B8.1 Martingales Through Measure Theory

Problem Sheet 0, solutions, MT 2016

Q1. μ is an outer measure on a measurable space (Ω, \mathcal{F}) if (1) $\mu(\emptyset) = 0$, (2) $\mu(A) \leq \mu(B)$ if $A, B \in \mathcal{F}$ and $A \subset B$, (3) μ is countably sub-additive:

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right) \le \sum_{n=1}^{\infty}\mu\left(A_n\right)$$

for any sequence $A_n \in \mathcal{F}$. μ is a measure on (Ω, \mathcal{F}) if (1) and (2) above are satisfied, and (3)' μ is countably additive:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu\left(A_n\right)$$

for any *disjoint* sequence $A_n \in \mathcal{F}$.

Let us prove μ^* is an outer measure. Let $A_n \in \mathcal{F}$. If $\sum_{n=1}^{\infty} \mu^*(A_n) = \infty$ then the sub-additivity is trivial, thus we assume that $\sum_{n=1}^{\infty} \mu^*(A_n) < \infty$. Hence $\mu^*(A_n) < \infty$ for each n. By definition, for every $\varepsilon > 0$ there is a countable cover $\{E_i^{(n)} : i = 1, 2, \cdots\}$ of A_n , where $E_i^{(n)} \in \mathcal{F}$, such that $\sum_{i=1}^{\infty} |E_i^{(n)}| \le \mu^*(A_n) + \frac{\varepsilon}{2^n}$. Then $\{E_i^{(n)} : i, n = 1, 2, \cdots\}$ forms a countable cover of $\bigcup_{n=1}^{\infty} A_n$ so that

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \leq \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \mu \left(E_i^{(n)} \right) \leq \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\varepsilon}{2^n} \right)$$
$$= \sum_{n=1}^{\infty} \mu^*(A_n) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, so by letting $\varepsilon \downarrow 0$ we conclude that

$$\mu\left(\bigcup_{n=1}^{\infty}A_n\right) \le \sum_{n=1}^{\infty}\mu\left(A_n\right)$$

Q2. Let $(\mathbb{R}, \mathcal{M}_{\text{Leb}}, m)$ be the Lebesgue space. A function $f : \mathbