ˆ

Ω
|| fn|− | f ||dµ +2

ˆ

Ω
1Bn | f |dµ.

The first term on the right-hand side of the previous inequality many be rewritten as the following
ˆ

Ω
|| fn|− | f ||dµ =

ˆ

Ω
(| fn|− | f |)+ dµ +

ˆ

Ω
(| fn|− | f |)− dµ

=

ˆ

Ω
(| fn|− | f |)dµ +2

ˆ

Ω
(| fn|− | f |)− dµ

where we have used the identity

|g|= g++g− = g+−g−+2g− = g+2g−.

Putting together we obtain the following estimate for the L1-norm of fn − f :
ˆ

Ω
| fn − f |dµ ≤

ˆ

Ω
|| fn|− | f ||dµ +2

ˆ

Ω
1Bn | f |dµ

=

ˆ

Ω
(| fn|− | f |)dµ +2

ˆ

Ω
(| fn|− | f |)− dµ +2

ˆ

Ω
1Bn | f |dµ. (1.1)

We next want to let n → ∞ in the inequality above. The first term on the right-hand side tends to

zero as n → ∞ by assumption. In fact
ˆ

Ω
(| fn|− | f |)dµ =

ˆ

Ω
| fn|dµ −

ˆ

Ω
| f |dµ → 0

as n → ∞. For the second term, we observe that

(| fn|− | f |)− = 0 on {| fn| ≥ | f |}
and

(| fn|− | f |)− = | f |− | fn| ≤ | f | on {| fn|< | f |}
so that

(| fn|− | f |)− ≤ | f |
for all n. Since | f | is integrable, and (| fn|− | f |)− → 0 almost surely, by the DCT

ˆ

Ω
(| fn|− | f |)− dµ → 0.

To show the last term on the right-hand side of (1.1)
´

Bn
| f |dµ tends to zero, we notice that | f |1Bn →

0. While it is clear that | f |1Bn = 0 on {| f |= 0} for all n. If | f (x)|> 0, and fn(x)→ f (x), then there

is N (depending on x in general) such that | fn(x)− f (x)|< 1
2 f (x) so that fn(x) f (x)> 0 for all n>N,

hence x /∈ Bn for n > N. Thus 1Bn(x) = 0 for all n > N. Hence | f |1Bn(x) = 0 for all n > N. Since

fn → f almost surely, we thus can conclude that | f |1Bn → 0 almost everywhere as n → ∞. | f |1Bn

is controlled by the integrable function | f |, so by DCT,
´

Bn
| f |dµ =

´

Ω | f |1Bndµ → 0. Therefore,

by Sandwich lemma, it follows from (1.1) that limn→∞

´

Ω | fn − f |dµ = 0.
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1.2 Examples

Recall that we use the following notations. If Ω is a space, then P(Ω) is the collection of all

subsets of Ω , called the power set of Ω (a notion introduced in algebra). P (Ω) is a σ -algebra,

which is the largest σ -algebra on Ω . That is, if F is a σ -algebra on Ω , then F ⊂ P(Ω). A fact

like this is so obvious, which requires no proof. Now suppose C is a (non-empty) collection of

some subsets of Ω , we use σ {C } to denote the smallest (according to the semi order ⊂ among sets)

σ -algebra on Ω which contains C . Firstly if C is already a σ -algebra, then of course σ {C }= C .

Otherwise, we need to show the uniqueness and existence of σ {C }, which can be sone in one go

– just write down what is σ {C }. In fact

σ {C }=
⋂

{F : F are σ -algebras on Ω and C ⊂ F} .

where the right-hand side means the intersection of all σ -algebras which contain C . To prove this,

we need to do three things. 1) Show that the intersection we are talking about on the right-hand side

is no-empty, which is easy, because P(Ω) is such element F . This means σ {C } is well-defined

as a collection of some subsets of Ω . Since each F ⊃C in the intersection, so that σ {C } ⊃C . 2)

Verify that σ {C } is a σ -algebra. In fact we can verify the following general fact – if Fα (where

α ∈ Λ , Λ is an index set) is a family of σ -algebras on (the same sample space) Ω , then
⋂

α Fα

is σ -algebra too. This fact follows from a general statement that “if each element Fα possesses a

property P, then so does their intersection
⋂

α Fα”. 3) Finally we need to show that σ {C } given

in the display above is the smallest one: if F ⊃ C is a σ -algebra, then σ {C } ⊂ F . This is due to

the fact the intersection of a family of sets is a subset of each individual set in the intersection.

Consider measurable functions (random variables). Let (Ω ,F ) be a measurable space, so F

is a σ -algebra on Ω . Suppose we have another measurable space (S,Σ), that is, S is a state space

and Σ is a σ -algebra on S [Typical example is the following: S = R
n is the Euclidean space and

Σ = B (Rn) is the Borel σ -algebra — this is the most interesting case for this course]. A mapping

X : Ω → S (such a mapping is also called a function on Ω taking values in S, or called an S-valued

function on Ω ) is called a measurable mapping (or called a S-valued measurable function) from

(Ω ,F ) to (S,Σ), if X−1(G) ∈ F for every G ∈ Σ . For simplicity, if the σ -algebra Σ is clear in

the discussion, we simply say X is measurable w.r.t. F , or just say X is F -measurable. This is an

extension of the concept of measurable (real) functions. Here we use the following notations

X−1 (G)≡ {w ∈ Ω : X(w) ∈ G} ≡ {X ∈ G}

the pre-image of G under the mapping X , where ≡ means that “denoted also by”.

If X : Ω → S is F -measurable (or more precisely X is a measurable mapping between mea-

surable spaces (Ω ,F ) and (S,Σ)), then we use σ {X} to denote the smallest σ -algebra on Ω with

respect to which X is measurable, i.e. X is a measurable mapping between (Ω ,σ {X}) and (Ω ,Σ).
By definition, F ⊃ σ {X}. In fact

σ {X}=
{

X−1(G) : G ∈ Σ
}

that is, σ {X} is the collection of all pre-images of the sets in Σ . Let us denote the collection on

the right-hand side by X−1 (Σ), that is, we define

X−1 (Σ)≡
{

X−1(G) : G ∈ Σ
}

We claim that σ {X}= X−1 (Σ). To show this we need to 1) Verify that the collection on the right-

hand side is a σ -algebra – this is a routine exercise, you check that the conditions of σ -algebra for

X−1 (Σ) are satisfied. 2) In order to ensure that X is G -measurable, X−1(G) ∈ G for every G ∈ Σ ,

which yields that G ⊃ X−1(Σ). 3) Finally, by just the definition, X is X−1 (Σ)-measurable.
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How about if you have several random variables? While the situation is similar. Thus, if

Xi : Ω → Σ are measurable mappings from (Ω ,F ) to (S,Σ), where i = 1,2, · · · ,n. Then we use

σ {X1, · · · ,Xn} to denote the smallest σ -algebra on Ω with respect to which all X1, · · · , Xn are

measurable. Let us denote G ≡ σ {X1, · · · ,Xn} for simplicity. Since X1,· · · ,Xn are G -measurable,

so that X−1
i (Σ) (i= 1, · · · ,n) are sub-σ -algebras of G , thus G must contain the union

⋃n
i=1 X−1

i (Σ),
which is unfortunately in general not a σ -algebra, so that

G = σ

{

n
⋃

i=1

X−1
i (Σ)

}

while

n
⋃

i=1

X−1
i (Σ) =

n
⋃

i=1

{

X−1
i (G) : G ∈ Σ

}

=

{

n
⋂

i=1

X−1
i (Gi) : Gi ∈ Σ for i = 1,2, · · · ,n

}

[The second equality follows the fact that X−1
i (S) = Ω and the fact that S ∈ Σ ]. The last equality

above shows that

C ≡
{

n
⋂

i=1

X−1
i (Gi) : Gi ∈ Σ for i = 1,2, · · · ,n

}

which is a π-system which generates the σ -algebra G = σ {C }, so according to Dynkin’s lemma

(see Lemma 2.1 below), G = σ {C } = M (C ), where M (C ) the smallest monotone class con-

taining the π-system C .

Now we ask, what kind of functions on Ω taking values in R is σ {X1, · · · ,Xn}-measurable?

The answer is that only those functions which are (Borel measurable) functions of X1,· · · ,Xn. How

to prove this? We need to prove that if f : Ω → R is G -measurable, then there is a function

F : S×·· ·×S → R which is Σ ×·· ·×Σ -measurable, such that f = F(X1, · · · ,Xn), recall here that

G = σ {X1, · · · ,Xn}= σ {C }

where

C =
n
⋃

i=1

X−1
i (Σ) =

{

n
⋂

i=1

X−1
i (Gi) : Gi ∈ Σ for i = 1,2, · · · ,n

}

is a π-system on Ω . For simplicity, we consider the case that n = 2 [and S = R, Σ = B (R) if you

like – there is no lose of generality in fact – we only use the fact that Σ is a σ -algebra on S]. Note

that the product σ -algebra on the product space S×S is defined by

Σ ×Σ = σ {A×B : where A,B ∈ Σ} .

Let H be the collection of all functions Y = F(X1,X2) where F : S × S → R is Σ × Σ -

measurable (real valued function). We then apply the Dynkin lemma [function version in Question

1 in Sheet 1] to H , where C the π-system as above, and σ (C ) = G . You need to show that 1) If

E ∈ C , then you can construct a function F on S×S-measurable such that 1E = F(X1,X2) [There

is an obvious one of course you should find out ...], 2) then you verify the other conditions for H

in Q1 are satisfied .. then we conclude that H actually exhaust all G -measurable real functions on

Ω .
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2 Carathéodory’s extension theorem

In this section we review the main tools for constructing measures.

1. π-system and monotone class. Suppose C is a non-empty family of some subsets of Ω , then

C is called a π-system if C is closed under the intersection, that is, A∩B ∈ C whenever A,B ∈ C .

A collectionM of some subsets of Ω is called a monotone class (or called a d-class) if 1) Ω ∈ M ,

2) if A,B ∈ M and A ⊆ B then B\A ∈ M , 3) ∪∞
n=1An ∈ M whenever An ∈ M such that An ↑.

Given a non-empty family H of some subsets of Ω, M (H ) denotes the smallest monotone

class which contains H , called the monotone class generated by H . The existence and uniqueness

of M (H ) are left as an exercise for the reader.

Lemma 2.1 (Dynkin’s lemma) If C is a π-system over Ω , then M (C ) coincides with the smallest

σ -algebra σ(C ) containing C , that is, M (C ) = σ(C ).

Since a σ -algebra must be a monotone class, so that M (C ) ⊆ σ (C ) by definition. To prove

the other inclusion that σ (C ) ⊆ M (C ), one only needs to verify that M (C ) is a σ -algebra by

using the fact that C is a π-system. The proof is routine, see for example page 193, D. Williams:

Probability with martingales.

2. Uniqueness criterion. The following is a simple and useful uniqueness result.

Lemma 2.2 (Uniqueness lemma) Suppose µ j ( j = 1,2) are two finite measures on a measurable

space (Ω ,F ), and suppose C ⊆F is a π-system containing the sample space Ω such that σ(C )=
F . If µ1(E) = µ2(E) for every E ∈ C , then µ1 = µ2 on F .

The proof of this lemma is an example how to use the Dynkin lemma.

Proof. Let G be the collections of all E ∈ F such that µ1(E) = µ2(E). Then C ⊆ G by

assumptions. We prove that G is a monotone class. In fact, it is assumed that Ω ∈ G . Since

µ1(∅) = µ2(∅) = 0 so that ∅ ∈ G . If A,B ∈ G and A ⊆ B, then, since µi(B)< ∞, we have

µ1(B\A) = µ1(B)−µ1(A) = µ2(B)−µ2(A) = µ2(B\A)

which yields that B\A ∈ G . Suppose now An ∈ G , and An ↑, then

µ1

(

∞
⋃

n=1

An

)

= lim
n→∞

µ1(An) = lim
n→∞

µ2(An) = µ2

(

∞
⋃

n=1

An

)

which implies that
⋃∞

n=1 An ∈ G . Thus G is a monotone class containing C . By Lemma 2.1,

G ⊇ M (C ) = σ{C }= F , so that µ1 = µ2 on F .

There is another version of the uniqueness for σ -finite measures.

Lemma 2.3 Let µ j ( j = 1,2) be two measures on (Ω ,F ), and R ⊆F be a ring such that σ(R) =
F . Suppose µ1 and µ2 are σ -finite on R: there is a sequence of subsets Gn ↑ Ω , Gn ∈ R and

µ1(Gn) = µ2(Gn)< ∞ for every n. Suppose µ1(E) = µ2(E) for every E ∈R. Then µ1 = µ2 on F .

Proof. Apply Lemma 2.2 to finite measures µ j(· ∩Gn) for every n to conclude that µ1(E ∩
Gn) = µ2(E ∩Gn) for every n and E ∈ F . Letting n ↑ ∞ to obtain that µ1(E) = µ2(E) for every

E ∈ F .

3. Measurable sets and Caratheodory’s extension theorem. The construction of measures

rely on the extension theorem of Carathéodory’s, a theorem that tells us how to select measurable
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subsets for an outer measure. Let H be a σ -algebra over a sample space Ω , and µ∗ : H → [0,∞]
be an outer measure on (Ω ,H ), so that

3.1) µ∗(∅) = 0;

3.2) µ∗(A)≤ µ∗(B) for any A ⊆ B, A,B ∈ H ; and

3.3) µ∗ is countably sub-additive:

µ∗
(

∞
⋃

n=1

En

)

≤
∞

∑
n=1

µ∗(En)

for any sequence En ∈ H (n = 1,2, · · · ).
A subset E ∈ H is called µ∗-measurable, if E satisfies the Carathéodory condition that

µ∗(F) = µ∗(F ∩E)+µ∗(F ∩Ec) for every F ∈ H . (2.1)

The collection of all µ∗-measurable subsets is denoted by M or M (H ,µ∗) (in order to indicate

the dependence on the outer measure µ∗ on (Ω,H ).)

Theorem 2.4 (Caratheodory) Let (Ω ,H ) be a measurable space and µ∗ be an outer measure on

(Ω ,H ). Then the collection M (H ,µ∗) of all µ∗-measurable subsets forms a σ -algebra over Ω ,

and µ∗ restricted on M (H ,µ∗) is a measure.

The proof of the previous theorem is exactly the same as that in Part A Integration.

Theorem 2.5 (Caratheodory’s extension theorem) Let Ω be a space and R be an algebra. If µ is

a measure on the algebra R, the outer measure µ∗ is defined by

µ∗(E) = inf

{

∞

∑
j=1

µ
(

E j

)

: where E j ∈ R and

∞
⋃

j=1

E j ⊇ E

}

where the inf runs over all countable cover
{

E j

}

of E and E j ∈ R. Then every set E ∈ R is

µ∗-measurable, and µ∗(E) = µ(E), so that µ∗ restricted on the σ -algebra of all µ∗-measurable

subsets is an extension of µ .

This is a consequence of Theorem 2.4, the only thing we need to check is that every element E

of R, µ∗(E) = µ(E) (which is direct but not trivial).

4. Null sets. A subset E ∈ H is µ∗-null set if µ∗(E) = 0. If {Ei : i = 1,2, · · ·} is a sequence

of µ∗-null sets, so is
⋃∞

i=1 Ei by the countable sub-additivity. By definition, any µ∗-null set is

µ∗-measurable. Therefore µ∗ is a complete measure on (Ω ,M (H ,µ∗)).

5. Completion of a measure space. If (Ω ,F ,µ) is a measure space, so it is extended to an

outer measure µ∗ defined by

µ∗(E) = inf

{

∞

∑
j=1

µ(E j) : where E j ∈ F such that
∞
⋃

n=1

E j ⊃ E

}

and let F ∗ be the σ -field of all µ∗-measurable subsets. Then (Ω ,F ∗,µ) is a measure space, and

F ⊆ F ∗ . Let N µ denotes the collection of all µ∗-null subsets, so that N µ ⊆ F ∗ too. Hence

F µ ≡ σ {N µ ,F} ⊆ F ∗. Thus (Ω ,F µ ,µ) is a complete measure space, called the completion

of (Ω ,F ,µ).
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3 Lebesgue-Stieltjes measures – outline of their construction

These are the most important examples of measures used in analysis.

3.1 Construction of LS measures

1. Increasing functions. Let ρ : (a,b)→ (−∞,∞) be an increasing function, where (a,b)⊂ (−∞,∞)
is an open interval. Then the left limit ρ(t−) = lims↑t ρ(s) and the right limit ρ(t+) = limu↓t ρ(u)
exist at every t ∈ (a,b), and

ρ(s)≤ ρ(t−)≤ ρ(t)≤ ρ(t+)≤ ρ(u)

for any a < s < t < u < b. ρ is called right continuous (resp. left continuous) at t ∈ (a,b) if

ρ(t) = ρ(t+) (resp. ρ(t) = ρ(t−)). For any increasing function ρ on (a,b), ρ+(t) ≡ ρ(t+) is

right continuous at every t ∈ (a,b). ρ+ is called the right continuous modification of ρ . Similarly,

ρ−(t) = ρ(t−) is left continuous at any t ∈ (a,b), ρ− is called the left continuous modification

of ρ . Therefore, an increasing function ρ is right continuous on (a,b) if ρ+ coincides with ρ by

definition.

2. Constructing Lebesgue-Stieltjes measure. For every right continuous increasing function ρ
on (a,b) we construct a measure mρ on a σ -algebra Mρ consisting of mρ -measurable subsets of

(a,b). The construction is divided into several steps.

2.1) Decide what we want. Let C (a,b) be the π-system of all intervals (s, t], where a < s ≤ t <
b, and we decide to assign a measure of such (s, t] to be mρ((s, t]) = ρ(t)−ρ(s).

2.2) Defining an outer measure. With mρ defined on the π-system C (a,b), we can assign an

outer measure for any subset E ⊂ (a,b), typically by

m∗
ρ(E) = inf

{

∞

∑
j=1

mρ(C j) : where C j ∈ C (a,b) such that
∞
⋃

j=1

C j ⊃ E

}

where the inf runs over all possible countable covers of E through C . m∗
ρ is an outer measure on

P(a,b) which is the σ -algebra of all subsets of (a,b).

2.3) Apply Caratheodory’s theorem. By Theorem 2.4, the collection of all m∗
ρ -measurable

subsets E of (a,b) is a σ -algebra on (a,b), denoted by Mρ , and m∗
ρ : Mρ → [0,∞] is a measure.

mρ is called the Lebesgue-Stieltjes measure on (a,b) associated with a right continuous increasing

function ρ on (a,b).
The above three steps of constructing measures from outer measures apply to general cases, not

only for measures on intervals. The most important question is of course to identify the measurable

sets, i.e. to identify the σ -algebra Mρ of m∗
ρ -measurable subsets.

2.4) Identifying measurable sets. Let R(a,b) be the ring of all subsets E ⊂ (a,b) which are

finite unions of subsets in C (a,b). The main technical step is to prove that m∗
ρ restricted on the

ring R(a,b) is finitely additive. That is, if E ∈ R(a,b), so that E = ∪m
j=1C j where C j = (s j, t j],

a < s j ≤ t j < b ( j = 1,2, · · · ,m) such that (s j, t j] are disjoint, then

m∗
ρ(E) =

m

∑
j=1

(

ρ(t j)−ρ(s j)
)

.

Therefore, it follows that the outer measure m∗
ρ restricted on the ring R(a,b) is finitely additive.
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We then can show that any set E ∈R(a,b) is m∗
ρ -measurable, so that C (a,b)⊂R(a,b)⊂Mρ .

Thus the Borel σ -algebra B(a,b)⊂ Mρ . It is easy to verify that

B(a,b) = (a,b)
⋂

B(R) =
{

(a,b)
⋂

G : where G ∈ B(R)
}

= {G : G ⊂ (a,b) and G ∈ B(R)} .

Therefore any Borel subset of (a,b) is measurable with respect to the Lebesgue-Stieljes measure

mρ . The restriction of the outer measure m∗
ρ on Mρ is denoted by mρ .

Thus for every right-continuous increasing function ρ on an open interval (a,b), we have con-

structed a measure space ((a,b),Mρ ,mρ), which is σ -finite and complete. Also ((a,b),B(a,b),mρ)
is a measure space, σ -finite, which is not complete in general.

3. Notations. If ρ is an increasing function on (a,b), then its right continuous modification

ρ+(t) = ρ(t+) is right continuous, so that the Lebesgue-Stieljes measure mρ+ is defined, which

is called the Lebesgue-Stieljes measure associated with ρ , denoted by mρ , that is, mρ = mρ+ and

Mρ = Mρ+ . In particular, mρ is the unique measure on ((a,b),B(a,b)) such that

mρ((s, t]) = ρ+(t)−ρ+(s) = ρ(t+)−ρ(s+)

for any a < s < t < b. In particular

mρ({t}) = lim
n→∞

mρ

(

(t − 1

n
, t]

)

= lim
n→∞

[

ρ(t+)−ρ(

(

t − 1

n

)

+)

]

= ρ(t+)−ρ(t−)

for every t ∈ (a,b). In particular, {t} (where t ∈ (a,b)) is an mρ -null set if and only if ρ is

continuous at t.

3.2 Examples

Example 1. If ρ is a right continuous and increasing function on an open interval (a,b), then there

is a unique measure mρ on the measurable space ((a,b),B(a,b)) [where B(a,b) denotes the Borel

σ -algebra on (a,b)], such that mρ((s, t]) = ρ(t)−ρ(s) for any a < s ≤ t < b. mρ is σ -finite, but

may be not finite. In fact, since mρ is a measure, so that the total measure of (a,b) is given by

mρ ((a,b)) = lim
n→∞

mρ

(

(a+
1

n
,b− 1

n
]

)

= lim
n→∞

[

ρ

(

b− 1

n

)

−ρ

(

a+
1

n

)]

= ρ(b−)−ρ(a+)

(3.1)

where ρ(a+) is the right limit of ρ at a, which exists (but may be −∞), and

ρ(a+) = inf
t∈(a,b)

ρ(t) and ρ(b−) = sup
t∈(a,b)

ρ(t).

We maintain the convention that ∞− (−∞) = ∞. Therefore, mρ is a finite measure if and only if ρ
is bounded on (a,b).

Suppose t ∈ (a,b), then the singleton {t} is Borel measurable. Choose ε > 0 such that (t −
ε, t + ε]⊂ (a,b). Then

mρ ((t − ε, t + ε]) = ρ(t + ε)−ρ(t − ε)< ∞

and therefore, as mρ is a measure,

mρ ({t}) = lim
ε→0

mρ ((t − ε, t + ε]) = lim
ε→0

ρ(t + ε)−ρ(t − ε) = ρ(t+)−ρ(t−).
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which implies that mρ ({t}) = 0 if and only if ρ is continuous at t.

Here comes a warning. If ρ is increasing, then one can show that its derivative ρ ′ exists

and is non-negative almost everywhere (with respect to the Lebesgue measure) and is Lebesgue

measurable [This is another theorem of Lebesgue]. Hence

µρ (E) =

ˆ

E

ρ ′(t)dt

where E is Lebesgue measurable, defines a measure. In general, mρ 6= µρ . Certainly mρ 6= µρ if ρ
has at least one discontinuous point. Even ρ is continuous, mρ may not coincide with µρ .

Example 2. Let p > 0 be a constant. Consider ρ(t) = t p which is increasing and continuous on

(0,∞). ρ is unbounded, so its associated Lebesgue-Stieltjes measure mρ is σ -finite, but not finite.

Since the right-limit at zero ρ(0+) = 0, so that for every t > 0

ρ(t) = ρ(t)−ρ(0+) = mρ ((0, t])

by using a similar argument as for (3.1). Actually this statement is true with obvious modification

for any increasing function ρ on (0,∞) as long as ρ(0+) = 0. In fact, for any t > 0

ρ(t+)−ρ(0+) = mρ ((0, t]) =

ˆ

(0,t]
dmρ (3.2)

an elementary fact about the Lebesgue-Stieltjes measures which is very useful. Let us continue the

example. While for t > s > 0, applying the fundamental theorem in calculus to the function xp on

[s, t], we have

mρ ((s, t]) = t p − sp =

ˆ t

s

pxp−1dx = µρ((s, t])

where µρ(E) =
´

E pxp−1dx defines a measure on ((0,∞),B(0,∞)). By applying the Uniqueness

Lemma [The version for σ -finite measures] to mρ and µρ and the π-system C = {(s, t] : 0 < s < t},

we may conclude that mρ = µρ , that is mρ ≪m [where m denotes the Lebesgue measure on (0,∞)],
and the Radon-Nikodym derivative

dmρ

dm
= pxp−1

on (0,∞).

Example 3. Let (Ω ,F ,µ) be a σ -finite measure space and let ρ be an right-continuous increasing

function on (0,∞). Suppose ρ(0+) = inft>0 ρ(t)>−∞. Then

ρ(t) = ρ(0+)+

ˆ

(0,t]
dmρ (3.3)

for t > 0 according to (3.2). Suppose X : Ω → [0,∞) is F -measurable, and we want to compute

the expectation or integral of ρ(X) on {X > 0}:

ˆ

{X>0}
ρ(X)dµ.
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According to (3.3) we have

ˆ

{X>0}
ρ(X)dµ =

ˆ

{X>0}
ρ(0+)dµ +

ˆ

{X>0}

[

ˆ

(0,X ]
dmρ

]

dµ

= ρ(0+)

ˆ

{X>0}
dµ +

ˆ

Ω

[

1{X>0}

ˆ

(0,∞)
1(0,X ](t)mρ(dt)

]

dµ

= ρ(0+)µ [{X > 0}]+
ˆ

Ω

[

ˆ

(0,∞)
1(0,X ](t)mρ(dt)

]

dµ.

We apply the Fubini theorem to the second term on the right-hand side: changing the order of the

iterated integral, to obtain
ˆ

{X>0}
ρ(X)dµ = ρ(0+)µ [{X > 0}]+

ˆ

(0,∞)

[
ˆ

Ω
1(0,X ](t)dµ

]

mρ(dt)

= ρ(0+)µ [{X > 0}]+
ˆ

(0,∞)
µ [X ≥ t]mρ(dt).

Example 4. Therefore, if ρ is right-continuous and increasing, ρ(0+)= 0, and if X is non-negative

real measurable function on a σ -finite measure space (Ω ,F ,µ), then
ˆ

{X>0}
ρ(X)dµ =

ˆ

(0,∞)
µ [X ≥ t]mρ(dt). (3.4)

Example 5. If ρ is continuous and increasing on (0,∞), then mρ((s, t]) = mρ((s, t)), so that

ρ(t) = ρ(0+)+

ˆ

(0,t)
dmρ (3.5)

for t > 0, and therefore for such ρ we have
ˆ

{X>0}
ρ(X)dµ = ρ(0+)µ [{X > 0}]+

ˆ

(0,∞)
µ [X > t]mρ(dt). (3.6)

Example 6. In particular, by applying this to ρ(t) = t p with p > 0, we have

ˆ

Ω
X pdµ = p

ˆ

(0,∞)
µ [X > t] t p−1dt (3.7)

where the right-hand side is a Lebesgue integral for a non-negative function. Here we can drop

{X > 0} in the integration on the left-hand side because p > 0, X p = 0 on {X = 0}.

4 Generalized measures and Radon-Nikodym’s derivative

4.1 Generalized measures

Let (Ω ,F ) be a measurable space. If µ1 and µ2 are two measures on F , and if one of them is

finite so that their difference

µ(E) = µ1(E)−µ2(E)
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for E ∈ F defines a function (called a signed measure) from F to [−∞,∞], which is, though not

a positive measure, countably additive. Such “generalized measures” are interesting and are arisen

naturally in Lebesgue’s integration. For example, if f is integrable function on a measure space

(Ω ,F ,µ), then

µ f (E) =

ˆ

E

f dµ =

ˆ

E

f+dµ −
ˆ

E

f−dµ, for E ∈ F ,

is an example of “generalized measures”. We therefore generalize the definition of measures to

the so-called generalized measures as the following. A function µ : F → (−∞,∞] is called a

generalized measure (which does not take value −∞) if

1) µ(Ø) = 0,

2) µ is countably additive in the sense that

µ

(

∞
⋃

i=1

Ai

)

=
∞

∑
i=1

µ(Ai)

for any Ai ∈ F which are disjoint. While of course we can define generalized measures µ take

values in [−∞,∞) instead, but it is not necessary, as in this case −µ takes values in (−∞,∞].

Clearly, any signed measure µ = µ1 − µ2, where µi are measures on (Ω,F ) and µ2(Ω) < ∞,

is a generalized measure. The converse is also true.

Theorem 4.1 (Hahn’s decomposition) If µ is a generalized measure on (Ω ,F ), then there is a

decomposition Ω = A+∪A−, where A+,A− ∈ F such that A+∩A− = Ø, and

µ(E ∩A+)≥ 0, µ(E ∩A−)≤ 0

for every E ∈ F . Moreover the positive and negative part A+ and A− are unique in the sense that

if A+
i and A−

i (where i = 1,2) are two pairs satisfying the Hahn’s decomposition, then

µ(E ∩A+
1 ) = µ(E ∩A+

2 ), and µ(E ∩A−
1 ) = µ(E ∩A−

2 )

for every E ∈ F .

Proof. [The proof is not examinable.] The unique sets A+ and A− (up to a “null set”) are called

the positive (resp. negative) set of the generalized measure µ . Let

λ = inf{µ(G) : where G ∈ F such that µ(E ∩G)≤ 0 for all E ∈ F} .

Choose a sequence Gn ∈ F such that µ(Gn)→ λ as n → ∞. Then the candidate for A− should be

the largest possible negative set, that is

A− =
∞
⋃

n=1

(

Gn \∪n−1
j=1G j

)

.

In fact, A− is still a negative set: µ(E∩A−)≤ 0 for every E ∈F , and therefore µ(A−) = λ (which

yields also that λ >−∞). We claim that the pair A+ =Ω\A− and A− is a decomposition satisfying

that µ(E ∩A+)≥ 0 and µ(E ∩A−)≤ 0 for every E ∈ F .

We only have to show that µ(E ∩A+)≥ 0 for every E ∈ F , that is for any E ⊆ A+, µ(E)≥ 0.

Let us argue by a contradiction. Suppose there is an E0 ⊆ A+ such that µ(E0) < 0. Then, since

E0 ∩A− = Ø, so that

µ(A−∪E0) = µ(A−)+µ(E0) = λ +µ(E0)< λ
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which is a contradiction to the definition of λ , and therefore A−∪E0 can not be a negative set of

µ , so there is a subset A1 ⊆ E0 such that µ(A1)> 0. Hence

k1 = min

{

n ∈ N : there is A1 ⊆ E0,µ(A1)≥
1

n

}

exists, and we can find an E1 ⊆ F such that E1 ⊆ E0 and 1
k1
≤ µ(E1)<

1
k1−1 . Clearly

µ(E0 \E1) = µ(E0)−µ(E1)< 0

so we can argue as above with E0 \E1 in place of E0 and choose E2 ⊆ E0 \E1 such that µ(E2)> 0

and 1
k2
≤ µ(E2)<

1
k2−1 , where

k2 = min

{

n ∈ N : there is A1 ⊆ E0 \E1,µ(A1)≥
1

n

}

.

Repeating the previous procedure we may construct a sequence of En inductively, such that En ⊆
E0 \∪n−1

j=1E j [in particular En are disjoint], kn are non-decreasing, such that 1
kn

≤ µ(En) <
1

kn−1 ,

and

kn = min

{

n ∈ N : there is A ⊆ E0 \
n−1
⋃

i=1

Ei such that µ(A)≥ 1

n

}

.

We claim that ∑n
1
kn
< ∞, since, otherwise, we would have

∑
n

µ(En)≥ ∑
n

1

kn
= ∞.

Since µ(E0)< 0 and

µ(E0) = ∑
n

µ(En)+µ (E0 \∪∞
n=1En)

we may deduce that

µ

(

E0 \
∞
⋃

n=1

En

)

=−∞

which is a contradiction to the assumption that µ(E) > −∞ for every E ∈ F . Therefore it must

hold that kn → ∞, so that µ(En)→ 0, hence any subset of E0 \∪∞
n=1En has non-positive measure,

and

µ

(

E0 \
∞
⋃

n=1

En

)

= µ(E0)−
∞

∑
n=1

µ(En)< λ

which contradicts to the definition of λ .

For a different approach, read W. Rudin: Real and Complex Analysis, Third Edition, pages

120-126.

Thus, if µ is a generalized measure over (Ω ,F ), and Ω = A+∪A− is an Hahn decomposition

with respect to µ , then µ+(E) = µ(E ∩A+) and µ−(E) = −µ(E ∩A−) (where E ∈ F ) define

two measures on (Ω ,F ). Moreover, µ− is a finite measure. By definition, µ = µ+− µ− is thus

a signed measure, called the Jordan decomposition of the generalized measure µ . We may also

define |µ|= µ++µ− which is also a measure on (Ω ,µ), called the total variation measure of the

generalized measure µ = µ+−µ−.
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If ρ is a function defined on (a,b), which has finite total variation, that is,

sup
D

n

∑
j=1

∣

∣ρ(t j)−ρ(t j−1)
∣

∣< ∞

where the sup takes over all possible finite partitions D : a < t0 < t1 < · · ·< tn < b. Then

ρTV(t)≡ sup
Dt

n

∑
j=1

∣

∣ρ(t j)−ρ(t j−1)
∣

∣

defines an increasing function, where the sup runs over all finite partitions Dt : a < t0 < t1 <
· · · < tn = t < b, for every t ∈ (a,b). ρN(t) ≡ ρTV(t)− ρ(t) is also increasing. In particular, ρ
is a difference of two increasing functions, so that ρ has left and right limits at every t ∈ (a,b).
Moreover, if ρ is right continuous at t, then so is ρTV. Therefore if ρ is right continuous and has

finite total variation, then ρ = ρ1−ρ2 a difference of two right continuous and increasing functions.

mρ ≡ mρ1
−mρ2

is a signed measure. In this case the total variation measure
∣

∣mρ

∣

∣= mρTV
.

The usual concepts about measures may be applied to generalized measures via Jordan’s de-

composition. For example, we say a generalized measure µ is σ -finite if |µ| is σ -finite, which

is equivalent to say both µ+ and µ− are σ -finite. The theory of Lebesgue’s integration may be

applied to a generalized measure µ = µ+− µ− on (Ω ,F ) too. For example, an F -measurable

function f : Ω → [−∞,∞] is µ-integrable if and only if, by definition, f is integrable against the

total variation measure |µ|= µ++µ− (which is equivalent to say f is integrable with respect both

measures µ+ and µ−), and in this case

ˆ

Ω
f dµ =

ˆ

Ω
f dµ+−

ˆ

Ω
f dµ−.

4.2 Absolute continuity and Radon-Nikodym’s theorem

Next we turn to an important concept about two generalized measures: the concept of absolute

continuity.

Definition 4.2 Let ν and µ be two measures on a measurable space (Ω ,F ), then we say ν is

absolutely continuous with respect to µ , written as ν ≪ µ , if E ∈ F and µ(E) = 0 implies that

ν(E) = 0. That is, any µ-null set is also a ν-null set.

Theorem 4.3 (Radon-Nikodym’s derivative) If µ and ν are two σ -finite measures on (Ω ,F ),
such that ν ≪ µ , then there is a non-negative F -measurable function ρ such that

ν(E) =

ˆ

E

ρdµ for every E ∈ F .

Moreover ρ is unique up to µ-almost everywhere. ρ is called the Radon-Nikodym derivative of ν
with respect to µ , denoted by dν

dµ .

Proof. [The proof is not examinable.] Let us outline the proof of this important theorem for the

case where ν and µ are two finite measures: µ(Ω)< ∞ and ν(Ω)< ∞. In this case, let L denote

the collection of all non-negative measurable functions h such that

µ [h : E] =

ˆ

E

hdµ ≤ ν(E) for every E ∈ F .
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Then, L is a non-empty class. Now consider λ = suph∈L

´

Ω hdµ . Then, clearly λ ≥ 0 and

λ ≤ ν(Ω)< ∞. Choose a sequence of functions hn ∈ L such that
´

Ω hndµ → λ . Let ρ = supn hn.

We claim that ρ is the Radon-Nikodym derivative. To this end, set ρn = max{h1, · · · ,hn} for every

n. For every n, we may choose a decomposition Ω = ∪n
i=1E

(n)
i where E

(n)
i ∈ F which are disjoint,

and ρn = hi on E
(n)
i for i = 1, · · · ,n. Thus, for every E ∈ F , we have

ˆ

E

ρndµ =
n

∑
i=1

ˆ

Ei∩E

hidµ ≤
n

∑
i=1

ν(Ei ∩E) = ν(E)

that is, ρn ∈L . By definition, ρn ↑ ρ , so by MCT, ρ = limρn ∈ L1(Ω,µ), and by our construction,
´

Ω ρdµ = λ and ρ ∈ L , i.e.
´

E ρdµ ≤ ν(E) for every E ∈ F . In particular, ρ < ∞ µ-almost

everywhere, hence ν-almost everywhere as ν ≪ µ . Therefore, we may assume that ρ is finite

everywhere.

We next show that ν(E) =
´

E ρdµ for every E ∈ F . To this end consider the generalized

measure

m(E) = ν(E)−
ˆ

E

ρdµ

where E ∈ F . Since ρ ∈ L , m is a measure, and we want to show that m = 0. Suppose there is

E0 ∈ F such that m(E0)> 0, thus

ν(E0)>

ˆ

E0

ρdµ.

Hence, there must exist ε > 0, such that ν(E0)> εµ(E0). Applying Hahn’s decomposition to the

generalized measure ν − εµ , there is an positive set A+ with respect to ν − εµ , so that

ν(A+∩E)− εµ(A+∩E)≥ 0

and

ν(A+)− εµ(A+)> 0.

Since ν ≪ µ , the last inequality yields that µ(A+) > 0. Now consider ϕ = ρ + ε1A+ . Then for

every E ∈ F , we have
ˆ

E

ϕdµ =

ˆ

E∩A+
(ρ + ε1A+)dµ +

ˆ

E\A+
ρdµ

≤ (ν −m)(E ∩A+)+ εµ(E ∩A+)+ν(E \A+)

≤ ν(E ∩A+)+ν(E \A+)

= ν(E)

so that ϕ ∈ L . On the other hand
ˆ

Ω
ϕdµ =

ˆ

Ω
ρdµ + ε

ˆ

Ω
1Adµ = λ + εµ(A)> λ

a contradiction to the definition of λ .

The following theorem follows from a routine computation.

Theorem 4.4 Suppose µ and ν are two σ -finite measures on (Ω ,F ), such that ν ≪ µ . Let f be

an F -measurable function. Then f is integrable with respect to ν if and only if f dν
dµ is integrable

with respect to µ , and
ˆ

Ω
f dν =

ˆ

Ω
f

dν

dµ
dµ.
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4.3 Conditional expectations

This is perhaps the most important concept in probability theory. Let (Ω ,F ,µ) be a measure

space, and let f : Ω → [0,∞] be F -measurable. For every A ∈ F , define µ f (A) =
´

Ω f 1Adµ =
´

A f dµ . Then µ f is a measure defined on F . In fact, if An is a sequence of disjoint F -measurable

subsets, then f 1⋃∞
n=1 An

= ∑∞
n=1 f 1An

, thus, by MCT (series version) we have

µ f

(

∞
⋃

n=1

An

)

=

ˆ

Ω
f 1⋃∞

n=1 An
dµ =

∞

∑
n=1

ˆ

Ω
f 1An

dµ =
∞

∑
n=1

µ f (An)

so µ f is a measure on (Ω ,F ). µ f possesses an important property – if A ∈ F is a µ-null set,

i.e. µ(A) = 0, then A is also a µ f -null set: µ f (A) = 0 [which of course follows from that the

integral of function on a null set is zero on any measure space]. That is to say the measure µ f is

absolutely continuous with respect µ , that is, µ f ≪ µ . Conversely is also true, which is the context

of Randon-Nikydom’s theorem.

Suppose (Ω ,F ,µ) is a measure space, and G is a sub σ -algebra of F . Suppose µ is σ -finite

on G , so that there is a sequence Gn ∈ G , Gn ↑ Ω and µ(Gn) < ∞ for every n. Let f be F -

measurable and non-negative such that f is σ -integrable on G , that is, there are Gn ∈ G such that

Gn ↑ Ω and
´

Gn
f dµ < ∞ for every n. Then µ f ≪ µ as measures on (Ω ,G ), and both µ f and µ are

σ -finite measure on (Ω ,G ), therefore, by applying Randon-Nikydom’s theorem to µ and µ f on

(Ω ,G ), there is a G -measurable and non-negative function ρ (unique up to µ-almost surely) such

that µ f (A) =
´

A ρdµ for every A ∈ G . That is, ρ is the Random-Nikydom’s derivative of µ f with

respect to µ on G , so denoted by ρ =
dµ f

dµ

∣

∣

∣

G
.

dµ f

dµ

∣

∣

∣

G
is called the conditional expectation of f given

G , denoted by E
µ [ f |G ] or simply by E [ f |G ] if the measure µ involved is clear. The conditional

expectation possesses the following properties:

1) E [ f |G ] is G -measurable,

2) for every A ∈ G we have

E [ f : A] = E [E( f |G ) : A]

that is

E [ f 1A] = E [1AE [ f |G ]] .

In particular, E [ f ] = E [E [ f |G ]], so that, if f is integrable, so is its conditional expectation

E [ f |G ], which allows us to define the conditional expectation of an integrable function f by

E [ f |G ] = E
[

f+|G
]

−E
[

f−|G
]

.

Conditional expectations, in most text books, are, unfortunately, only defined on probability spaces.

The restriction that the total mass of the measure is finite is not necessary, and in fact conditional

expectations are just projections in the Hilbert spaces L2.

As we will see the notion of conditional expectations plays a central role in the modern proba-

bility and in analysis, we may give a formal definition as the following.

Definition. Let (Ω ,F ,µ) be a measure space, and G ⊂ F be a sub σ -algebra. Let X be F -

measurable. Then a random variable Y is called a conditional expectation of X given G , if two

conditions below hold:

(1) Y is G -measurable, and

(2) for every A ∈ G , we have

E
µ [X : A] = E

µ [Y : A] .
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as long as both sides make sense!

1) If µ is a finite measure, any non-negative or/and integrable function X possesses a unique

(up to a null set) conditional expectation given G ⊂ F , denoted by E [X |G ].
2) If µ is an σ -finite measure on G , and X is σ -integrable on G , then the conditional expectation

of X given G exists and unique.

3) If (Ω ,F ,µ) is a measure space, and if X ∈ L2 (Ω ,F ,µ), i.e. X is square-integrable, then

Y = E
µ [X |G ] exists and is unique (up to almost everywhere). In fact Eµ [X |G ] is the unique

Y ∈ L2 (Ω ,G ,µ) which minimizes the L2-distance from X to L2(Ω ,G ,µ). That is

E
µ
[

|X −Y |2
]

= inf
{

E
µ
[

|X −Z|2
]

: Z ∈ L2 (Ω ,G ,µ)
}

.

Therefore the conditional expectation E
µ [X |G ] of X given G is the best approximation of X in

L2 (Ω ,G ,µ) under the mean square distance (i.e. the L2-distance). This is why we say E
µ [X |G ] is

the “best guess” of X given information G .

X →E
µ [X |G ] is called the projection from L2 (Ω ,F ,µ) onto its sub space L2 (Ω ,G ,µ), which

possesses a very important property: the projection X → E
µ [X |G ] preserves the positivity, that is,

if X ≥ 0 almost everywhere, the so is Eµ [X |G ].

Example 1. If X is G -measurable, then E
µ [X |G ] = X , which is obvious and you can check that the

conditions are satisfied.

Example 2. If Z is G -measurable then

E
µ [ZX |G ] = ZEµ [X |G ]

that is, you may take off from the conditional expectation operator E
µ [•|G ] those “you know

already” given G . This is called the “smoothing property” of the conditional expectations. This

property can be verified by checking the two conditions for the conditional expectations.

Example 3. Suppose G1 ⊂ G2 are two sub σ -algebras of F , then

E
µ [Eµ (X |G2) |G1] = E

µ [X |G1]

(as long as both sides are defined). This is called the tower property.

To prove this, we need to show that Z ≡ E
µ [X |G1] is the conditional expectation of Y ≡

E
µ (X |G2) given G1. To prove this, we check the two conditions in the definition. First Z is

G1-measurable by definition. Now for every A ∈ G1, then A ∈ G2 too. Since Y = E
µ (X |G2) so that

E
µ [X : A] = E

µ [Y : A]

and also Z = E
µ [X |G1], thus

E
µ [X : A] = E

µ [Z : A]

hence

E
µ [Y : A] = E

µ [Z : A] .

Thus two conditions for conditional expectations are satisfied. Therefore Z = E
µ [Y |G1], which is

what we want to prove.
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Example 4. In probability theory, the conditional probability of B given A is defined by P [B|A] =
P(A∩B)/P(A) as long as P(A) > 0. What we are going to demonstrate is that the concept of

conditional expectations is the general form of conditional probabilities.

Let (Ω ,F ,P) be a probability space, that is P is a probability measure on F . Let {An : n = 1,2, · · ·}
be a measurable and finite or countable partition of the sample space Ω . That is, all An ∈ F , An

are disjoint, and Ω =
⋃∞

n=1 An. Let G = σ {A1,A2, · · ·} be the σ -algebra generated by the parti-

tion. Suppose X is a random variable. We want to calculate E [X |G ], which is also denoted by

E [X |σ {A1,A2, · · ·}], notations we have seen in the theory of Markov chains. It is a reasonable

guess that the conditional expectation of X given G (i.e. given A1, A2, · · · ) is a linear combination

of the character functions 1An
, so we may write

E [X |G ] =
∞

∑
n=1

cn1An
,

where cn are constants, and we want to determine these coefficients. Using E [E [X |G ] : A] =
E [X : A] for every A ∈ G , for every A j we have

E

[

∞

∑
n=1

cn1An
: A j

]

= E
[

X : A j

]

which yields

c jP
(

A j

)

= E
[

X : A j

]

.

Hence we must have

E [X |σ {A1,A2, · · ·}] =
∞

∑
j=1

E
[

X : A j

]

P
(

A j

) 1A j

which results from our best guess of the conditional expectation of X given the partition, which is

in fact correct. The reader may verify two conditions in the definition of conditional expectations

are satisfied, as long as E
[

X : A j

]

are all defined, which is the case if X is non-negative, or X is

integrable, and all P
(

A j

)

> 0.

In particular, if B ∈ F , by applying the above to X = 1B we have

E [1B|σ {A1,A2, · · ·}] =
∞

∑
j=1

E
[

1B : A j

]

P
(

A j

) 1A j
=

∞

∑
j=1

P
[

B∩A j

]

P
(

A j

) 1A j

=
∞

∑
j=1

P
[

B|A j

]

1A j

which is what we have expected for condition expectation of B given A1,A2, · · · .
In particular, if A ∈ F with P(A) > 0 and P(Ac) > 0, then {A,Ac} is a partition of Ω . It is

easy to see that

σ {A}= σ {A,Ac}= {Ω ,Ø,A,Ac}
and according to the previous formula

E [X |σ {A}] = E [X : A]

P(A)
1A +

E [X : Ac]

P(Ac)
1Ac .
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Recall, in elementary probability (Prelims Probability, or in Part A Probability), if X takes discrete

values, then the conditional expectation of X given an event A is defined as the following

E(X |A) = ∑
x

xP(X = x|A) = ∑x xP({X = x}∩A)

P(A)
=

E [X : A]

P(A)

so the previous formula may be written as

E [X |σ {A1,A2, · · ·}] =
∞

∑
j=1

E
[

X |A j

]

1A j
.

Example 5. Suppose X is a real valued random variable on a probability space. σ {X} is the

smallest σ -algebra with which X is measurable. In fact that σ {X}= X−1 (B(R)). If Z is another

random variable, the conditional expectation E [X |σ {X}] of Z given σ {X} is naturally called the

conditional expectation of Z given X , denoted also by E [Z|X ]. Then E [Z|X ] = h(X) for some

Borel measurable function h (h may be not unique as we only need that h(X) is unique). As matter

of fact, h depends only on the joint distribution of (Z,X).
Let us first consider the case that X takes only finite or countable many distinct values an

(n = 1,2,· · · ), such that P [X = an]> 0. Then An ≡ {X = an} form a partition of the sample space

Ω , so that, according to the previous example,

E [Z|X ] =
∞

∑
j=1

E
[

Z : X = a j

]

P
[

X = a j

] 1{X=a j}.

In this case we take

h(x) =
∞

∑
j=1

E
[

Z : X = a j

]

P
[

X = a j

] 1{a j}(x)

for every x ∈ R which is of course Borel measurable, and it holds that E [Z|X ] = h(X).
Recall that

E [Z : X = x]

P [X = x]
= E [Z|X = x]

is the expectation of Z conditional on X = x (as defined in Prelims Probability), so that

E [Z|X ] =
∞

∑
j=1

E
[

Z|X = a j

]

1{X=a j}.

5 Product measures and Fubini’s theorem

1. Product of several σ -algebras. Let A and B be two sets. Then A×B (the product set) is the set

of all ordered pairs (x,y) where x ∈ A and y ∈ B. Let Ω1 and Ω2 be two spaces. Then Ω1 ×Ω2

is also called the Cartesian product space. Suppose F1 and F2 are algebras on spaces Ω1 and

Ω2 respectively, then F1 ×F2 is in general not an algebra, but the collection of all finite unions
⋃k

j=1 A j ×B j (where A j ∈ F1 and B j ∈ F2 and k is a positive integer) is an algebra. If Fi are

σ -algebras, F1 ×F2 is in general not a σ -algebra. Define F1 ⊗F2 to be the smallest σ -algebra

containing F1 ×F2, that is, F1 ⊗F2 = σ {F1 ×F2}. The construction may be extended to

the product space of finite many spaces. More precisely, if (Ωi,Fi) (i = 1, · · · ,n) are measurable

spaces, then

F1 ⊗·· ·⊗Fn = σ {A1 ×·· ·×An : Ai ∈ Fi}
and (Ω1 ×·· ·×Ωn,F1 ⊗·· ·⊗Fn) is called the product measurable space of (Ωi,Fi).
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Exercise 5.1 1) Suppose Si (i = 1, · · · ,n) are topological spaces with countable basis, so that the

product space S1 ×·· ·×Sn carries the product topology. Show that

B(S1 ×·· ·×Sn) = B(S1)⊗·· ·⊗B(Sn).

2) If (Ωi, Fi) (i = 1,2, · · · ) are measurable spaces, then

F1 ⊗F2 ⊗F3 = F1 ⊗ (F2 ⊗F3)

= (F1 ⊗F2)⊗F3.

2. Product σ -algebra of countable many σ -algebras. Let us now consider a sequence of

measurable spaces (Ωi,Fi) (i = 1,2, · · · ). The Cartesain product ∏∞
i=1 Ωi is the space consisting of

all sequences (x1, · · · ,xi, · · ·) where xi ∈ Ωi for i = 1,2, · · · , and define ∏∞
i=1⊗Fi to be the smallest

σ -algebra containing all ∏∞
i=1 Ai where Ai ∈ Fi for all i and Ai = Ωi except for finite many i ∈ N.

(∏∞
i=1 Ωi,∏

∞
i=1⊗Fi) is called the product measurable space of (Ωi,Fi), i = 1,2, · · · .

3. Measurable sections. Now let us come to the construction of product measures on product

spaces. We need the following elementary fact.

Lemma 5.2 If F1 and F2 are algebras on Ω1 and Ω2 respectively, then the collection A (F1,F2)
of all finite disjoint unions

⋃k
i=1 Ai ×Bi for some k ∈ N, where Ai ∈ F1, Bi ∈ F2 and all products

Ai ×Bi are disjoint, is an algebra on Ω1 ×Ω2. If F1 and F2 are σ -algebras, then F1 ⊗F2 =
σ {A (F1,F2)}.

Lemma 5.3 Let (Ωi,Fi) (i= 1,2) be measurable spaces. 1) If A∈F1⊗F2, then for each x1 ∈Ω1

the section

Ax1
= {x2 ∈ Ω2 : (x1,x2) ∈ A}

is measurable, i.e. Ax1
∈ F2. Similarly

Ax2 = {x1 ∈ Ω1 : (x1,x2) ∈ A}

belongs to F1.

2) Suppose f is measurable on (Ω1 × Ω2,F1 ⊗F2), then for each x1 ∈ Ω1, the function

fx1
(x2) = f (x1,x2) is F2-measurable.

Proof. Proof of 1). Let E be the collection of all E ⊆ Ω1 ×Ω2 such that its x1-section is

measurable. Then E is a σ -algebra containing all A×B where A ∈ F1 and B ∈ F2. Therefore

F1 ⊗F2 ⊂ E which proves 1). To show 2), we notice that

{x2 : fx1
(x2)> a}= {x2 : f (x1,x2)> a}

which is the x1-section of { f > a} (which is F1 ⊗ F2-measurable), so its x1-section is F2-

measurable. Therefore fx1
is F2-measurable.

4. Product measure of two measures. The following is the main technical fact in the construc-

tion of product measures.

Lemma 5.4 Let (Ωi,Fi,µi) (i = 1,2) be two finite measure spaces. Then for any A ∈ F1 ⊗F2,

x1 → µ2(Ax1
) (resp. x2 → µ1(A

x2)) is measurable on (Ω1,F1) (resp. (Ω2,F2)) and
ˆ

Ω1

µ2(Ax1
)µ1(dx1) =

ˆ

Ω2

µ1(A
x2)µ2(dx2) (5.1)

the common value is denoted by µ1 ×µ2(A), so that µ1 ×µ2 is defined on F1 ⊗F2.
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Proof. Let L denote the collection of all subsets A∈F1⊗F2 such that both functions µ2(Ax1
)

and µ1(A
x2) are measurable and (5.1) holds. By a direct calculation, F1 ×F2 ⊂ L . By linearlity

of integration, we can see that L is an algebra. On the other hand, by using MCT, we can show

that L is a monotone class. Therefore L must be a σ -algebra, so that L = F1 ⊗F2.

Theorem 5.5 Let (Ωi,Fi,µi) (i = 1,2) be two σ -finite measure spaces. Choose a sequence Gn =
An ×Bn , where An ↑ Ω1, An ∈ F1, µ1(An)< ∞, and similarly, Bn ↑ Ω2, Bn ∈ F2, µ2(Bn)< ∞, for

every n. If E ∈ F1 ⊗F2 then define

m(E) = lim
n→∞

µ1 ×µ2(E ∩Gn)

where µ1 ×µ2(E ∩Gn) is defined in Lemma 5.4. Then m is the unique σ -finite measure on (Ω1 ×
Ω2,F1 ⊗F2), such that

m(A×B) = µ1(A)µ2(B) ∀A ∈ F1, B ∈ F2. (5.2)

which will be denoted by µ1 ×µ2, called the product measure of µ1 and µ2.

Proof. Uniqueness follows from Lemma 2.3. Given a sequence {Gn} satisfying the conditions

in the theorem. Since µ1 ×µ2(E ∩Gn) is non-negative and increasing, so that m is well defined on

F1 ⊗F2. Clearly m(Ø) = 0, so we need to show that m is countably additive. We prove this in

two steps.

Note that µ1(·∩An) and µ2(·∩Bn) are finite measures, so that µ1×µ2(E ∩Gn) is well-defined

via (5.1), and is non-negative, increasing in n. We want to show that m is countably additive.

Suppose Ek ∈ F1 ⊗F2 are disjoint sequence, and E = ∪∞
k=1Ek. Then, for every n

m(E ∩Gn) =

ˆ

Ω2

µ1((E ∩Gn)
x2)µ2(dx2) =

ˆ

Ω2

µ1(∪k(Ek ∩Gn)
x2)µ2(dx2)

=

ˆ

Ω2

∑
k

µ1((Ek ∩Gn)
x2)µ2(dx2) = ∑

k

ˆ

Ω2

µ1((Ek ∩Gn)
x2)µ2(dx2)

= ∑
k

m(Ek ∩Gn).

where the fourth equality follows from MCT (series version). It follows that

m(E ∩Gn)≤ ∑
k

m(Ek)

so that, by letting n → ∞ we obtain m(E)≤ ∑k m(Ek). On the other hand, for every N,

m(E ∩Gn)≥
N

∑
k=1

m(Ek ∩Gn).

Letting n → ∞ we have m(E) ≥ ∑N
k=1 m(Ek), so that we also have m(E) ≥ ∑k m(Ek). Therefore

m(E) = ∑k m(Ek) which completes the proof.

5. Product measure of finite many σ -finite measures. Obviously, the same approach is applied

to finite many σ -finite measure spaces, and we have

Theorem 5.6 Suppose (Ωi,Fi,µi) (i = 1, · · · ,n) are σ -finite measure spaces, then there is a

unique σ -finite measure µ1×·· ·×µn called the product measure on (Ω1×·· ·×Ωn,F1⊗·· ·⊗Fn)
such that

µ1 ×·· ·×µn(A1 ×·· ·×An) = µ1(A1) · · ·µn(An) ∀Ai ∈ Fi.
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6. Product probability measure of countable many probability measures. However, there is

obstruction for constructing product measures on the product space of countably many measure

spaces, one can not, in general, use ∏∞
i=1 µi(Ai) to define the measure of ∏∞

i=1 Ai even if Ai = Ωi

except for finite many i. This approach on the other hand works for probability spaces (Ωi,Fi,µi)
as in this case ∏∞

i=1 µi(Ai) for ∏∞
i=1 Ai, where Ai =Ωi except finite many i, becomes a finite product

as µi(Ωi) = 1 for sufficiently large i.

Theorem 5.7 Suppose (Ωi,Fi,µi) (i = 1,2, · · · ) are probability spaces, then there is a probability

measure µ ≡ ∏∞
i=1 µi (called the product probability measure) on (∏∞

i=1 Ωi,∏
∞
i=1⊗Fi) such that

µ(A1 ×·· ·×Ak ×·· ·) =
∞

∏
i=1

µi(Ai).

for any Ai ∈ Fi for all i and Ai = Ωi except for finite many i.

Proof. [The proof is not examinable] Let R denote the ring of all subsets E ⊂ ∏∞
i=1 Ωi which

has the following form:

E =
n
⋃

j=1

A j, where A j = A
( j)
1 ×·· ·×A

( j)
k ×·· ·

A
( j)
k ∈ Fk for j = 1, · · · ,n, and for every j, there is k j, such that A

( j)
k = Ωk for every k > k j, for

some n ∈ N. If E ∈ R then we may choose a decomposition above such that A j (for some n,

j = 1, · · · ,n) are disjoint, and define

m(E) =
n

∑
j=1

m(A j) where m(A j) = µ1(A
( j)
1 ) · · ·µk(A

( j)
k ) · · ·

each m(A j) is in fact a finite product as all µk are probability measures. To see why m is well

defined and is in fact a measure on R, we make the following crucial observation. If E1, · · · ,EN ∈
R, then, there is a common K, such that for all n = 1, · · · ,N each En = A(n)×ΩK+1×·· · for some

A(n) ∈ ∏K
k=1 Fk, and therefore

E ≡
N
⋃

n=1

En = A×ΩK+1 ×·· ·

for some A ∈ ∏K
k=1 Fk. Since µk are probability measures, so by definition

m(En) = µ1 ×·· ·×µK(A
(n))

(the identity is no longer ensured if there are infinite many µk with total mass µk(Ωk) 6= 1). Since

µ1 ×·· ·×µK is a measure, so that, if En (n = 1, · · · ,N) are disjoint, then

m(E) = µ1 ×·· ·×µK(A) =
N

∑
n=1

µ1 ×·· ·×µK(A
(n)) =

N

∑
n=1

m(En)

which shows that m is well defined on the ring R and m is finitely additive. Next, the standard ma-

chinery may be applied to construct the product probability ∏∞
i=1 µi. Firstly, define outer measure

m∗(E) = inf

{

∞

∑
n=1

m(En) : where En ∈ R such that
∞
⋃

n=1

En ⊃ E

}
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for every sunset E ⊂ ∏∞
i=1 Ωi. Let M denote the σ -algebra of all m∗-measurable subsets. Then

m∗ is a measure on M (by the Carathodory extension theorem). Since R is a ring and m is finitely

additive, we thus must have R ⊂ M . Since ∏∞
i=1⊗Fi = σ(R) ⊂ M , so that m∗ restricted on

∏∞
i=1⊗Fi is a probability measure. The construction is complete.

7. Fubini’s theorem. Let us now turn to the Fubini theorem.

Let (Ωi,Fi,µi) (i = 1,2) be two σ -finite measure spaces. Suppose f : Ω1 ×Ω2 → (−∞,∞) is

a measurable function, such that for almost all x1 ∈ Ω1, fx1
is integrable on (Ω2,F2,µ2). Hence,

there is a set N1 ∈ Ω1 with µ1(N1) = 0, and for any x1 ∈ Ω1 \N1, fx1
∈ L1(Ω2,F2,µ2), so that we

can define

h(x1) =

ˆ

Ω2

fx1
(x2)µ2(dx2) if x1 ∈ Ω1 \N1

otherwise h(x1) = 0. If there is a h̃ ∈ L1(Ω1,F1,µ1), such that h̃ = h almost surely w.r.t. µ1, then

we can form an integral

I1,2( f ) =

ˆ

Ω1

h̃(x1)µ1(dx1).

One can show that, if I1,2( f ) exists (i.e. there is some N1 and h̃ satisfying the above conditions),

then I1,2( f ) does not depend on N1 and h̃, therefore I1,2( f ) is called an iterated integral of f over

Ω1 ×Ω2, denoted by
ˆ

Ω1

(
ˆ

Ω2

f (x1,x2)µ2(dx2)

)

µ1(dx1).

Similarly we define the iterated integral

ˆ

Ω2

(
ˆ

Ω1

f (x1,x2)µ1(dx1)

)

µ2(dx2).

Theorem 5.8 (Fubini’s theorem) Let µ j be σ -finite measure on (Ω j,F j), where j = 1,2. Suppose

f : Ω1 ×Ω2 → (−∞,∞) is a measurable function on the product measure space (Ω1 ×Ω2,F1 ⊗
F2).

1) If f ∈ L1(Ω1 ×Ω2,F1 ⊗F2,µ1 × µ2), then both iterated integrals exist and equal to the

integral
´

Ω1×Ω2
f d(µ1 ×µ2) .

2) Conversely, if one of the iterated integral of | f | is finite, then f ∈ L1(Ω1×Ω2,F1⊗F2,µ1×
µ2).

Proof. By Theorem 5.5 and the definition of the product measure µ1 × µ2, for every E ∈
F1 ⊗F2 we have

ˆ

Ω1×Ω2

1Edµ1 ×µ2 =

ˆ

Ω2

[
ˆ

Ω1

1Edµ1

]

dµ2 =

ˆ

Ω1

[
ˆ

Ω2

1Edµ2

]

dµ1

which yields that Fubini’s theorem holds for every non-negative simple measurable function.

Suppose f is non-negative and F1 ⊗F2-measurable, then we can choose a sequence of non-

negative, measurable simple functions ϕn : Ω1 ×Ω2 → [0,∞) such that ϕn ↑ f . By MCT we have

ˆ

Ω1×Ω2

f dµ1 ×µ2 = lim
n→∞

ˆ

Ω1×Ω2

ϕndµ1 ×dµ2

= lim
n→∞

ˆ

Ω2

[
ˆ

Ω1

ϕndµ1

]

dµ2 = lim
n→∞

ˆ

Ω2

Φndµ2
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where

Φn =

ˆ

Ω1

ϕndµ1

which are non-negative, F2-measurable and Φn ↑, thus by MCT applying to {Φn} on (Ω2,F2,µ2)
to obtain

lim
n→∞

ˆ

Ω2

Φndµ2 =

ˆ

Ω2

lim
n→∞

Φndµ2 =

ˆ

Ω2

lim
n→∞

[
ˆ

Ω1

ϕndµ1

]

dµ2.

Since for every x2, ϕn(·,x2) ↑ f (·,x2) and non-negative, measurable, so by applying MCT on

(Ω1,F1,µ1) we thus have

lim
n→∞

[
ˆ

Ω1

ϕndµ1

]

=

ˆ

Ω1

f dµ1.

Putting the previous equations together we obtain

ˆ

Ω1×Ω2

f dµ1 ×µ2 =

ˆ

Ω2

[
ˆ

Ω1

f dµ1

]

dµ2

and similarly
ˆ

Ω1×Ω2

f dµ1 ×µ2 =

ˆ

Ω1

[
ˆ

Ω2

f dµ2

]

dµ1

for any non-negative, measurable function f . The conclusions of the theorem follow immediately.

8. Completion of product measure spaces. Recall that, if (Ω ,F ,µ) is a σ -finite measure space,

then F µ is the completed σ -algebra of F under the measure µ , that is, N denotes the collection

of all subsets of Ω with outer measure zero, then F µ = σ{F ,N }. We have shown that µ can

be uniquely extended to a σ -finite measure on F µ , denoted again by µ . Complications may arise

if we consider the completion of (Ω1 ×Ω2,F1 ⊗F2,µ1 × µ2). In general, the completion of

F1 ⊗F2 under µ1 × µ2 does not coincide with the product σ -algebra of the completions of Fi

under µi, but we have

Lemma 5.9 Let (Ωi,Fi,µi) be two σ -finite measure spaces. Then

F
µ1

1 ⊗F
µ2

2 ⊂ (F1 ⊗F2)
µ1×µ2

and

(F1 ⊗F2)
µ1×µ2 =

(

F
µ1

1 ⊗F
µ2

2

)µ1×µ2 .

Proof. The proof is routine, left as an exercise.

If f : Ω1 ×Ω2 → (−∞,∞) is measurable w.r.t (F1 ⊗F2)
µ1×µ2 , then its section fx1

: Ω2 →
(−∞,∞) by sending x2 to f (x1,x2) is not necessary measurable w.r.t. F

µ2

2 , however, according

to definition, there is a function f̃ : Ω1 ×Ω2 → (−∞,∞) which is measurable w.r.t. F1 ⊗F2 and

f = f̃ µ1 × µ2-almost surely, and f̃x1
is measurable w.r.t. F2 for all x1 ∈ Ω1. Moreover it is

clear that f̃x1
= fx1

for almost all x1 ∈ Ω1 with respect to µ1. Therefore fx1
is F

µ2

2 -measurable for

µ1-almost all x1 ∈ Ω1. The iterated integrals of f are defined to be those of f̃ , and we can show

that they are independent of the choice of a version f̃ .

If f ∈ L1(Ω1×Ω2,(F1⊗F2)
µ1×µ2,µ1×µ2), then we choose f̃ which is F1⊗F2-measurable

such that f = f̃ µ1×µ2-a.e., applying the Fubini theorem to f̃ , we thus have the following refined

version of Fubini’s theorem.
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Theorem 5.10 (Fubini’s theorem) Let (Ωi,Fi,µi) be two σ -finite measure spaces. Suppose f :

Ω1 ×Ω2 → (−∞,∞) is (F1 ⊗F2)
µ1×µ2-measurable.

1) If f ∈ L1(Ω1 ×Ω2,(F1 ⊗F2)
µ1×µ2,µ1 ×µ2), then the two iterated integrals of f exist and

coincide with the integral
´

Ω1×Ω2
f d(µ1 ×µ2).

2) Conversely, if one of the iterated integral of | f̃ | is finite, where f̃ = f µ1 × µ2-a.e. and f̃ is

F1 ⊗F2-measurable, then f ∈ L1(Ω1 ×Ω2,(F1 ⊗F2)
µ1×µ2,µ1 ×µ2).

6 Some concepts in probability

Let us now set up the probability setting by using the theory of measures developed in the previous

sections.

Let (Ω ,F ,P) be a probability space. An F -measurable function X (complex, or valued in

[−∞,∞]) on Ω is called a random variable. The concept of random variables may be generalized

to mappings, which may be useful in discussing probability models. In general, if (Ω1,F1) and

(Ω2,F2) are two measurable spaces, then a mapping Φ : Ω1 → Ω2 is measurable if Φ−1(A) ∈ F1

whenever A ∈ F2. Thus a real random variable X : Ω → R is just a measurable mapping from

(Ω ,F ) to (R,B(R)).
If X is integrable or non-negative random variable, then its integral

´

Ω X(ω)P(dω) is called

the expectation of X , or the mean value of X , denoted by E [X ]. We say the expectation of X exists

if X is integrable.

6.1 Laws, distribution functions

These are basic concepts associated with random variables. Let us begin with the following

Proposition 6.1 Let (Ω ,F ) and (S,Σ) be two measurable spaces, P a measure on (Ω ,F ), and

X : Ω → S be a measurable map. Define

µ(A) ≡ P
(

X−1(A)
)

= P [X ∈ A]

= P({ω : X(ω) ∈ A})

for every A ∈ Σ. Then µ is a measure on (S,Σ), denoted by P◦X−1, which is called the distribution

of X.

In particular, if X is a random variable on a probability space (Ω ,F ,P) taking values in R
n,

then P◦X−1 is a probability measure on (Rn,B(Rn)), called the law or called the distribution of

the random variable X . Sometimes we also use µX to denote the distribution of X .

If X : Ω → R is a real-valued random variable, then its distribution function

F(x) = P(X ≤ x)

= P({ω : X(ω)≤ x})
= µX ((−∞,x]) ,

is a non-decreasing function on R with values in [0,1]. Then 0 ≤ F ≤ 1; F ↑; limx→−∞ F(x) = 0;

limx→∞ F(x) = 1; F is right-continuous:

lim
x↓x0

F(x) = F(x0) ∀x0 ∈ R.
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The Lebegue-Stieltjes measure mF associated with the increasing and right-continuous function F

is the unique measure such that

mF((a,b]) = F(b)−F(a) = P(a < X ≤ b) = µX((a,b])

for all a < b. Since the collection C of all (a,b] (where a < b are reals) is a π-system, according

to the Uniqueness Lemma 2.2, mF = µX , that is, the distribution (law) of a real random variable X

is the Lebesgue-Stieltjes measure associated with the distribution function of X .

6.2 Independence

Let (Ω,F ,P) be a probability space.

1. Independent events. Recall that, if A,B ∈ F be two events, then A and B are independent, if

P(A∩B) = P(A)P(B). (6.1)

Let

FA = σ{A}= {Ω,A,Ac, /0},
FB = σ{B}= {Ω,B,Bc, /0}.

Then (6.1) implies that

P(E ∩F) = P(E)P(F), ∀E ∈ FA,F ∈ FB,

and therefore the σ -algebras FA and FB are independent.

Definition 6.2 1) Let {Fα : α ∈ ∧} be a collection of sub σ -algebras of F . Then {Fα : α ∈ ∧}
are independent if for any k ∈ N, and any α1, · · · ,αk ∈ ∧ such that αi 6= α j if i 6= j, we have

P(A1 · · ·Ak) = P(A1) · · ·P(Ak), ∀A1 ∈ Fα1
, · · · ,Ak ∈ Fαk

.

2) Let {Fα : α ∈ ∧} be a family of events: Fα ∈F . Then we say {Fα : α ∈ ∧} are independent

if {σ(Fα) : α ∈ ∧} are independent.

3) Let {Xα : α ∈ ∧} be a family of random variables. Then {Xα : α ∈ ∧} are independent if

the family of σ -algebras {σ(Xα) : α ∈ ∧} are independent.

2. Independence via π-system. In elementary probability theory, we already give a definition

of independence for random variables. You should show that the definition we give here coincides

with the one you have learned before. The following Lemma is very useful although it is very

simple and follows a simple application of Lemma 2.2.

Lemma 6.3 Let Fα ≡ σ {Cα} where each Cα is a π-system in the sense that

A,B ∈ Cα implies that A∩B ∈ Cα .

Then {Fα : α ∈ ∧} are independent if and only if for any k ∈N, any F1 ∈ Cα1
, · · · ,Fk ∈ Cαk

where

α1, · · · ,αk are different, we have

P [F1 ∩·· ·∩Fk] = P [F1] · · ·P [Fk] .
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See section Examples below for a proof.

3. Independent random variables.

Theorem 6.4 Let X1, · · · ,Xn, · · · be a sequence of real random variables. Then X1, · · · ,Xn, · · · are

independent if and only if for any k ∈ N, and any x1, · · · ,xk ∈ R

P [X1 ≤ x1, · · · ,Xk ≤ xk] = P [X1 ≤ x1] · · ·P [Xk ≤ xk] .

That is, the joint distribution of X1, · · · ,Xn is the product of the distribution functions of the random

variables Xk,1 ≤ k ≤ n.

This follows from the previous lemma, as Ck the collection of all subsets {Xk ≤ x} where x

runs through all reals is a π-system, where k = 1,2, · · · .
Therefore, the joint law or distribution of a sequence of independent random variables (X1,X2, · · · ,Xn, · · ·)

is the product probability measure µ1 ×·· ·× µn ×·· · , where µn is the distribution of Xn. In par-

ticular, if {Xn : n = 1,2, · · ·} is a sequence of independent real random variables, then its joint law

(or called joint distribution) is the product probability measures of the Lebesgue-Stieltjes measure

mFn where Fn(x) = P [Xn ≤ x] is the distribution function of Xn, n = 1,2, · · · .

Theorem 6.5 Let X be a random variable (valued in a measurable space) on some probability

space. Then there is a sequence of independent identically distributed random variables {Xn : n ∈
N}, each Xn has the same law as that of X.

Proof. [The proof is not examinable] Let X be a random variable taking its values in a mea-

surable space (S,G ), and let µ be the distribution of X . Then µ is a probability measure. Let

(Sn,Gn,µn) = (S,G ,µ) (n = 1,2, · · ·) and let P = µ1 × ·· · × µn × ·· · be the product probability

measure on Ω = ∏∞
n=1 Sn. Define Xn : Ω → S by Xn(w) = wn if w = (wn) ∈ Ω for n = 1,2, · · · .

Then Xn are random variables on (Ω ,F ,P) (where F = ∏∞
n=1 Gn) and by construction, Xn have

the common distribution µ , and (Xn) are independent.

6.3 Borel-Cantelli lemma

1. Limiting events, Borel-Cantelli’s first and second lemma. Let An ∈ F for n = 1,2, · · · . The

event that “An’s occur infinitely often” (or “infinitely many An occur”) is given by

limsup
n→∞

An =
∞
⋂

m=1

∞
⋃

n=m

An

= {ω : ω belongs to infinitely many An} .

The event limsupn→∞ An is also denoted by {An : i.o.}. Similarly, though less important in appli-

cations, the event that “An take place eventually” is

liminf
n→∞

An =
∞
⋃

m=1

∞
⋂

n=m

An

= {ω : ∃N(ω) s.t. ω ∈ An for all n ≥ N(ω)}
= {ω : ω eventually belongs to An for large n} .

This event is denoted sometimes by {An : ev.}. By definition, it is easy to see that

limsup
n→∞

An =

{ ∞

∑
n=·

1An
= ∞

}

=

{

limsup
n→∞

1An
= 1

}
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while

liminf
n→∞

An =
{

lim
n→∞

1An
= 1
}

.

Theorem 6.6 Let An ∈ F (where n = 1,2, · · · ).
1) (Borel-Cantelli Lemma, first Borel-Cantelli lemma). If ∑∞

n=1P(An)<∞, then P [limsupn→∞ An] =
0.

2) (Borel zero-one criterion, second Borel Cantelli lemma). If the events{An} are independent,

then ∑∞
n=1P(An) = ∞ if and only if P [limsupn→∞ An] = 1.

Proof. 1) If ∑∞
n=1P(An)< ∞ then limm→∞ ∑∞

n=mP(An) = 0, and therefore

P [An : i.o.] = lim
m→∞

P

(

⋃

n≥m

An

)

≤ lim
m→∞

∑
n≥m

P(An) = 0.

2) If An are independent, and if ∑∞
n=1P(An) = ∞, then

P

(

∞
⋂

n=m

Ac
n

)

= lim
N→∞

N

∏
n=m

P(Ac
n) = lim

N→∞

N

∏
n=m

(1−P(An))

≤ lim
N→∞

exp

(

−
N

∑
n=m

P(An)

)

= 0

for every m, where we have used the elementary inequality: 1− x ≤ e−x for x ∈ [0,1], which can

be seen from the following

e−x = 1− x+

(

x2

2!
− x3

3!

)

+ · · · ≥ 1− x

for |x| ≤ 1. Since {An : i.o}c =
⋃∞

m=1

⋂∞
n=m Ac

n and every
⋂∞

n=m Ac
n has probability zero, so does

that their countable union {An : i.o}c over m = 1,2, · · · , hence P [An : i.o] = 1.

2. Tail events and tail σ -algebra. The limsupAn and liminfAn are examples of so-called tail

events – these events are determined by {Am+1,Am+1, · · · ,An, · · ·} for every m. For example

limsup
n→∞

An =

{

∞

∑
n=m+1

1An
= ∞

}

for any m. From Borel-Cantelli’s zero-one criterion above, we can deduce the limiting behavior of

these tail events by combining with the concept of independence.

If X1,X2,· · · , Xn, · · · is a sequence of random variables on (Ω ,F ,P), then the σ -algebra G∞ =
⋂∞

n=1 σ
{

X j : j > n
}

is called the tail σ -algebra of {Xk}k≥1. Any element in G∞ is called a tail

event.

Proposition 6.7 (A. Kolomogorov’s 0-1 law) If {Xn} is a sequence of independent random vari-

ables on (Ω ,F ,P), and G∞ =
⋂∞

n=1 σ
{

X j : j > n
}

. Then P(A) = 0 or 1 for every A ∈ G∞. In

particular, if {An} is a sequence of independent events, then P [limsupn→∞ An] = 0 or 1 .

Proof of 0-1 law. Since σ
{

X j : j ≤ n
}

and σ
{

X j : j > n
}

are independent for any n = 1,2, · · · ,
so that σ

{

X j : j ≤ n
}

and G∞ for every n are independent. It follows that
⋃∞

n=1 σ
{

X j : j ≤ n
}

and
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G∞ are independent. If B,C ∈ ⋃∞
n=1 σ

{

X j : j ≤ n
}

, then B∩C ∈ ⋃∞
n=1 σ

{

X j : j ≤ n
}

as well, so
⋃∞

n=1 σ
{

X j : j ≤ n
}

is a π-system, thus, by Lemma 6.3, the σ -algebra

σ

[

∞
⋃

n=1

σ
{

X j : j ≤ n
}

]

= σ
{

X j : j ≥ 1
}

and G∞ are independent. Since G∞ ⊂ σ
{

X j : j ≥ 1
}

, G∞ and itself are independent. Therefore,

for every A ∈ G∞, P(A) = P(A∩A) = P(A)2, which yields that P(A) = 0 or P(A) = 1. The last

conclusion comes from the fact that limsupn→∞ An ∈ G∞, so that P [limsupn→∞ An] = 0 or 1.

3. Example. Suppose (Xn) is a sequence of independent random variables (real or complex),

and G∞ is its tail σ -algebra, and suppose {bn} be an increasing sequence of positive numbers such

that bn ↑ ∞. Then the following events

{

lim
n→∞

Xn exists
}

,

{

∞

∑
n=1

Xn converges

}

and

{

lim
n→∞

X1 + · · ·+Xn

bn
exists

}

are all tail events, i.e. belong to G∞, and thus have probability one or zero.

6.4 Examples

Motivated by the notion of independent events in Prelims Probability, we have generalized the

concept of independence to families of σ -algebras.

Let (Ω ,F ,P) be a probability space. If {Fα : α ∈ Λ} (where Λ is a non-empty index set)

is a family of some sub σ -algebras on the probability space (Ω ,F ,P), then {Fα : α ∈ Λ} are

independent if

P(A1 ∩·· ·∩An) = P(A1) · · ·P(An) (6.2)

for any Ai ∈ Fαi where αi ∈ Λ (i = 1, · · · ,n) as long as α1, · · · , αn are different.

By definition, if {Fα : α ∈ Λ} are independent, then any its sub family of {Fα : α ∈ Λ} are

independent.

Furthermore we don’t need to test (6.2) for all Ai ∈ Fαi , and very often we only need to verify

(6.2) for those Ai in a π-system Cαi as long as it generates the σ -algebra Fαi = σ {Cαi
}.

The proof of this lemma is a typical application of the uniqueness lemma for finite measures.

Suppose (6.2) holds for Ai ∈ Cαi for i = 1, · · · ,n and we want to show (6.2) holds well for Ai ∈
Fαi = σ {Cαi

}. If n = 1 then there is nothing to prove, so assume n > 1, and for fixed Ai ∈ Cαi for

i = 1, · · · ,n−1, consider two set-functions

µ1(A) = P(A1 ∩·· ·∩An−1 ∩A)

and

µ2(A) = P(A1) · · ·P(An−1)P(A)

for A ∈ Fαn . Trivially µ1 and µ2 are two measures on (Ω ,Fαn), and µ1(Ω) = µ2(Ω) [due to

assumption that (6.2) for any n where Ai ∈ Cαi]. Since µ1 coincides with µ2 on Cαn , so does on

Fαn . We therefore have

P(A1 ∩·· ·∩An) = P(A1) · · ·P(An)

for any Ai ∈ Cαi where αi ∈ Λ (i = 1, · · · ,n−1) and An ∈ Fαn , and for any natural number n. If

n > 2, we consider, for any Ai ∈ Cαi where αi ∈ Λ (i = 1, · · · ,n−2) and An ∈ Fαn , two functions

µ1(A) = P(A1 ∩·· ·∩An−2 ∩A∩An)
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and

µ2(A) = P(A1) · · ·P(An−2)P(A)P(An).

Then

µ1(Ω) = P(A1 ∩·· ·∩An−2 ∩An) = P(A1) · · ·P(An−2)P(An) = µ2(Ω)

where the second equality follows the first step (with n−1 in place of n), and by assumption and

again the first step that µ1(A) = µ2(A) for every A ∈ Cαn−1
and therefore the same equality holds

for any A ∈ Fαn−1
. By repeating the same procedure n times we may conclude that (6.2) holds for

all Ai ∈ Fαi as long as αi are different, which completes the proof.

From definition, we can see immediately that a family {Fα : α ∈ Λ} of σ -algebras are inde-

pendent, if and only if any finite subfamily {Fαi : i = 1, · · · ,n} (where α1, · · · , αn belong to Λ , for

any n as long as it is not greater than the number of elements in the index set Λ ) are independent.

This is due to the required equality (6.2) involves only finite many indices, so only to do with finite

many σ -algebras in the family.

Another direct consequence from the definition of independence is that, if {Fn : n = 1,2, · · ·}
is a sequence of sub σ -algebras, then {Fn} are independent if and only if

P(A1 ∩·· ·∩An) = P(A1) · · ·P(An) (6.3)

for any n, and for any A1 ∈ F1, · · · , An ∈ Fn. This consequence follows from the fact that Ω
belongs to any σ -algebra, and P(Ω) = 1, so that we can insert as many as you want the term Ω
in the intersection on the left-hand side, and as many as you wish P(Ω) on the right-hand side of

(6.3), which will not alter the equality.

If {Aα : α ∈ Λ} is a family of events, i.e. all Aα ∈ F , then σ {Aα} (where α ∈ Λ ) are inde-

pendent if and only if

P(Aα1
∩·· ·∩Aαn) = P(Aα1

) · · ·P(Aαn)

for every finite subset {α1, · · · ,αn} ⊂ Λ as long as αi are different. That is, events Aα (where

α ∈ Λ ) are independent as defined in the Prelim Probability.

The discussion can be extended to random variables. A family {Xα : α ∈ Λ} of random vari-

ables on (Ω ,F ,P) are independent, by definition, if the family σ {Xα} (where α ∈ Λ ) of sub

σ -algebras are independent, and thus if and only if any finite sub family Xα1
, · · · , Xαn are indepen-

dent.

Since for any real random variable X ,

σ {X}= X−1 (B) =
{

X−1 (B) : B ⊂ R Borel measurable
}

where

X−1(B) = {ω ∈ Ω : X (ω) ∈ B} ≡ {X ∈ B} ,
therefore random variables Xα1

, · · · , Xαn are independent, if and only if

P [Xα1
∈ B1, · · · ,Xαn ∈ Bn] = P [Xα1

∈ B1] · · ·P [Xαn ∈ Bn] (6.4)

for any Borel subsets B1, · · · , Bn.

Example 1. Real random variables X1, · · · , Xn are independent, if and only if the joint distribu-

tion µ of (X1, · · · ,Xn), defined to be the probability measure µ on (Rn,B (Rn)) by

µ(E) = P [(X1, · · · ,Xn) ∈ E] for E ∈ B (Rn)
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coincides with the product measure µ1×·· ·×µn on B(Rn), where µi is the distribution of Xi, that

is µi(B) = P [Xi ∈ B] for any B ∈ B(R).
Proof. If the joint distribution µ = µ1 ×·· ·×µn, then by taking E = B1 ×·· ·×Bn, we obtain

µ (B1 ×·· ·×Bn) = µ1(B1) · · ·µn(Bn) (6.5)

for all Bi ∈ B (R), which is equivalent to

P [X1 ∈ B1, · · · ,Xn ∈ Bn] = P [X1 ∈ B1] · · ·P [Xn ∈ Bn] (6.6)

so X1, · · · , Xn are independent.

Conversely, suppose X1, · · · , Xn are independent, then (6.6) holds for all Bi ∈ B(R). Let C be

the collection of all subsets of Rn which have a form B1 ×·· ·×Bn. Then C is a π-system on R
n,

and B (Rn) = σ {C }. (6.6) says exactly that the joint distribution µ of X1, · · · , Xn coincides with

µ1×·· ·×µn on the π-system C , so they must equal on B(Rn) according to the uniqueness lemma

for measures. This completes the proof.

Example 2. Random variables (real valued) Xα1
, · · · , Xαn are independent if and only if for any

Borel measurable functions fi (i = 1, · · · ) such that

E [ f1 (Xα1
) · · · fn (Xαn)] = E [ f1 (Xα1

)] · · ·E [ fn (Xαn)] (6.7)

as long as integrals (expectations) exist.

Proof. If (6.7) holds, then since σ {Xα}= X−1
α (B) (where B is the Borel σ -algebra), so that

if A j ∈ σ
{

Xα j

}

, then A j = X−1
α j

(B j), where B j ∈ B. Thus

P(A1 ∩·· ·∩An) = P
(

X−1
α1

(B1)∩·· ·∩X−1
αn

(Bn)
)

= P({Xα1
∈ B1}∩ · · ·∩{Xαn ∈ Bn})

= P({Xα1
∈ B1, · · · ,Xαn ∈ Bn})

= E

(

1{Xα1
∈B1,··· ,Xαn∈Bn}

)

= E

(

1{Xα1
∈B1} · · ·1{Xαn∈Bn}

)

= E(1B1
(Xα1

) · · ·1Bn(Xαn))

= E(1B1
(Xα1

)) · · ·E(1Bn(Xαn))

where the last equality follows from (6.7) applying to fi = 1Bi which are Borel measurable as

Bi ∈ B. Hence

P(A1 ∩·· ·∩An) = E(1B1
(Xα1

)) · · ·E(1Bn(Xαn)) = P(A1) · · ·P(An).

Now, we show that, if Xα1
, · · · , Xαn are independent, then (6.7) holds. In fact, let µi denote the

distribution of Xαi , that is, µi(E) = P [Xαi ∈ E] for E ∈ B, then, by the previous example, the joint

distribution µ of (Xα1
, · · · ,Xαn) is exactly the product measure µ1 × ·· ·× µn, hence, by Fubini’s

theorem we have

E [ f1 (Xα1
) · · · fn (Xαn)] =

ˆ

Ω1×···×Ωn

f1(x1) · · · fn(xn)µ(dx1, · · · ,dxn)

=

ˆ

Ω1

[

· · ·
[
ˆ

Ωn

f1(x1) · · · fn(xn)µn(dxn)

]

· · ·
]

µ1(dx1)

= E [ f1 (Xα1
)] · · ·E [ fn (Xαn)]
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which proves (6.7).

Example 3. Suppose X , Y and Z are three independent real valued random variables, then, it

should be clear that X +Y and Z are independent, but how to prove this? While Dynkin’s lemma

and the uniqueness lemma for measures may help for this kind of questions.

Proof. According to definition, we want to show σ {X +Y} and σ {Z} are independent, that is,

want to show that for any D ∈ σ {X +Y} and C ∈ σ {Z},

P [D∩C] = P [D]P [C] . (6.8)

Since X , Y and Z are independent, so X and Y are independent too, hence

P [A∩B∩C] = P [A]P [B]P [C] = P [A∩B]P [C]

that is, (6.8) holds for D = A∩B as long as A ∈ σ {X} and B ∈ σ {Y}, all such sets consist of a

π-system which generates the σ -algebra σ {X ,Y}. Formally we let

C = {A∩B : A ∈ σ {X} ,B ∈ σ {Y}} .

Then C is a π-system, and σ {X} ⊂ C , σ {Y} ⊂ C , so that σ {X ,Y} = σ {C }. Let C ∈ σ {Z}
be fixed but arbitrary. Considers two measures µ1 (D) = P [D∩C] and µ2 [D] = P [D]P [C] for

D ∈ F . Both µi are finite measures, µ1 (Ω) = µ2 (Ω) = P [C], and µ1 = µ2 on C , hence by the

Uniqueness Lemma for measures, µ1 = µ2 on σ {C } = σ {X ,Y}. It follows that (6.8) holds for

any D ∈ σ {X ,Y}. While we know that X +Y is measurable with respect to σ {X ,Y}, so that

σ {X +Y} ⊂ σ {X ,Y}, hence (6.8) holds for any D ∈ σ {X +Y} and C ∈ σ {Z}, by definition,

X +Y and Z are independent.

From the proof, we can see that f (X ,Y ) and Z are independent for any Borel measurable

function f . For example X3 + cosY and Z are independent. You may extend this to any finite

many independent random variables. For example, if X1, · · · , Xn, Y1,· · · , Ym are independent (real)

random variables on (Ω ,F ,P), then f (X1, · · · ,Xn) and g(Y1, · · · ,Ym) are independent as long as f

and g are Borel measurable.

Example 4. If X is a random variable, and G is a σ -algebra, then naturally we say X and G are

independent (or say X is independent of the σ -algebra G ) if σ {X} and G are independent. [This

notion can be generalized to a family of random variables {Xα} and a family σ -algebras
{

Fβ

}

in

a natural way – leave for the reader as an exercise]. By definition, X and G are independent, if and

only if X and 1A are independent, and if and only if

E [ f (X) : A] = E [ f (X)]P(A)

for any A ∈ G , and for any Borel measurable function f such that f (X) is integrable.

Example 5. G ⊂F be a sub σ -algebra, and X be a random variable, non-negative or integrable,

then E [X |G ] = E [X ]. In particular, if X and Z are independent, then E [X |Z] = E [X ].
Proof. Let Y = E [X ]. Then Y is a constant so is G -measurable. For every A ∈ G , we have

E [X : A] = E [X1A] = E [X ]E [1A] = E [E [X ]1A]
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so that E [X ] is the conditional expectation of X given G .

Example 6. Consider a sequence of independent Bernoulli trials {Xn : n = 1,2, · · ·}, which is

an i.i.d. sequence, independent identically distributed, with the same distribution

P [Xn = 1] = p, and P [Xn = 0] = 1− p

where 0 < p < 1. Let T be the waiting time after the first time until the first success occurs

T = inf
{

j ≥ 0 : X j+1 = 1
}

.

Then

P [T = k] = P [Xi = 0 for 1 ≤ i ≤ k and Xk+1 = 1] = (1− p)k p

where k = 0, 1, · · · . That is T has a geometric distribution. Similarly, for every n = 1,2, · · · , if

Ln denotes the number of the longest success run starting from n, that is, Ln = j if Xi = 1 for

i = n, · · · ,n+ j−1 but Xn+ j = 0, so that

P [Ln = j] = p j(1− p)

for j = 0,1,2, · · · . Then

P

[

limsup
n→∞

Ln

log 1
p

n
= 1

]

= 1. (6.9)

The proof of this result is a typical application of Borel-Cantelli lemma. First we recall from

Prelims Analysis, if {xn} is a sequence of reals, and l = limsupxn is real, then there is a sub-

sequence xnk
→ l . If there is no any sub-sequence such that xnl

> a then limsupxn ≤ a.

Let a > 1 be arbitrary but fixed and set

An =

{

Ln

log 1
p

n
> a

}

for n = 1,2, · · · .

Then

P [An] = P

[

Ln > a log 1
p

n
]

= ∑
j>a log 1

p
n

P [Ln = j]

= ∑
j>a log 1

p
n

p j(1− p) = (1− p)
p

[

a log 1
p

n

]

1− p
≤ p

a log 1
p

n
=

1

na

so that

∑P [An] = ∑
n

1

na
< ∞.

By Borel-Cantelli lemma, P [An i. o.] = 0, so that

P

[

limsup
n→∞

Ln

log 1
p

n
> a

]

= 0
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which yields that

P

[

limsup
n→∞

Ln

log 1
p

n
≤ 1

]

= 1.

Next we show that

P

[

limsup
n→∞

Ln

log 1
p

n
≥ 1

]

= 1.

To this end, we apply the Borel-Cantelli lemma again. This time we assume that 0 < a < 1 is

arbitrary but fixed. Although Xn are independent, but events An may be not independent, so it is

not a good idea to apply the Borel-Cantelli (part 2) to An. Instead, we apply Borel-Cantelli to a

sub-sequence Ank
where nk =

[

k log 1
p

k
]

for k = 1,2, · · · . Now, we show that

nk+1 −nk >
[

a log 1
p

nk

]

.

for k large enough, so that {Ank
} are independent. To prove this, we estimate the gap

nk+1 −
(

nk +
[

a log 1
p

nk

])

=
[

(k+1) log 1
p
(k+1)

]

−
[

k log 1
p

k
]

−
[

a log 1
p

nk

]

≥ (k+1) log 1
p
(k+1)−1− k log 1

p
k−a log 1

p

(

k log 1
p

k
)

= (k+1) log 1
p
(k+1)−1− k log 1

p
k−a log 1

p
k−a log 1

p
log 1

p
k

≥ (1−a) log 1
p

k−a log 1
p

log 1
p

k → ∞

as k → ∞ (since a < 1). Therefore there is k0 such that for k ≥ k0

nk+1 −nk >
[

a log 1
p

nk

]

+1.

Hence {Ank
} are independent for k ≥ k0 and

P [Ank
] = ∑

j>a log 1
p

nk

p j(1− p) = (1− p)
p

[

a log 1
p

nk

]

1− p
≥ p

a log 1
p

nk+1

≥ p
(

k log 1
p

k
)a

so that

∑
k≥k0

P [Ank
] = ∞

as a < 1. Hence, by applying Borel-Cantelli to {Ank
: k ≥ k0}, we conclude that P [Ank

: i.o. ] = 1,

so that

P

[

limsup
n→∞

Ln

log 1
p

n
≥ a

]

= 1.

for every a < 1, and therefore

P

[

limsup
n→∞

Ln

log 1
p

n
≥ 1

]

= 1

which completes the proof.

38



7 Conditional expectations - revisited

Let us review the concept of conditional expectations in the setting of probability theory. The

conditional expectation of a non-negative measurable function given G ⊂ F on (Ω ,F ,µ), where

µ is G -finite, is defined in terms of Radon-Nikodym’s theorem. Suppose X is measurable, non-

negative, σ -integrable on G and µ is σ -finite on G . That is, there is a sequence of Gn ∈ G such

that Eµ [X : Gn]< ∞ and µ(Gn)< ∞ for each n and
⋃∞

n=1 Gn = Ω . Then E
µ [X |G ] is well defined.

Let (Ω ,F ,P) be a probability space, and G ⊆ F be a sub σ -algebra.

If X is a non-negative real random variable on (Ω ,F ,P), then there is a G -measurable random

variable E [X |G ], the conditional expectation of X , which is a unique (up to almost everywhere)

function Y such that

1) Y is G -measurable,

2) E [Y 1A] = E [X1A] for every A ∈ G .

If X is integrable, then both X+ and X− are non-negative, F -measurable and integrable, hence

E [X±|G ] are defined, G -measurable, and integrable. In particular, both E [X±|G ] are finite almost

surely. Define

E [X |G ] = E
[

X+|G
]

−E
[

X−|G
]

.

Then E [X |G ] is G -measurable and integrable, satisfying that E [X : A] = E [E(X |G ) : A] for every

A ∈ G .

Example. Let (Ω ,F ,P) be a probability space, and A ∈ F with 0 < P(A)< 1. Let G = σ(A).
If X ∈ L1(Ω ,F ,P) then

E [X |G ] =
E [X : A]

P(A)
1A +

E [X : Ac]

P(Ac)
1Ac.

In general, if
{

A j

}

is a countable partition of Ω , i.e. ∪ jA j = Ω , {A j} are disjoint and P(A j)> 0,

then

E [X |G ] =
∞

∑
j=1

E
[

X : A j

]

P(A j)
1A j

where G = σ
{

A j : j = 1,2, · · ·
}

.

Notations. The following convention on conditional expectations will be assumed. If Z is a

random variable, then the conditional expectation of X given Z, denoted by E [X |Z], is defined to

be the conditional expectation of X given σ(Z). If Z1, · · · ,Zn is a finite family of random variables,

then we define

E [X |Z1, · · · ,Zn] = E [X |σ(Z1, · · · ,Zn)] .

In general, if {Zα}α∈Λ is a family of random variables, then

E [X |Zα ;α ∈ Λ] = E [X |σ({Zα}α∈Λ)] .

Example. Let X and Z be two random variables on a probability space (Ω ,F ,P) with contin-

uous joint probability density function p(x,z), i.e.

P{(X ,Z) ∈ D}=
¨

D

p(x,z)dxdz.

Then

E [ f (X)|Z] =
´

R
f (x)p(x,Z)dx
´

R
p(x,Z)dx
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where f is Borel measurable, non-negative or/and f (X) is integrable. In fact, formally

P [X = x|Z = z] =
P(X = x,Z = z)

P(Z = z)

=
p(x,z)

´

R
p(x,z)dx

.

Properties of the conditional expectations.

1) E [E [X |G ]] = E(X), i.e. the expectation of conditional expectation doesn’t change. If X

is integrable, and X is G -measurable, then E [X |G ] = X . If Z is G -measurable, thenE [ZX |G ] =
ZE[X |G ].

2) X → E(X |G ) is linear, additive and positive.

3) Convergence Theorems. (a) MCT for conditional expectations: If 0 ≤ Xn ↑ X then E [Xn|G ] ↑
E [X |G ]. (b) Fatou’s Lemma: If Xn ≥ 0, then E [liminfXn|G ] ≤ liminfE [Xn|G )]. (c) Dominated

Convergence: If |Xn| ≤ Z for some Z ∈ L1(Ω ,F ,P) and limXn = X , then E [Xn|G ]⇒ E [X |G ].

4) If G2 ⊂G1 ⊂F , then E{E [X |G1] |G2}=E [X |G2] (this is called the power law for conditional

expectations).

Jensen’s inequality for conditional expectations. If ϕ is convex, and both X and ϕ(X) are

integrable, then

ϕ (E[X |G ])≤ E [ϕ(X)|G ]

almost surely.

Let us prove the Jensen inequality. Recall that ϕ is convex on R if

ϕ(λ s+(1−λ )t)≤ λϕ(s)+(1−λ )ϕ(t)

for all s, t ∈ R and λ ∈ [0,1], which is equivalent to that

ϕ(u)−ϕ(s)

u− s
≤ ϕ(t)−ϕ(u)

t −u

for any s < u < t (with u = λ s+(1−λ )t). In particular, the right-derivative

ϕ ′
+(s) = lim

t↓s

ϕ(t)−ϕ(s)

t − s
= inf

t>s

ϕ(t)−ϕ(s)

t − s

exists. Similarly

ϕ ′
−(t) = lim

s↑t

ϕ(t)−ϕ(s)

t − s
= sup

s<t

ϕ(t)−ϕ(s)

t − s
.

and both t → ϕ ′
±(t) are increasing. By definition, for s < t we have

ϕ(t)−ϕ(s)

t − s
≤ ϕ ′

−(t)

that is

ϕ(s)≥ ϕ(t)+ϕ ′
−(t)(s− t)

for s < t. While if s > t, then

ϕ(s)−ϕ(t)

s− t
≥ ϕ ′

+(t)≥ ϕ ′
−(t)
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we thus also have

ϕ(s)≥ ϕ(t)+ϕ ′
−(t)(s− t).

Therefore, for a convex function ϕ , we have

ϕ(s)≥ ϕ(t)+ϕ ′
−(t)(s− t) for all s, t. (7.1)

Applying (7.1) t = E [X |G ] and s = X , to obtain

ϕ(X)≥ ϕ(E [X |G ])+ϕ ′
−(E [X |G ])(X −E [X |G ]).

Now t → ϕ ′
−(t) is increasing, so that it is Borel measurable, thus ϕ ′

−(E [X |G ]) is G -measurable.

Taking conditional expectation we deduce that

E [ϕ(X)|G ]≥ ϕ(E [X |G ])+E
[

ϕ ′
− (E [X |G ]) (X −E [X |G ])|G

]

= ϕ(E [X |G ])+ϕ ′
− (E [X |G ])E [(X −E [X |G ])|G ]

= ϕ(E [X |G ]).

8 Uniform integrability

1. Definition of uniform integrability. Let (Ω ,F ,P) be a probability space. The concept of

uniform integrability for a family of integrable functions is used to handle the convergence in

L1(Ω). In spirit, it is very close to that of uniform convergence, uniform continuity etc. that

you have learned in the analysis course. If f is integrable, then f is finite almost everywhere.

Hence | f |1{| f |<N} ↑ | f | almost everywhere as N ↑ ∞, thus by the Monotone Convergence Theorem
´

Ω | f |1{| f |<N}dP ↑
´

Ω | f |dP, so that limN→∞

´

{| f |≥N} | f |dP= 0.

Definition 8.1 Let A be a family of integrable functions on (Ω ,F ,µ). A is uniformly integrable

if

lim
N→∞

sup
ξ∈A

ˆ

{|ξ |≥N}
|ξ |dP= 0 .

That is, E [|ξ | : |ξ | ≥ N] tends to zero uniformly on A as N → ∞.

2. Some simple properties.

2.1) Any finite family of integrable random variables is uniformly integrable.

2.2) Suppose A ⊂ L1(Ω) and there is η ∈ L1(Ω) such that |ξ | ≤ η for every ξ ∈ A , then A

is uniformly integrable.

2.3) A ⊂ Lp(Ω) such that supξ∈A

´

Ω |ξ |pdP< ∞ for some p > 1 [which is equivalent to that

A is bounded in Lp(Ω)], then A is uniformly integrable. In fact,

sup
ξ∈A

ˆ

{|ξ |≥N}
|ξ |dµ ≤ sup

ξ∈A

ˆ

{|ξ |≥N}

1

N p−1
|ξ |pdµ

≤ 1

N p−1
sup
ξ∈A

E [|ξ |p]→ 0.

Theorem 8.2 Let A ⊂ L1(Ω). Then A is uniformly integrable if and only if

(a) A is a bounded subset of L1(Ω), that is, supξ∈A E [|ξ |]< ∞.

(b) For any ε > 0 there is a δ > 0 such that supξ∈A E [|ξ | : E] ≤ ε whenever E ∈ F with

P(E)≤ δ .
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Proof. Suppose A is uniformly integrable. For any E ∈ F and N > 0
ˆ

E

|ξ |dP =

ˆ

E∩{|ξ |<N}
|ξ |dP+

ˆ

E∩{|ξ |≥N}
|ξ |dP

≤ NP(E)+

ˆ

{|ξ |≥N}
|ξ |dP .

Given ε > 0, choose N > 0 such that supξ∈A E [|ξ | : |ξ | ≥ N] ≤ ε/2. Then supξ∈A E [|ξ | : E] ≤
NP(E)+ ε/2 for any E ∈ F . Thusδ = ε/(4N) will do.

Conversely, suppose 1) and 2) are satisfied. Let β = supξ∈A E [|ξ |]. Then, by the Markov

inequality, P{|ξ | ≥ N} ≤ β/N for any N > 0. For any ε > 0, there is a δ > 0 such that the

inequality in 2) holds. Let N = β/δ . Then P{|ξ | ≥ N} ≤ δ so that E [|ξ | : |ξ | ≥ N] ≤ ε for any

ξ ∈ A .

Corollary 8.3 Suppose A ⊂ L1(Ω) and η ∈ L1(Ω) such that E [1D|ξ |]≤E [1D|η |] for any D∈F

and ξ ∈ A . Then A is uniformly integrable.

Example. Let {Gα : σ ∈ Λ} be a collection of sub σ -algebras of F , η ∈ L1 (Ω ,F ,P) and

ηα = E [η |Gα ]. Then A = {ηα : α ∈ Λ} is uniformly integrable.

We may assume that η ≥ 0 otherwise consider η+ and η− instead. Then all ηα are non-

negative. Hence for every C > 0 and N > 0 we have

E [ηα : {ηα >C}] = E [η : {ηα >C}] (property of conditional expectations)

= E [η : {ηα >C,η ≤ N}]+E [η : {ηα >C,η > N}]
≤ NP [ηα >C]+E [η : {η > N}]

≤ N

C
E [ηα ]+E [η : {η > N}] (Markov inequality)

=
N

C
E [η ]+E [η : {η > N}] (property of conditional expectations).

Therefore

sup
α

E [ηα : {ηα >C}]≤ N

C
E [η ]+E [η : {η > N}] .

Letting C ↑ ∞ first to obtain that

lim
C→∞

sup
α

E [ηα : {ηα >C}]≤ E [η : {η > N}]

for every N > 0. However the left hand side is independent of N, while the right hand side tends

to zero as N → ∞, so that, by letting N → ∞ we obtain that

lim
C→∞

sup
α

E [ηα : {ηα >C}] = 0

which completes the proof.

3. L1-convergence and uniform integrability. The following theorem demonstrates the impor-

tance of uniform integrability.

Theorem 8.4 Let fn be a sequence of integrable functions on (Ω ,F ,P). Then fn → f in L1(Ω)
as n → ∞:

|| fn − f ||L1(Ω) = E [| fn − f |]→ 0 as n → ∞ ,

if and only if { fn} is uniformly integrable and fn → f in measure as n → ∞.
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Proof. Necessity. For any ε > 0 there is a natural number m such that || fn − f ||L1(Ω) < ε/2 for

all n > m. Therefore, for every measurable subset E,

sup
n

ˆ

E

| fn|dP≤
ˆ

E

| f |dP+ sup
k≤m

ˆ

E

| fk|dP+
ε

2
.

In particular

sup
n
E [| fn|]≤ E [| f |]+ sup

k≤m

E [| fk|]+
ε

2

i.e. { fn : n ≥ 1} is bounded in L1(Ω). Moreover, since f , f1, · · · , fm belong to L1, so that there is

δ > 0 such that, if P(E)≤ δ , then

ˆ

E

| f |dP+
m

∑
k=1

ˆ

E

| fk|dP≤ ε

2
.

Therefore supn

´

E | fn|dP≤ ε as long as µ(E)≤ δ .

Sufficiency. By Fatou’s lemma
´

Ω | f |dP ≤ supn

´

Ω | fn|dP, so that f ∈ L1(Ω). Therefore

{ fn − f : n ≥ 1} is uniformly integrable, thus, by Theorem 8.2, for any ε > 0 there is δ > 0 such

that
´

E | fn − f |dP< ε for any E ∈ F satisfying that P(E)≤ δ . Since fn → f in probability, there

is an N > 0 such that P(|Xn −X | ≥ ε)≤ δ for any n ≥ N. Therefore

ˆ

Ω
| fn − f |dP ≤

ˆ

{|Xn−X |≥ε}
| fn − f |dP+ εP{ fn − f |< ε}

≤ ε + εP{| fn − f |< ε}
≤ 2ε .

for n ≥ N. By definition, fn → f in L1(Ω).

9 Martingales in discrete-time

In the 1950’s, Doob wrote up a systemic account on the theory of martingales in his book “Stochas-

tic Processes”. Doob’s book, although about 60 years old, remains very useful to researchers and

still in print. The fundamental results in the martingale theory (in the restricted sense) include the

optional stopping theorem, martingale inequalities and the martingale convergence theorem.

This chapter is devoted to the theory of martingales in discrete-time. We will only present

the basic aspects of this subject with the emphasis on the use of filtrations (information flows),

stopping times (random times) and sample paths of stochastic sequences.

In probability theory, we study probabilistic properties of random variables: properties deter-

mined by the distributions of random variables. It can be a very subtle problem to give a good

description of laws of random variables taking values in infinite dimensional spaces. The classi-

cal probability deals with sequences of random variables, such as the law of large numbers, central

limit theorems etc., typically starts with the assumption of independence among elements in the se-

quence. When we consider stochastic processes, that is, parametrized families of random variables,

we will be interested in relationships between elements in the family and in particular properties

determined by their (finite dimensional) joint distributions.

The basic concepts in the theory of martingales become natural and apparent as we will see, if

we are allowed ourselves to use a family of different σalgebras on the same sample space instead

one fixed collection of events, the technical used to prove deep limiting theorems, which were

mastered only by few experts in the past, become systemic tools as long as we accept the notion
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of random times. It took some years for the probability society to digest these two fundamental

ideas, and it took a generation to rewrite our textbooks on probability theory which introduce the

basic theory of martingales from the very beginning.

Let us begin with the concept of filtrations (which model flows of information).

Let (Ω ,F ,P) be a probability space. Let Z+ = {0,1, · · ·} denote the ordered set of non-

negative integers, and Z+ = Z+∪{∞}.

Definition 9.1 A family (Fn)n∈Z+
of sub σ -algebras of F is called a filtration, if Fn ⊂ Fn+1 for

every n ∈ Z+.

A probability space (Ω ,F ,P) together with a filtration (Fn)n∈Z+
is called a filtered probabil-

ity space, denoted by (Ω ,Fn,F ,P).

It is useful to consider Fn as the information available to us up to time n.

Given a sequence of random variables X = (Xn)n∈Z+
on the probability space (Ω ,F ,P), for

every n, let F X
n be the smallest σ -algebra with respect to which X0, · · · , Xn are measurable, i.e.

F X
n = σ{Xm : m ≤ n}.

(

F X
n

)

is called the filtration generated by X . A sequence of random

variables X = (Xn)n∈Z+
can be considered as the state of some random process evolving in discrete

time n = 0, 1,2, · · · . For example the value of the share price of a particular company at the end

of each trading day. F X
n is the information about this random evolution up to time n – that is, the

history of the price process. In particular, each Xn is measurable with respect to F X
n , i.e. Xn ∈F X

n ,

so that X = (Xn)n≥0 is adapted to the filtration
(

F X
n

)

, which means that as long as we reach time

n, then we know the value taken by the random variable Xn at that time. Here we abuse the system

of notations: which doesn’t mean Xn is an element of F X
n , but {Xn ∈ B} ∈ F X

n for every Borel

set B, as a convention, here {Xn ∈ B} is the abbreviation of {ω ∈ Ω : Xn(ω) ∈ B}, and the same

convention applies to similar situations.

In stochastic analysis, a stochastic process is any parameterized family of random variables

valued in an arbitrary (measurable) state space. In this book, however, by a stochastic process

we will mean a sequence of random variables (Xn), on a filtered probability space. The name

“stochastic process” (stochastic derives from the Greek for random) is used to underline the fact

we are more concerned with the behavior of a random sequence evolving with time n, and we

are not so interested in the properties of the individual random variables, although naturally the

distribution of each random variable Xn will contribute to the global and limiting behavior of the

whole sequence (Xn).

Definition 9.2 1) A sequence (Xn)n∈Z+
of random variables on (Ω ,F ,P) is adapted to a filtration

(Fn), if for every n ∈ Z+, Xn is Fn-measurable. In this case we say (Xn)n∈Z+
is an adapted

sequence, or adapted process (with respect to (Fn)).
2) If X0 ∈ F0 and if Xn is Fn−1-measurable for any n ∈ N , then we say (Xn) is predictable or

previsible.

We may think that the sample point ω ∈ Ω is chosen by the fates and over time the choice is

revealed to us through the values taken by the process Xn. Thus at time n the σ -algebra Fn contains

all those sets which can be resolved, i.e. we know if ω is in them or not. That is the meaning of

adaptness

For a predictable sequence (Xn), you know Xn before the present time n, so it is previsible and

you can certainly predict it!

Another important concept, stopping times [which are random times], allows us to articulate

the idea of making a decision about when to stop a process based on the observations of its past

behavior. However stopping times have far-reaching applications than its superficial definition.

The concept of stopping times really synthesize many important technical like random partitions,

localizations etc.
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Definition 9.3 Let (Fn)n∈Z+
be a filtration on (Ω ,F ,P). A measurable function T : Ω → Z+∪

{∞} [thus it may take value ∞] is called a stopping time (with respect to (Fn); if one wishes to

emphasize the underlying filtration in question), if {T = n} ∈ Fn for every n.

A stopping time T is a random variable and{T = ∞} ∈ F . Both finite constant time T ≡ n and

the infinity time T ≡ ∞ are stopping times.

Let F∞ = σ {Fn : n ∈ Z+} ⊂ F . If T is a stopping time, then

{T = ∞}= Ω \
∞
⋃

n=0

{T = n}=
∞
⋂

n=0

{T > n}

belongs to F∞, and for every n

{T ≤ n}=
n
⋂

k=0

{T = k} ∈ Fn

and

{T > n}= {T ≤ n}c ∈ Fn

for every n ∈ Z+.

If S and T are two stopping times, then S+T , S∨T = max{S,T} and S∧T = min{S,T} are

stopping times too. In fact

{S+T = n}=
n
⋃

j=0

{S = j}∩{T = n− j} ,

{S∨T = n}= ({S = n}∩{T ≤ n})
⋃

({T = n}∩{S ≤ n})
and

{S∧T ≤ n}= {S ≤ n}∩{T ≤ n}
belong to Fn for every n.

In the literature prior to the French School establishing the general theory of stochastic pro-

cesses, stopping times had been called Markov times (for example, see K. Ito and H. P. J. McKean:

Diffusion Processes and Their sample Paths. Berlin, Springer-Verlag 1965).

Example 9.4 Let (Xn)n∈Z+
be an adapted process on a filtered probability space (Ω ,F ,Fn,P),

and B ∈ B(R). Then the first time T at which the process (Xn)n∈Z+
hits B:

T = inf{n ≥ 0 : Xn ∈ B}

is a stopping time with respect to (Fn). More precisely, T is a random variable defined by

T (ω) = inf{n ≥ 0 : Xn(ω) ∈ B} ∀ω ∈ Ω

together with the convention that infØ = ∞. Hence

{T = n}=
n−1
⋂

k=0

{Xk ∈ Bc}∩{Xn ∈ B} .

Since (Xn) is adapted, therefore {Xk ∈ Bc} ∈ Fk and {Xn ∈ B} ∈ Fn, so that {T = n} ∈ Fn. T is

a stopping time, called a hitting time.
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Hitting times are essentially the only stopping times we are interested in.

Given a stopping time T on (Ω ,Fn,F ,P), the σ -algebra FT representing the information

available up to the random time T is the following σ -algebra

FT = {A ∈ F∞ : s.t. A∩{T ≤ n} ∈ Fn ∀n = 0,1,2, · · ·} ,

where F∞ = σ {Fn : n ≥ 0}.

Exercise 9.5 If T is a stopping time on (Ω ,F ,Fn,P), then FT is a σ -algebra. If T = n is a

constant time, then FT = Fn.

Theorem 9.6 Let (Xn)n∈Z+
be an adapted random sequence on (Ω ,Fn,F ,P), and T be a stop-

ping time with respect to (Fn). Define

XT 1{T<∞}(ω) =

{

XT (ω)(ω), if T (ω)< ∞,

0, if T (ω) = ∞

for ω ∈ Ω . Then XT 1{T<∞} is FT -measurable [In particular XT 1{T<∞} is a random variable.]

Proof. In fact

{

XT 1{T<∞} ∈ G
}

∩{T = n}= {Xn ∈ G,T = n}
= {Xn ∈ G}∩{T = n}

which belongs to Fn for and G ∈ B(R) and for every n = 0,1,2, · · · . Therefore
{

XT 1{T<∞}
}

∈
FT , which completes the proof.

Exercise 9.7 Let (Xn)n∈Z+
be a sequence of independent random variables with identical distri-

bution:

P(Xn = 1) = p , P(Xn = 0) = 1− p

where 0 < p < 1. Let (Fn) be the filtration generated by (Xn), and

T1 = inf{n ≥ 1 : Xn = 1} ,

Tn+1 = inf{T > Tn : Xn = 1} if n ≥ 1 .

Tn is the time that the n-th time 1 occurs in the sequence. Then each Tn is a stopping time, and the

sequence

T1,T2 −T1, · · · ,Tn −Tn−1, · · ·
is a sequence of independent, identically distributed (with a geometric distribution).

We now introduce the definition of a martingale. The word martingale originated in gambling,

describing the double-or-quits strategy or part of a horse’s harness. Mathematically it encapsulates

the idea of a fair game. That is, whatever information from the past history of the game you use in

order to determine your betting strategy, your expected return from playing the game is the same

as your current fortune.

Definition 9.8 Let X =(Xn)n∈Z+
be an adapted process on a filtered probability space (Ω ,Fn,F ,P).

Suppose each Xn is integrable.

1) X is a martingale, if

E [Xn+1|Fn] = Xn a.s. ∀n ∈ Z+.
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2) X is a super-martingale if

E [Xn+1|Fn]≤ Xn a.s. ∀n ∈ Z+.

3) X is a sub-martingale if

E [Xn+1|Fn]≥ Xn a.s. ∀n ∈ Z+.

Exercise 9.9 1) Prove that, an adapted, integrable random sequence (Xn) is a martingale if and

only if

E [Xm|Fn] = Xn a.s. ∀m ≥ n.

State a version of the statement for a super- or sub-martingale.

2) If (Xn) is a martingale, then E [Xn] = E [X0] for any n.

3) If (Xn) is a super-martingale, then n → E [Xn] is decreasing, while n → E [Xn] is increasing

if (Xn) is a sub-martingale.

Example 9.10 In these examples we are given a filtered probability space (Ω,F ,Fn,P).
1) Martingale by projection. Let ξ ∈ L1(Ω,F ,P) be an integrable random variable [i.e.

E [|ξ |]< ∞], and Xn = E [ξ |Fn]. Then (Xn) is a martingale.

2) Random walk. Let (ξn)n∈Z+
be a sequence of adapted and integrable random variables.

Suppose ξn+1 and Fn are independent [i.e. σ {ξn+1} and Fn are independent]. An example is

that {ξn} is a sequence of independent random variables on (Ω ,F ,P) and Fn = σ{ξm : m ≤ n}.

Let Xn = ∑n
k=0 ξk be the partial sum sequence. Then (Xn) is a martingale if E [ξn] = 0 for any n, is

a super-martingale if E [ξn]≤ 0, and a sub-martingale if E [ξn]≥ 0 for any n.

3) Likelihood ratios. Let f ,g be two probability density functions, with support on the whole

of R. Let (Xn) be a sequence of independent, identically distributed random variables from the

distribution with probability density function f . The likelihood ratio is given by

Rn =
g(X1)g(X2) . . .g(Xn)

f (X1) f (X2) . . . f (Xn)

with R0 = 1. Then (Rn) is a martingale with respect to the filtration generated by X.

4) Polya’s Urn. At time t = 0 an urn contains 1 red and 1 black ball. At each time a ball is

chosen randomly from the urn and it is then replaced along with another ball of the same color.

Thus at the time of the n-th draw there are n+ 2 balls in the urn and we let Bn be the number of

black balls. Then Mn = Bn/(n+2) is a martingale with respect to the filtration generated by Bn.

Example 9.11 [Martingale transform, discrete stochastic integral] If (Hn) is a predictable process

and (Xn) is a martingale, then

(H.X)n =
n

∑
k=1

Hk(Xk −Xk−1), (H.X)0 = 0

is a martingale.

Exercise 9.12 1) If (Xn) and (Yn) are two martingales (resp. super-martingale), so is (Xn +Yn).
2) Show that (Xn ∧Yn) is a super-martingale, where (Xn) and (Yn) are two super-martingales.

In fact, since Zn = min{Xn,Yn} so that

E [Zn+1|Fn]≤ E [Xn+1|Fn]≤ Xn

and also

E [Zn+1|Fn]≤ E [Yn+1|Fn]≤ Yn

hence E [Zn+1|Fn]≤ Zn, thus Z is also a super-martingale.
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Recall Jensen’s inequality for conditional expectation: if ϕ : R → R is a convex function, ξ ,

ϕ(ξ ) ∈ L1(Ω ,F ,P), and G is a sub σ -field of F , then

ϕ(E [ξ |G ])≤ E [ϕ(ξ )|G ] .

Functions (t ln t)1(1,∞)(t), t+ = t1(0,∞) and |t|p (for p ≥ 1) are examples of convex functions.

Theorem 9.13 1) Let (Xn) be a martingale, and ϕ : R→ R be a convex function. Suppose ϕ(Xn)
are integrable for every n. Then {ϕ(Xn)} is a sub-martingale.

2) Let (Xn) be a sub-martingale, and ϕ : R→ R be increasing and convex. Suppose ϕ(Xn) are

integrable for every n, then {ϕ(Xn)} is a sub-martingale.

Proof. 1) In fact, applying Jensen’s inequality

ϕ(Xn) = ϕ (E [Xn+1|Fn]) (martingale property)

≤ E [ϕ(Xn+1)|Fn] (Jensen’s inequality).

which proved 1). The proof of 2) is similar.

t+ = max{t,0} = t1(0,∞) is increasing and convex, thus, if (Xn) is a sub-martingale, so is

X+
n = max{Xn,0}. If X = (Xn) is a super-martingale, then −Xn is a sub-martingale, so that

X−
n = max{−Xn,0} is a sub-martingale. That is, the positive part of a sub-martingale is again a

sub-martingale, while the negative part of a super-martingale is however a sub-martingale. There-

fore, if Xn is a martingale, then both its positive part and its negative part are sub-martingales, so

is its absolute value |Xn|= X+
n +X−

n .

10 Martingale inequalities

In this section we prove the fundamental martingale inequalities.

We first establish Doob’s optional sampling theorem which shows that the (super-, sub-)martingale

property holds at bounded stopping times.

Theorem 10.1 [Doob’s optional stopping theorem] Let (Xn) be a martingale (resp. super-martingale,

resp. sub-martingale), and S ≤ T two bounded stopping times. Then E [XT |FS] = XS (resp.

E [XT |FS]≤ XS, resp. E [XT |FS]≥ XS ).

Proof. [The proof is not examinable.] We only need to prove the case for super-martingales.

Thus X =(Xn) is a super-martingale. Since S,T are bounded, so there is N ∈N such that S≤ T ≤N.

Since

{XS ∈ G}∩{T = n}= {Xn ∈ G}∩{T = n} ∈ Fn

for every n and any G∈B(R), so XS is FS-measurable. Similarly XT is FT -measurable. Moreover

E [|XT |] =
N

∑
j=0

E
[

|X j|1{T= j}
]

≤
N

∑
j=0

E
[

|X j|
]

,

so XT is integrable. Similarly XS is integrable too.

To show that E [XT |FS]≤ XS, we only need to prove that

E [XT : A]≤ E [XS : A] for every A ∈ FS

or equivalently we need to show that for each A ∈ FS, we have E [XT −XS : A]≤ 0.
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Let A ∈ FS. Since S ≤ T ≤ N and XT −XS = 0 on {S = T}, we thus have

E [XT −XS : A] = E [XT −XS : A∩{S < T}] .

Now we use the typical technique via stopping times. Write {S < T} as disjoint union according

to the values. Since S < T ≤ N, S takes only possible values 0, · · · ,N −1, so that

A∩{S < T}=
N−1
⋃

j=0

A∩{S = j}∩{T > j}

is the disjoint union. Since A ∈ FS, so by definition A ∩ {S = j} ∈ F j, and also {T > j} =
{T ≤ j}c ∈ F j for j = 0, · · · ,N −1, so that

A j ≡ A∩{S = j}∩{T > j} ∈ F j.

Hence, as XS = X j on {S = j} for j = 0, · · · ,N −1, we have

E [XT −XS : A] = E

[

XT −XS :
N−1
⋃

j=0

A j

]

=
N−1

∑
j=0

E
[

XT −X j : A j

]

.

1) If 0 ≤ T −S ≤ 1, then XT = X j+1 and XS = X j on A j for j = 0, · · · ,N −1, and therefore

E [XT −XS : A] =
N−1

∑
j=0

E
[

X j+1 −X j : A j

]

.

However, X is a super-martingale and A j ∈ F j, so that E
[

X j+1 : A j

]

≤ E
[

X j : A j

]

. That is,

E
[

X j+1 −X j : A j

]

≤ 0 for j = 0, · · · ,N −1, and therefore E [XT −XS : A]≤ 0 for every A ∈ FS.

2) In general, let R j = T ∧(S+ j), j = 1, · · · ,n. Then R j are stopping times, and S ≤ R1 ≤ ·· · ≤
Rn = T . Moreover R1−S ≤ 1 and R j+1−R j ≤ 1 for 1 ≤ j ≤ N −1. Let A ∈ FS. Then A ∈ FR j as

S ≤ R j. Therefore by applying the first case to R j we obtain

E [XS : A]≥ E [XR1
: A]≥ ·· · ≥ E [XT : A]

so that E [1AXS]≥ E [1AXT ]. The proof is complete.

Let us first deduce several easy but important consequences from Doob’s optional stopping

theorem.

Corollary 10.2 Let X = (Xn) be a super-martingale.

1) If T ≥ S are two bounded stopping times, then E [XT ]≤ E [XS].
2) If T is a stopping time, then E [XT∧n]≤E [XT∧m] for any n≥m, where XT∧n =XT on {T ≤ n}

and XT∧n = Xn on {T > n}.

Similar results hold for sub-martingales.

Proof. For 1) we have E [XT |FS] ≤ E [XS], then taking expectations both sides we obtain

E(XT )≤ E(XS). 2) follows 1) as T ∧m and T ∧n are both stopping times, and bounded by n.

Corollary 10.3 If X = (Xn) is a super-martingale, and T is a stopping time, then

E [|XT∧n|]≤ E [X0]+2E
[

X−
n

]

∀n ∈ Z+.

In particular

E
[

|XT |1{T<∞}
]

≤ 3sup
n
E [|Xn|] .
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Proof. Since (Xn) is a super-martingale, so its negative part (X−
n ) is a sub-martingale, hence

E [XT∧n]≤ E [X0] and E
[

X−
T∧n

]

≤ E [X−
n ]. Since

|XT∧n|= X+
T∧n +X−

T∧n = XT∧n +2X−
T∧n

we therefore have

E [|XT∧n|] = E [XT∧n]+2E
[

X−
T∧n

]

≤ E [X0]+2E
[

X−
n

]

which is the first inequality. It follows that

E
[

|XT∧n|1{T<∞}
]

≤ 3sup
n
E [|Xn|] (10.1)

for every n. Since

|XT |1{T<∞} = lim
n→∞

|XT∧n|1{T<∞}

and applying Fatou’s lemma to |XT∧n|1{T<∞}, we obtain

E
[

|XT |1{T<∞}
]

= E

[

lim
n→∞

|XT |1{T<∞}
]

≤ liminf
n→∞

E
[

|XT∧n|1{T<∞}
]

≤ 3sup
n
E [|Xn|]

where the last inequality follows from (10.1).

Theorem 10.4 (Stopped super-martingales are super-martingales) Suppose X = (Xn) is a super-

martingale, and suppose T is a stopping time, then the stopped process XT = (XT∧n) is again a

super-martingale. A similar result holds for martingales and sub-martingales.

Proof. Since, for every Borel measurable subset G

{XT∧n ∈ G}= (∪n
k=0 {Xk ∈ G}∩{T = k})∪ ({Xn ∈ G}∩{T > n}) ∈ Fn

for every n, so that XT is adapted to (Fn). Since |XT∧n| ≤ ∑n
j=0

∣

∣X j

∣

∣, so XT∧n is integrable for

every n∈ Z.

Now observe that for every n

XT∧(n+1)−XT∧n = 1{T>n}(Xn+1 −Xn).

Notice that {T > n} = {T ≤ n}c is Fn-measurable, so that 1{T>n} is Fn-measurable and non-

negative. Therefore, after taking conditional expectation of both sides of the above equality, we

obtain

E
[

XT∧(n+1)−XT∧n|Fn

]

= E
[

1{T>n} (Xn+1 −Xn) |Fn

]

= 1{T>n}E [Xn+1 −Xn|Fn]

≤ 0

here the last inequality follows from the super-martingale property:

E [Xn+1 −Xn|Fn] = E [Xn+1|Fn]−Xn ≤ 0.

Therefore XT is a super-martingale too.
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Corollary 10.5 Let T be a finite stopping time.

1) If X = (Xn) is a non-negative super-martingale, then E [XT ]≤ E [X0].
2) If X = (Xn) is a super-martingale, and there is an integrable random variable ξ such that

|Xn| ≤ ξ almost everywhere on Ω for all n, then E [XT ]≤ E [X0].

Proof. 1) In fact, since T is finite, XT∧n → XT as n → ∞. By Fatou’s lemma we have

E [XT ]≤ liminf
n→∞

E [XT∧n]≤ E [X0]

which completes the proof.

2) This time we apply the Dominated Convergence Theorem to {XT∧n}. In fact

|XT∧n|=
n

∑
j=0

∣

∣X j

∣

∣1{T= j}+ |Xn|1{T>n} ≤ ξ

so the inequality follows from the DCT.

Corollary 10.6 Let T be a finite stopping time, and X = (Xn) be a super-martingale. Let ξ =
supn=1,2,··· |Xn −Xn−1|. Suppose ξ T is integrable, i.e. E [ξ T ]< ∞, then E [XT ]≤ E [X0]. In partic-

ular, if the sequence |Xn −Xn−1| ≤ L for every n, where L is a constant, and if T is an integrable

stopping time, then E [XT ]≤ E [X0].

Proof. For every n, we have

|XT∧n|=
∣

∣

∣

∣

∣

X0 +
n∧T

∑
k=1

(Xk −Xk−1)

∣

∣

∣

∣

∣

≤ |X0|+ξ T.

Since |X0|+ξ T is integrable, and XT∧n → X0 almost everywhere, by Lebesgue’s Dominated Con-

vergence Theorem, E [XT ] = limn→∞E [XT∧n] which yields the conclusion.

In order to establish a general result such as 2) in Corollary 10.5, the concept of uniform

integrability may be useful. For example, we have the following

Corollary 10.7 Let T be a finite stopping time, and X = (Xn) be a super-martingale. Suppose

{XT∧n : n = 0,1,2, · · ·} is uniformly integrable, then E [XT ]≤ E [X0].

The proof is exactly the same as that of 2), Corollary 10.5. In fact, since XT∧n → XT and

{XT∧n} is uniformly integrable, by Theorem 8.4, E [XT ] = limn→∞E [XT∧n].
It is therefore useful to introduce the following definition.

Definition 10.8 Let X = (Xn)n∈Z+ be an adapted sequence of real random variables on a filtered

probability space (Ω ,F ,Fn,P). Let T denote the collection of all finite (Fn)-stopping times.

Then we say X = (Xn) is of class D, if the family {XT : T ∈ T } is uniformly integrable.

Next we derive the main martingale inequalities, as applications of Doob’s optional stopping

theorem. Let us introduce a notation first.

If (Xn)n∈Z+ is a sequence of real random variables on (Ω ,F ,P), for each n ∈Z+, set X∗
n (ω) =

maxk≤n Xk(ω) for ω ∈ Ω. Then (X∗
n ) is called the sequence of running maximal of (Xn). It is

obvious that each X∗
n is a random variable. If (Xn)n∈Z+ is an adapted sequence on the filtered space

(Ω ,F ,Fn,P), then so is its running maximal.
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Theorem 10.9 [Doob’s maximal inequality for sub-martingales] If Y = (Yn) is a sub-martingale,

then

P

[

sup
k≤n

Yk ≥ λ

]

≤ 1

λ
E

[

Yn : sup
k≤n

Yk ≥ λ

]

(10.2)

for any λ > 0 and for every n = 0,1,2, · · · .

Proof. Let T = inf{k : Yk ≥ λ}. Then T is a stopping time, and

{T = j}=
{

Y0 < λ , · · · ,Y j−1 < λ ,Y j ≥ λ
}

. (10.3)

Therefore

P

[

sup
k≤n

Yk ≥ λ

]

= P [T ≤ n] =
n

∑
j=0

P [T = j] .

By (10.3) for j ≤ n, we have

P [T = j] = P
[

Y j ≥ λ ,T = j
]

≤ E

[

Y j

λ
: T = j

]

=
1

λ
E
[

Y j : T = j
]

.

Since Y is a sub-martingale and {T = j} ∈F j, so that E
[

Y j : T = j
]

≤ E [Yn : T = j] for all j ≤ n.

Therefore

P

[

sup
k≤n

Yk ≥ λ

]

=
n

∑
j=0

P [T = j]≤ 1

λ

n

∑
j=0

E [Yn : T = j]

=
1

λ
E [Yn : T ≤ n] =

1

λ
E

[

Yn : sup
k≤n

Yk ≥ λ

]

which completes the proof.

As a consequence, we have the following important martingale inequality.

Corollary 10.10 [Doob’s maximal inequality for martingales] If M = (Mn) is a martingale, then

P

[

sup
k≤n

|Mk| ≥ λ

]

≤ 1

λ
E

[

|Mn| : sup
k≤n

|Mk| ≥ λ

]

(10.4)

for any λ > 0 and n = 0,1, · · · .

Proof. Since M is a martingale, so (|Mn|) is a (non-negative) sub-martingale, and (10.4) follows

from (10.3) immediately.

There is a slightly different version of the maximal inequality for super-martingales.

Theorem 10.11 [Doob’s maximal inequality for super-martingales] If X =(Xn) is a super-martingale,

then

P

[

sup
k≤n

Xk ≥ λ

]

≤ 1

λ

(

E [X0]−E

[

Xn : sup
k≤n

Xk ≤ λ

])

(10.5)

for any λ > 0, n ∈ Z+, and

P

[

sup
k≤n

|Xk| ≥ λ

]

≤ 1

λ

(

E [X0]+2E
[

X−
n

])

(10.6)

for all λ > 0, where X−
n = max{0,−Xn} which is a sub-martingale.
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Proof. Let R = inf{k ≥ 0 : Xk ≥ λ} and T = R∧n. Then T is a bounded stopping time. Since

X is a super-martingale, so that, applying Doob’s optional theorem to stopping times T and S = 0,

one has E [X0]≥ E [XT ], hence

E [X0]≥ E

[

XT : sup
k≤n

Xk ≥ λ

]

+E

[

XT : sup
k≤n

Xk < λ

]

≥ λP

[

sup
k≤n

Xk ≥ λ

]

+E

[

Xn : sup
k≤n

Xk < λ

]

here for the second inequality we have used the fact that on
{

supk≤n Xk ≥ λ
}

, R ≤ n, so that

XT = XR ≥ λ , which is equivalent to (10.5).

Now we prove the second estimate. Since X = (Xn) is a super-martingale, (−Xn) is a sub-

martingale, so that

P

[

inf
k≤n

Xk ≤−λ

]

= P

[

sup
k≤n

(−Xk)≥ λ

]

≤ 1

λ
E

[

−Xn : inf
k≤n

Xk ≤−λ

]

.

together with (10.5) we deduce that

P

[

sup
k≤n

|Xk| ≥ λ

]

= P

[

sup
k≤n

Xk ≥ λ , or inf
k≤n

Xk ≤−λ

]

≤ P

[

sup
k≤n

Xk ≥ λ

]

+P

[

inf
k≤n

Xk ≤−λ

]

≤ 1

λ
E [X0]−

1

λ
E [Xn : X∗

n ≤ λ ]+
1

λ
E

[

−Xn : inf
k≤n

Xk ≤−λ

]

≤ 1

λ

(

E [X0]+2E
[

X−
n

])

which is the last inequality.

The following result plays a key role in proving the strong law of large numbers, which is a

strong version of the elementary Markov inequality.

Theorem 10.12 [Kolmogorov’s inequality] Let (Xn) be a martingale and XN ∈ L2(Ω ,F ,P) where

N is a positive integer. Then for any λ > 0

P

[

sup
k≤N

|Xk| ≥ λ

]

≤ 1

λ 2
E
[

X2
N

]

. (10.7)

Proof. By Jensen’s inequality, for any k ≤ N

E
[

X2
k

]

= E(E [XN |Fk])
2 ≤ E

[

X2
N

]

< ∞.

[That is (Xn) is a square integrable martingale up to N]. Therefore (X2
k ) (k = 0,1, · · · ,N) is a

sub-martingale (up to time N). Applying Doob’s maximal inequality one obtains

P

[

sup
k≤n

X2
k ≥ λ 2

]

≤ 1

λ 2
E

[

X2
n : sup

k≤n

X2
k ≥ λ 2

]

≤ 1

λ 2
E
[

X2
n

]

for all n ≤ N.
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Example 10.13 Let (Xn) be independent and square integrable. Then Sn = ∑n
k=0(Xk − µk) where

µk = E [Xk] is a martingale. Moreover

E
[

S2
n

]

= E

[

n

∑
k=0

(Xk −µk)

]2

=
n

∑
k=0

σ2
k

where σ2
k = var(Xk). According to Kolmogorov’s inequality

P

[

sup
k≤n

∣

∣

∣

∣

∣

k

∑
l=0

(Xl −µl)

∣

∣

∣

∣

∣

≥ λ

]

≤ 1

λ 2

n

∑
k=0

σ2
k

for any λ > 0.

Doob’s maximal inequality is a tail estimate for the distribution of the running maximum of a

martingale, thus can be used to estimate the Lp-norm, which is the context of Doob’s Lp-inequality.

Let us begin with an elementary lemma which follows from Fubini’s theorem directly.

Lemma 10.14 Suppose ρ is right-continuous, increasing on (0,∞) and ρ(0+) = 0, and ξ is a

non-negative random variable on (Ω ,F ,P), then

ρ (ξ ) = ρ (ξ )−ρ (0+) =

ˆ

(0,ξ ]
mρ(dλ ) on {ξ > 0}

E [ρ(ξ ) : ξ > 0] = E

[

ˆ

(0,ξ ]
mρ(dλ ) : ξ > 0

]

= E

[

ˆ

(0,∞)
1{λ≤ξ}mρ(dλ )

]

=

ˆ

Ω×(0,∞)
1{ξ≥λ}mρ(dλ )dP=

ˆ

(0,∞)
P [ξ ≥ λ ]mρ(dλ ),

where mρ(dλ ) is the Lebesgue-Stieltjes measure defined by ρ on (0,∞), so that mρ((s, t]) = ρ(t)−
ρ(s) for any t ≥ s ≥ 0.

Theorem 10.15 [Doob’s Lp-inequality] 1) If (Xn) is a non-negative sub-martingale, then, for any

p > 1

E [(X∗
n )

p]≤
(

p

p−1

)p

E [(Xn)
p] . (10.8)

2) Suppose (Xn) is a martingale and p > 1,

E

[

max
k≤n

|Xk|p
]

≤
(

p

p−1

)p

E [|Xn|p] . (10.9)

In particular, for p > 1,

‖X∗
n ‖p ≤ q‖Xn‖p

where 1
p +

1
q = 1, ‖·‖p denotes the Lp-norm, and X∗

n = maxk≤n Xk is the running maximum.

Proof. If (Xn) is a martingale, then (|Xn|) is a sub-martingale, so (10.9) follows from (10.8).

Thus we only need to consider non-negative sub-martingale X . Assume that E [(Xn)
p] < ∞ other-

wise the inequality is trivial. X = (Xn)n≥0 is a sub-martingale, and Xn are non-negative, by Doob’s

maximal inequality

P [X∗
n ≥ λ ]≤ 1

λ
E [Xn;X∗

n ≥ λ ]
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for any λ > 0. If ρ is right continuous, increasing and ρ(0+) = 0 on (0,∞), by Lemma 10.14

E [ρ(X∗
n ) : X∗

n > 0] = E

[

ˆ

(0,X∗
n ]

mρ(dλ ) : X∗
n > 0

]

=

ˆ

(0,∞)
P [X∗

n ≥ λ ]mρ(dλ ) [Fubini’s Theorem]

≤
ˆ

(0,∞)

1

λ
E [Xn : X∗

n ≥ λ ]mρ(dλ )

=

ˆ

(0,∞)

{

1

λ

ˆ

{X∗
n ≥λ}

XndP

}

mρ(dλ )

= E

[

Xn

(

ˆ

(0,X∗
n ]

1

λ
mρ(dλ )

)

: X∗
n > 0

]

Using Fubini’s Theorem again].

where the inequality above follows from the maximal inequality.

Let p > 1, and ρ(λ ) = λ p. Then ρ ′(λ ) = pλ p−1 and mρ(dλ ) = pλ p−11(0,∞)dλ . Applying the

previous estimate to ρ(λ ) = λ p, we obtain that

E [(X∗
n )

p] = E [(X∗
n )

p : X∗
n > 0]

≤ E

[

Xn

(

ˆ X∗
n

0

1

λ
pλ p−1dλ

)

: X∗
n > 0

]

=
p

p−1
E

[

Xn (X
∗
n )

p−1
]

.

For the term on the right-hand side, we apply the the Holder inequality

ˆ

Ω
| f g|dµ ≤ ‖ f‖p ‖g‖q

to f = Xn and g = (X∗
n )

p−1, 1
p +

1
q = 1, so that

E [(X∗
n )

p]≤ p

p−1
(E [(Xn)

p])
1
p

(

E

[

(X∗
n )

(p−1)q
])

1
q
.

Since 1
q = p−1

p , (p−1)q = p, so after simplification,

E [(X∗
n )

p]≤ p

p−1
(E [(Xn)

p])
1
p (E [(X∗

n )
p])

1− 1
p . (10.10)

Now (Xk)
p is a sub-martingale, so that k → E [(Xk)

p] is increasing, and therefore

E [(X∗
n )

p]≤
n

∑
k=0

E [(Xk)
p]≤ (n+1)E [(Xn)

p]< ∞.

If E [(X∗
n )

p] = 0, then X∗
n = 0 almost surely, so that Xn = 0 a.e. too, so Doob’s inequality is true.

If E [(X∗
n )

p] > 0, then by dividing both sides of (10.10) by (E [(X∗
n )

p])1− 1
p and taking p-th power

both sides, to obtain

E [(X∗
n )

p]≤
(

p

p−1

)p

E [(Xn)
p] , (10.11)
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which completes the proof.

The Doob’s inequality implies that, for a martingale X = (Xn), the Lp-norm of X∗
n and the

Lp-norm of Xn are equivalent as long as p > 1, and

‖Xn‖Lp ≤ ‖X∗
n ‖Lp ≤

p

p−1
‖Xn‖Lp .

In particular, for a martingale (Xn), X∗
n is p-th integrable if and only if Xn is p-th integrable for

every p > 1.

Doob’s Lp-inequality does not apply to the case p = 1, as in this case q = ∞ which gives the

infinity upper bound. That is to say, the L1-norm of the terminal value of a martingale does not in

general control the L1-norm of its running maximal.

Exercise 10.16 Prove that logx ≤ x/e for all x > 0, hence prove that

a log+ b ≤ a log+ a+
b

e
. (10.12)

Consider h(t) = log t− t
e for t > 0. Then h(t)→−∞ as t ↓ 0 or t ↑ ∞, so h achieves its maximum in

(0,∞). Since h′(t) = 1
t − 1

e has unique root t = e, e is the maximum of h. Therefore h(t)≤ h(e) = 0

for all t > 0, that is, log t ≤ t
e .

Now

log+(at) = max{0, log(at)}= max{0, loga+ log t}

≤ max
{

0, log+ a+
t

e

}

= log+ a+
t

e
,

Setting t = b
a we obtain the inequality (10.12).

Theorem 10.17 If (Xn) is a non-negative sub-martingale, then

E

[

max
k≤n

Xk

]

≤ e

e−1

(

1+E
[

Xn log+Xn

])

. (10.13)

Proof. [The proof is not examinable.] We have seen from the proof of Doob’s Lp-inequality

E [ρ(X∗
n ) : X∗

n > 0]≤ E

[

Xn

ˆ

(0,X∗
n ]

1

λ
mρ(dλ ) : X∗

n > 0

]

.

where now ρ(λ ) = (λ − 1)+ which is a continuous increasing function with support on [1,∞).
Therefore

E [ρ(X∗
n )] = E [ρ(X∗

n ) : X∗
n > 0] ≤ E

[

Xn

ˆ X∗
n

1

1

λ
dλ : X∗

n ≥ 1

]

= E
[

Xn log+X∗
n

]

≤ E
[

Xn log+Xn

]

+
1

e
E [X∗

n ] .

where we have used the inequality

Xn logX∗
n ≤ Xn log+Xn +

X∗
n

e
.
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On the other hand

E [X∗
n ] = E

[

X∗
n 1{X∗

n ≥1}
]

+E
[

X∗
n 1{X∗

n <1}
]

≤ E
[

ρ(X∗
n )1{X∗

n ≥1}
]

+E
[

1{X∗
n >1}

]

+E
[

X∗
n 1{X∗

n <1}
]

≤ E [ρ(X∗
n )]+1.

Together with the previous estimate one thus deduces that

E [X∗
n ]≤ 1+E

[

Xn log+Xn

]

+
E [X∗

n ]

e

which yields the L1-estimate.

11 The martingale convergence theorem

An important field in the probability theory is to study the asymptotic behavior of sequences of

random variables. For example, we are interested in whether a sequence {Xn : n ≥ 0} converges or

not as n → ∞.

11.1 Doob’s up-crossing lemma

Suppose (an) is a sequence of real numbers, and suppose a⋆ and a⋆ are the upper and lower limits

of {an} (which can be ∞ or −∞), then limn→∞ an exists (as a real number or ±∞), if and only if

a⋆ = a⋆. By definition, there are two sub-sequences nk and mk such that

lim
k→∞

ank
= a⋆ and lim

l→∞
aml

= a⋆

and we can choose two sub-sequences such that

n0 < m0 < n1 < m1 < · · ·< nk < mk < · · ·

If a⋆ < a⋆, then we can choose two rationals a < b such that

a⋆ < a < b < a⋆

By looking at the sequence (an) along an0
,am0

, · · · ,ank
,amk

, · · · , we can see that the sequence (an)
must cross from low level a to upper level b infinitely many times. That is, the number of up-

crossing (a,b) by (an) is infinite. Hence limn→∞ an exists in [−∞,∞] if and only if the up-crossing

number by (an) through any (a,b) (for every pair a < b of rational numbers) is finite.

Let us apply to this idea to the study of random sequences.

Let X = (Xn)n≥0 be a sequence of real valued random variables, and a < b be two numbers.

An up-crossing is the event that the sequence (Xn) is below a at some n and then Xm ≥ b for some

m > n, and similarly we may define a down-crossing. Let us concentrate on up-crossing events.

Define

T0 = inf{n ≥ 0 : Xn ≤ a} ,

T1 = inf{n > T0 : Xn ≥ b} ,

· · · · · ·
T2 j = inf

{

n > T2 j−1 : Xn ≤ a
}

,

T2 j+1 = inf
{

n > T2 j : Xn ≥ b
}

,

· · ·
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T0 is the first time that the sequence X goes to the level below a, and T1 is the first time X goes

back to the level b after reaching the level below a and so on. All Tk are random times but can take

value ∞, and {Tk} is increasing. Moreover

XT2 j
≤ a on

{

T2 j < ∞
}

,

XT2 j+1
≥ b on

{

T2 j+1 < ∞
}

.

If T2 j−1(ω)< ∞ for some j ∈ N, then the sequence

X0(ω), · · · ,XT2 j−1
(ω)

up-crosses the interval [a,b] exactly j times.

Let Ub
a (X ;n) denote the number of up-crossings of {X0, · · · ,Xn} through interval [a,b]. Then

{

Ub
a (X ;n) = j

}

⊂
{

T2 j−1 ≤ n < T2 j+1

}

(11.1)

and
{

Ub
a (X ;n)≥ j

}

=
{

T2 j−1 ≤ n
}

(11.2)

for j = 0,1, · · · .
If X = (Xn)n≥0 is adapted with respect to a filtration {Fn : n ≥ 0}, then Tk are stopping times.

Hence
{

Ub
a (X ;n) = j

}

=
{

T2 j−1 ≤ n
}
⋂
{

T2 j=1 > n
}

∈ Fn

for any n ∈ Z+ and j ∈ Z̄+.

Lemma 11.1 For any b > a and n,k ∈ N we have

1{Ub
a (X ;n)≥k} ≤ −Xn −a

b−a
1{T2(k−1)≤n<T2k−1}+

XT2k−1∧n −XT2(k−1)∧n

b−a
(11.3)

and

1{Ub
a (X ;n)≥k} ≤ Xn −a

b−a
1{T2k−1≤n<T2k}+

XT2k−1∧n −XT2k∧n

b−a
. (11.4)

Proof. [The proof is not examinable] For every k= 1,2, · · · , T2(k−1)< T2k−1 < T2k on {T2k−1 < ∞}.

Let us consider the increments of X = (Xn) over [T2k−2,T2k−1] and [T2k−1,T2k] respectively, which

must be greater than b−a on {T2k−1 < ∞} (resp. on {T2k < ∞}).

It is elementary that

XT2k−1∧n −XT2(k−1)∧n =
(

XT2k−1∧n −XT2(k−1)

)

1{T2(k−1)≤n}
=

(

XT2k−1
−XT2(k−1)

)

1{T2(k−1)≤n}1{T2k−1≤n}

+
(

Xn −XT2(k−1)

)

1{T2(k−1)≤n}1{T2k−1>n}

=
(

XT2k−1
−XT2(k−1)

)

1{T2k−1≤n}

+
(

Xn −XT2(k−1)

)

1{T2(k−1)≤n<T2k−1}.

Since XT2k−1
−XT2(k−1)

≥ b−a on {T2k−1 < ∞}, XT2(k−1)
≤ a on

{

T2(k−1) < ∞
}

, and since {T2k−1 ≤ n}=
{

Ub
a (X ;n)≥ k

}

, we deduce from the previous identity that

XT2k−1∧n −XT2(k−1)∧n ≥ (b−a)1{Ub
a (X ;n)≥k}+(Xn −a)1{T2(k−1)≤n<T2k−1}
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and (11.3) follows. Similarly, one may use the decomposition

XT2k−1∧n −XT2k∧n =
(

XT2k−1
−XT2k

)

1{T2k≤n}+
(

XT2k−1
−Xn

)

1{T2k−1≤n<T2k}
≥ (b−a)1{T2k≤n}+(b−Xn)1{T2k−1≤n<T2k}
= (b−a)

(

1{T2k≤n}+1{T2k−1≤n<T2k}
)

+(a−Xn)1{T2k−1≤n<T2k}
= (b−a)1{T2k−1≤n}+(a−Xn)1{T2k−1≤n<T2k}

where we have used the fact that XT2k−1
≥ b and XT2k

≤ a on {T2k < ∞}, which yields that

1{T2k−1≤n} ≤−a−Xn

b−a
1{T2k−1≤n<T2k}+

XT2k−1∧n −XT2k∧n

b−a
.

Theorem 11.2 (Doob’s up-crossing lemma) 1) If X = (Xn) is a super-martingale, then for any

n ≥ 1, k ≥ 1

P

[

Ub
a (X ;n)≥ k

]

≤ E

[

(Xn −a)−

b−a
: Ub

a (X ;n) = k−1

]

and

E

[

Ub
a (X ;n)

]

≤ E

[

(Xn −a)−

b−a

]

.

[Note that Xn − a is also a super-martingale for any constant a, so that (Xn − a)− is a sub-

martingale.]

2) Similarly, if X = (Xn) is a sub-martingale, then

P

[

Ub
a (X ;n)≥ k

]

≤ E

[

(Xn −a)+

b−a
: Ub

a (X ;n) = k

]

and

E

[

Ub
a (X ;n)

]

≤ E

[

(Xn −a)+

b−a

]

.

[For a sub-martingale, (Xn −a)+ is again a sub-martingale for every constant a.]

Proof. [The proof is not examinable] 1) Since X is a super-martingale, according to Doob’s

optional stopping theorem

E

[

XT2k−1∧n −XT2(k−1)∧n

]

≤ 0, (11.5)

so that it follows from (11.3) that

P

[

Ub
a (X ;n)≥ k

]

≤−E

[

Xn −a

b−a
: T2(k−1) ≤ n < T2k−1

]

+E

[

XT2k−1∧n −XT2(k−1)∧n

]

≤ E

[

(Xn −a)−

b−a
: T2(k−1) ≤ n < T2k−1

]

≤ E

[

(Xn −a)−

b−a
: T2(k−1)−1 ≤ n < T2(k−1)+1

]

= E

[

(Xn −a)−

b−a
: Ub

a (X ;n) = k−1

]
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which proves the first inequality. Since Ub
a (X ,n)≤ n and takes values in non-negative integers, so

that

E

[

Ub
a (X ,n)

]

=
∞

∑
k=1

kP
[

Ub
a (X ;n) = k

]

=
∞

∑
k=1

P

[

Ub
a (X ;n)≥ k

]

≤
∞

∑
k=1

E

[

(Xn −a)−

b−a
: Ub

a (X ;n) = k−1

]

= E

[

(Xn −a)−

b−a

]

.

2) If X is a sub-martingale, then E
(

XT2k−1∧n −XT2k∧n

)

≤ 0, so that, by (11.4) we obtain

P

[

Ub
a (X ;n)≥ k

]

≤ E

[

Xn −a

b−a
: T2k−1 ≤ n < T2k

]

≤ E

[

(Xn −a)+

b−a
: Ub

a (X ;n) = k

]

and therefore

E

[

Ub
a (X ,n)

]

=
∞

∑
k=1

P

[

Ub
a (X ;n)≥ k

]

≤
∞

∑
k=1

E

[

(Xn −a)+

b−a
: Ub

a (X ;n) = k

]

≤ E

[

(Xn −a)+

b−a

]

which completes the proof.

11.2 Martingale convergence theorem

Theorem 11.3 (The martingale convergence theorem, J. L. Doob) 1) Suppose X = (Xn)n≥0 is a

super-martingale (or a sub-martingale), bounded in L1 (Ω ,F ,P), that is, supnE [|Xn|] < ∞, then

X∞ = limn→∞ Xn exists almost surely and X∞ ∈ L1(Ω).
2) If Y = (Yn)n≥0 is a non-negative super-martingale, bounded in L1, then Yn → Y∞ exists,

Y∞ ∈ L1, and E [Y∞|Fn]≤ Yn for n ≥ 0.

3) If M = (Mn) is uniformly integrable martingale, that is, M = (Mn)n≥1 is a martingale, and

{Mn : n = 0,1, · · ·} is uniformly integrable, then M∞ = limn→∞ Mn exists almost surely, Mn → M∞

in L1(Ω), and Mn = E [M∞|Fn] for every n.

Proof. [The proof is not examinable] 1) For every pair of real numbers a < b, Ub
a (X) =

limn→∞Ub
a (X ;n) is the total number of up-crossings made by (Xn) through the interval (a,b).

By MCT and Doob’s crossing lemma we have

E

[

Ub
a (X)

]

= [due to MCT] lim
n→∞

E

[

Ub
a (X ;n)

]

≤ sup
n
E

[

(Xn −a)−

b−a

]

≤ |a|
b−a

+
1

b−a
sup

n
E [|Xn|]< ∞.
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That is, Ub
a (X) is integrable, hence Ub

a (X) is finite almost surely. Let

W(a,b) = {liminfn→∞Xn < a, limsupn→∞Xn > b}
and

W =
⋃
{

W(a,b) : a < b and a,b are rationals
}

.

where the union runs through the countable set of rational pairs (a,b), a < b. Then W(a,b) ⊂
{

Ub
a (X) = ∞

}

, so that P
[

W(a,b)

]

= 0. Hence P(W ) = 0. However, if ω /∈W , then liminfXn(ω) =
limsupXn(ω), so that limn→∞ Xn(ω) exists (or equals ±∞), denoted it by X∞(ω), and we set

X∞(ω) = 0 for ω ∈ W . Then Xn → X∞ on W c, so that Xn → X∞ almost surely. According to

Fatou’s lemma

E [|X∞|] = E

[

lim
n→∞

|Xn|
]

≤ liminf
n→∞

E [|Xn|]≤ sup
n
E|Xn|< ∞

so that X∞ ∈ L1(Ω ,F ,P). We have thus proved the first part of the theorem.

2) Since Y is a non-negative bounded super-martingale, then by 1) Yn →Y∞ a.e. Since E [Ym|Fn]≤
Yn for m ≥ n, letting m → ∞, by Fatou’s lemma (for conditional expectations),

E [Y∞|Fn] = E

[

lim
m→∞

Ym|Fn

]

≤ liminf
m→∞

E [Ym|Fn]≤ Yn

the proof is therefore complete.

3) If M = (Mn) is uniformly integrable martingale, then {Mn : n = 0,1, · · ·} is bounded, so that

by 1), Mn → M∞ almost surely, and hence Mn → M∞ in L1 (Theorem 8.4). Since for every m > n

we have E [Mm|Fn] = Mn, by letting m → ∞ to obtain Mn = E [M∞|Fn].
Recall that if X = (Xn) is a SMartingale which is uniformly integrable, then Xn → X∞ almost

surely and in L1. For the Lp-bounded martingale, we have the following

Theorem 11.4 Suppose X =(Xn)n≥1 is a martingale which is bounded in Lp-space for some p> 1,

that is, supnE [|Xn|p] < ∞, then (Xn)n≥0 is uniformly integrable, and Xn → X∞ almost surely, and

in Lp-space. Moreover

E [|X∞|p] = sup
n
E [|Xn|p] .

Proof. [The proof is not examinable.] It is known that supnE [|Xn|p] < ∞ for some p > 1

implies that (Xn) is uniformly integrable, so that Xn → X∞ almost surely and in L1. Let g =
limn→∞ supk≤n |Xk|p. Applying Doob’s Lp-inequality to the sub-martingale |Xn|p we have

E

[

sup
k≤n

|Xk|p
]

≤
(

p

p−1

)p

E [|Xn|p]≤
(

p

p−1

)p

sup
n
E [|Xn|p] .

Thus, by MCT we conclude that

E [g] = lim
n→∞

E

[

sup
k≤n

|Xk|p
]

≤
(

p

p−1

)p

sup
n
E [|Xn|p]< ∞

that is g is integrable. Now |Xn −X∞|p → 0 almost surely, and |Xn −X∞|p ≤ 2pg for all n, so by

Lebesgue’s dominated convergence theorem, we have

E [|Xn −X∞|p]→ 0

as n → ∞. It follows that ‖Xn‖p →‖X∞‖p. Since |Xn|p is a sub-martingale, so that n → E [|Xn|p] is

increasing, and therefore

E [|X∞|p] = lim
n→∞

E [|Xn|p] = sup
n
E [|Xn|p] .
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11.3 Downward martingale convergence theorem

Let us now consider backward martingale convergence theorem.

Let (Ω ,F ,P) be a probability space, equipped with a decreasing family of sub σ -algebras

(Gn)n≥0, instead of a filtration, where Gn+1 ⊆ Gn for n = 0,1,2, · · · . The largest σ -algebra is the

initial one G0 ⊂ F , and the final σ -algebra G∞ = limn→∞ Gn =
⋂∞

j=0 G j.

We may define martingales, sub-martingales and super-martingales with respect to the de-

creasing flow (Gn). Namely, a (Gn)-adapted and integrable random sequence X = (Xn)n≥0 is

a martingale (resp. super-martingale, and resp. sub-martingale) if E [Xn|Gn+1] = Xn+1 (resp.

E [Xn|Gn+1]≤ Xn+1, and resp. E [Xn|Gn+1]≥ Xn+1).

Let Fn = G−n where n = · · · ,−2,−1,0 (with the natural order in Z−). Then (Fn) (where

n = · · · ,−2,−1,0) is a filtration, i.e. an increasing flow of σ -algebras. Then X = (Xn)n≥0 is a

martingale (resp. super-martingale, and resp. sub-martingale), by definition, if and only if Mn =
X−n (where n = · · · ,−2,−1,0) is martingale (resp. super-martingale, resp. sub-martingale), that

is, if and only if E [Mn|Fn−1] = Mn−1 (resp. E [Mn|Fn−1]≤ Mn−1, resp. E [Mn|Fn−1]≥ Mn−1 ) for

n = · · · ,−2,−1,0. The following technical lemma allows us apply the results we have established

in the previous sections to martingales with respect to a decreasing flow of σalgebras.

Lemma 11.5 Let (Ω ,F ,P) be a probability space together with a decreasing family (Gn)n≥0

of sub σ -algebras of F . Let X = (Xn)n≥0, where Xn ∈ L1(Ω ,Gn,P) for n = 0,1,2, · · · . Then,

X is martingale (resp. super-martingale, resp. sub-martingale), if and only if for every N =
1,2, · · · , the time-reversed random sequence Yn = XN−n (where n = 0, · · · ,N) is a martingale (resp.

super-martingale, resp. sub-martingale) up to time N (with terminal value X0), with respect to the

filtration GN−n .

As a sample of applications of the previous lemma, we prove the following very useful conver-

gence result.

Theorem 11.6 Let (Ω ,F ,P) be a probability space together with a decreasing family (Gn)n≥0

of sub σ -algebras of F . If X = (Xn)n≥0 is a super-martingale with respect to (Gn), then X∞ =
limn→∞ Xn exists almost surely. If in addition limn→∞E [Xn] < ∞ then {Xn : n ≥ 0} is uniformly

integrable, and Xn → X∞ in L1(Ω).

Proof. [The proof is not examinable.] For every N = 1,2, · · · , the time-reversed sequence

{XN ,XN−1, · · · ,X0} is a super-martingale (up to time N) with respect to GN−n, its up-crossing

number through [a,b] where a < b is denoted by Ub
a (X ,−N). The label − is used to indicate

the reversed up-crossing, rather than Ub
a (X ,N) which is the up-crossing of {X0,X1, · · · ,XN}, but

they are equally useful in determining the convergence. Let Ub
a (X) = limN→∞Ub

a (X ,−N) which

represents the number of up-crossings for the time-reversed sequence {· · · ,XN ,XN−1, · · · ,X0}. Ac-

cording to Doob’s up-crossing lemma, for every N,

E

[

Ub
a (X ;−N)

]

≤ E

[

(X0 −a)−

b−a

]

.

The right-hand side is independent of N, so by applying the Monotone Convergence Theorem, we

have

E

[

Ub
a (X)

]

≤ E

[

(X0 −a)−

b−a

]

.

Therefore Ub
a (X) is integrable, so that Ub

a (X) < ∞ almost everywhere. A similar argument as the

proof of the Martingale Convergence Theorem may apply to conclude that X∞ = limn→∞ Xn exists

almost everywhere, and X∞ is
⋂∞

j=1 G j-measurable.
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Since n→E [Xn] is increasing (note that not decreasing, as it is a time-reversed super-martingale),

so that supnE [Xn] = limn→∞E [Xn]. Therefore, if limn→∞E [Xn]<∞, then supnE [Xn]<∞. Since X0

is integrable, ξn = E [X0|Gn] is uniformly integrable (time-reversed) martingale, and Qn = Xn −ξn

is (time-reversed) super-martingale. Since

Qn = E [Qn|Gn] = E [Xn −X0|Gn]≥ 0

which implies that Qn is non-negative, and Xn = Qn + ξn. Therefore, in order to show that X is

uniformly integrable, we only need to show that Q = (Qn) is uniformly integrable. Thus, without

losing generality, we may assume that X =(Xn) is a non-negative (time-reversed) super-martingale,

and supnE [Xn] = limn→∞E [Xn]< ∞.

According to the time-reversed super-martingale property, for any n > m ≥ 0 and L > 0, since

{Xn ≤ L} ∈ Gn we have

E [Xn : Xn > L] = E [Xn]−E [Xn : Xn ≤ L]≤ EXn −E [Xm : Xn ≤ L]

≤ E [Xn]−E [Xm]+E [Xm : Xn > L] .

Since limn↑∞E [Xn] exists, so for every ε > 0, there is N1 such that 0 ≤ E [Xn]−E [Xm] <
ε
2

for all n,m ≥ N1. Since the finite family of integrable random variables{X0, · · · ,XN1
} is uniformly

integrable, so there is δ > 0 such that E [Xm : A] < ε/2 for any A with P(A) < δ , for all m ≤ N1.

On the other hand, by using Markov inequality, P [Xn > L] ≤ supnEXn

L . Let L0 =
supnEXn

δ . Then

P [Xn > L] < δ for all L ≥ L0 and for all n. Therefore E [Xm : Xn > L] < ε
2 for all m ≤ N1. For

L ≥ L1, then

E [Xn : Xn > L]≤ EXn −EXN1
+E [XN1

: Xn > L]< ε

for all L ≥ L0 and n ≥ N1. Putting all these estimates together we deduce that

E [Xn : Xn > L]< ε

for all n and L ≥ L0, which proves that (Xn) is uniformly integrable. Hence Xn → X∞ in L1(Ω) as

well.

12 Probability limit theorem

The martingale convergence theorem is a powerful tool to show the limit theorems for random

sequences.

12.1 Levy’s upward and downward

Corollary 12.1 (Levy’s “Upward” theorem) Let ξ ∈ L1(Ω ,F ,P) and (Fn)n≥0 be an increasing

family of sub σ -algebras of F . Then

lim
n→∞

E [ξ |Fn] = E [ξ |F∞] almost surely and in L1 (Ω)

where F∞ = σ
{

F j : j ≥ 0
}

.

Proof. Let Xn = E [ξ |Fn] for n ≥ 0. Since ξ ∈ L1(Ω), X = (Xn) is a uniformly integrable

martingale, so by Doob’s martingale convergence theorem, Xn →X∞, for some X∞ ∈ L1(Ω), almost

everywhere and in L1 (Ω). We need to show that X∞ = E [ξ |F∞]. By considering ξ+ and ξ−

instead, we may assume that ξ is non-negative. Thus X∞ ≥ 0 a.e. and X∞ is F∞-measurable. To
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show that X∞ = E [ξ |F∞] we only need to prove that for every A ∈ F∞, E [X∞ : A] = E [ξ : A].
To this end we consider two finite measures µ1(B) = E [X∞ : B] and µ2(B) = E [ξ : B] for B ∈ F .

What we need to prove is that µ1 = µ2 on F∞. To this end we can utilize the Uniqueness Lemma

for finite measures, Lemma 2.2 or Dynkin’s lemma.

Let C = ∪∞
j=0F j which is a π-system, and

G = {B ∈ F : µ1 (B) = µ2(B)}
= {B ∈ F : E [X∞ : B] = E [ξ : B]} .

If A ∈ C , then there is n, such that A ∈ Fn ⊆ Fm for all m ≥ n. Hence

E [Xm : A] = E [ξ : A]

and by letting m ↑ ∞ we obtain thatE(1AX∞) = E(1Aξ ). Hence C ⊆ G . Suppose An ∈ G and

An ↑ A, then X∞1An
↑ X∞1A and ξ 1An

↑ ξ 1A as n ↑∞. By MCT and the assumption that E [X∞ : An] =
E [ξ : An] for every n, we conclude that

E [X∞ : A] = lim
n→∞

E [X∞ : An] = lim
n→∞

E [ξ : An] = E [ξ : A]

so that A ∈ G too. Thus G is a monotone class, containing the π-system C . Hence, by Dynkin’s

lemma, G ⊇ σ {C } = F∞, which implies that µ1 = µ2 on F∞. Therefore X∞ = E [ξ |F∞]. The

proof is complete.

Corollary 12.2 (Levy’s “Downward” theorem) Let (Ω ,F ,P) be a probability space together with

a decreasing family (Gn)n≥0 of sub σalgebras of F : Gn+1 ⊆ Gn for every n. Let ξ ∈ L1(Ω). Then

lim
n→∞

E [ξ |Gn] = E

[

ξ |
∞
⋂

j=0

G j

]

almost surely and in L1 (Ω) .

This follows from the downward martingale convergence theorem.

12.2 Kolmogorov’s 0-1 law

Corollary 12.3 (Kolmogorov’s 0-1 law) Let ξn (n = 1,2, · · · ) be a sequence of independent ran-

dom variables on (Ω ,F ,P), Gn = σ{ξ j : j ≥ n+1} and G∞ = ∩∞
n=0Gn. An element in G∞is called

a tail event. If Z is G∞-measurable and integrable, then Z = E(Z) almost surely. Thus any G∞-

measurable random variable is constant almost surely.

Proof. Let Fn = σ
{

ξ j : j ≤ n
}

. Then, for every n, Fn and Gn are independent. Hence Fn and

G∞ are independent for any n. Let Xn = E [Z|Fn]. Then X = (Xn) is a uniformly integrable martin-

gale, so that Xn → E [Z|F∞] almost surely and in L1 (Ω). While F∞ ⊃ G∞, so that E [Z|F∞] = Z

a.e. and therefore Xn → Z almost surely and in L1. On the other hand, since Z and Fn are in-

dependent, so that Xn = E [Z|Fn] = E [Z] almost everywhere. Therefore Z = E(Z) almost surely.

12.3 The strong law of large numbers

Let us prove the strong law of large numbers for i.i.d. sequences.
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Theorem 12.4 (A. Kolmogorov, The Strong Law of Large Numbers) Let {ξk}k≥1 be a sequence of

independent integrable random variables on (Ω ,F ,P) with the same distribution. Then 1
n ∑n

k=1 ξk →
E [ξ1] almost everywhere.

Proof. Let (Gn)n≥0 be the decreasing family of σ -algebras generated by the sequence (Xn),
where Xn = ∑n

k=1 ξk. That is

Gn = σ {Xm : m ≥ n}= σ
{

Xn,ξ j ≥ n+1
}

.

Since ξ1, · · · ,ξn are independent with the same distribution, so that

Xn =
n

∑
i=1

E [ξi|ξ1 + · · ·+ξn] = nE [ξ1|ξ1 + · · ·+ξn] ,

which implies that

Xn

n
= E [ξ1|Xn] = E

[

ξ1|Xn,ξ j for j ≥ n+1
]

= E [ξ1|Gn]

for every n. Thus according to Levy’s downward theorem

Xn

n
→ E

[

ξ1|
∞
⋂

n=1

Gn

]

= E [ξ1|G∞]

almost surely and in L1, where G∞ is the tail σ -algebra. According to Kolmogorov’s 0-1 law, since

E [ξ1|G∞] is G∞-measurable, E [ξ1|G∞] = E [ξ1] almost surely. Therefore

Xn

n
→ E [ξ1]

almost surely and in L1(Ω).
We should point out that the strong law of large numbers for i.i.d. sequences is still a special

case of Birkhoff’s ergodic theorem for strictly stationary sequences.

13 Doob’s decomposition for super-martingales

We introduce an important tool for the study of martingales, Doob’s decomposition for square-

integrable super-martingales. The extension to the continuous time case is much more difficult,

called Doob-Meyer’s decomposition, which is the key in order to define stochastic integrals with

respect to martingales.

Suppose X = (Xn) is a super-martingale on a filtered probability space (Ω ,F ,Fn,P), so that

E [Xn+1|Fn] ≤ Xn, hence roughly speaking on average, n → Xn is decreasing. Doob’s decompo-

sition is an explicit statement about this fact. The idea is to seek for a martingale Mn and an

increasing sequence An such that Xn = Mn −An. Let A0 = 0 and M0 = X0. Since

Xn+1 −Xn = Mn+1 −Mn − (An+1 −An)

and conditional on Fn, to obtain

E [Xn+1|Fn]−Xn =−E [An+1 −An|Fn] .
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If we impose the condition that An is Fn−1-measurable for every n ≥ 1 (such a sequence is called

predictable), then

An+1 = An +Xn −E [Xn+1|Fn] =
n

∑
j=0

(

X j −E
[

X j+1|F j

])

=
n

∑
j=0

E
[

X j −X j+1|F j

]

for n ≥ 0. Since Xn is a super-martingale, (An) is increasing and predictable, with A0 = 0, and

Mn = Xn +An is a martingale.

Theorem 13.1 (Doob’s decomposition for super-martingales) Let X = (Xn) be a super-martingale

over a filtered probability space (Ω,F ,Fn,P). Then there is a unique increasing predictable

random sequence (An) with A0 = 0, such that Mn = Xn +An is a martingale. More precisely

An =
n−1

∑
j=0

(

X j −E
[

X j+1|F j

])

for n ≥ 1, and

Mn = Xn +
n−1

∑
j=0

(

X j −E
[

X j+1|F j

])

for n = 1,2, · · · , and A0 = 0, M0 = X0. The decomposition Xn = Mn −An is called Doob’s decom-

position for the super-martingale X = (Xn).

Let us apply Doob’s decomposition to square integrable martingales.

Suppose that M = (Mn) is a martingale such that E
[

M2
n

]

< ∞ for each n. Then M2
n is a sub-

martingale, so −M2
n is a super-martingale. Therefore there is a unique increasing predictable ran-

dom sequence An such that −M2
n +An is again a martingale, where

An =
n−1

∑
j=0

(

−M2
j +E

[

M2
j+1|F j

])

=
n−1

∑
j=0

E
[

M2
j+1 −M2

j |F j

]

=
n−1

∑
j=0

E

[

(

M j+1 −M j

)2 |F j

]

which is called the bracket process associated with M. The bracket process will play an important

role in the study of martingales, so let us give a definition.

Definition 13.2 1) Let M = (Mn) be a martingale with Mn ∈ L2(Ω) for every n. Then, the bracket

process 〈M〉 associated with M is the unique predictable, increasing sequence with 〈M〉0 = 0 such

that M2
n −〈M〉n is a martingale. Explicitly 〈M〉 is given by

〈M〉n =
n−1

∑
j=0

E
[

(M j+1 −M j)
2|F j

]

for n ≥ 1, 〈M〉0 = 0. That is, 〈M〉 is the conditional quadratic variation process associated with

M. In particular, for any bounded stopping time T , E
[

M2
T −M2

0

]

= E [〈M〉T ], and

sup
n
E
[

M2
n −M2

0

]

= sup
n
E [〈M〉n] = lim

n→∞
E [〈M〉n] = E [〈M〉∞]

where 〈M〉∞ = limn→∞ 〈M〉n (which may be infinity), and the last equality follows from MCT ap-

plying to 〈M〉n ↑ 〈M〉∞.
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2) The quadratic variation process [M]n associated with M is defined by [M]0 = 0 and

[M]n =
n−1

∑
j=0

(

M j+1 −M j

)2

for n ≥ 1.

3) A martingale M = (Mn) is called a squared integrable martingale if supnE
[

M2
n

]

< ∞ (i.e.

{Mn : n ≥ 0} is bounded in L2(Ω).)

By a direct computation we have

Lemma 13.3 1) Let M = (Mn) be a martingale on a filtered probability space (Ω ,F ,Fn,P) such

that Mn ∈ L2(Ω). Then [M]n − 〈M〉n is a martingale, while 〈M〉 is predictable, and [M] is an

adapted increasing sequence.

2) Suppose that M and N are two martingales such that Mn,Nn ∈ L2(Ω), then MnNn−〈M,N〉n

is a martingale, where the mutual bracket

〈M,N〉n =
1

4
(〈M+N〉−〈M−N〉)

=
n−1

∑
j=0

E
[

(M j+1 −M j)(N j+1 −N j)|F j

]

.

for n ≥ 1, 〈M,N〉0 = 0, which is a predictable process.

Suppose M = (Mn) is a martingale, and H = (Hn) is a predictable process, the martingale

transform H.M (which corresponds the Ito integral of H against M, so called discrete stochastic

integral of H against M) is defined by (H.M)0 = 0 and

(H.M)n =
n

∑
j=1

H j(M j −M j−1)

for n ≥ 1. Then

〈H.M〉n =
n−1

∑
j=0

E

[

(

H j+1(M j+1 −M j)
)2 |F j

]

=
n−1

∑
j=0

H2
j+1E

[

(M j+1 −M j)
2|F j

]

=
n

∑
j=1

H2
j (〈M〉 j −〈M〉 j−1)

which is H2.〈M〉, the stochastic integral of H2 with respect to the increasing process 〈M〉.
The bracket processes play a fundamental role in Ito’s stochastic integration theory. Here we

only give an elementary application of the bracket process.

Theorem 13.4 Let M = (Mn) be a martingale on a filtered probability space (Ω ,F ,Fn,P) such

that Mn ∈ L2(Ω). Then M∞ = limn→∞ Mn exists on {〈M〉∞ < ∞}.

Proof. [The proof is not examinable]. Since

{〈M〉∞ < ∞}=
∞
⋃

l=1

{〈M〉∞ ≤ l}

so we only need to show that M∞ = limn→∞ Mn exists on each {〈M〉∞ ≤ l}. Let l > 0, and T =
inf
{

k ≥ 0 : 〈M〉k+1 > l
}

. Then T is a stopping time as 〈M〉 is predictable, so that by Theorem

10.4, M2
T∧n −〈M〉T∧n is martingale, thus E

[

M2
T∧n −M2

0

]

= E [〈M〉T∧n] ≤ l for all n. Therefore

{MT∧n} is a uniformly integrable martingale, so that limn→∞ MT∧n exists. In particular, limn→∞ Mn

exists on {T = ∞}, so does on {〈M〉∞ ≤ l} for any l > 0.
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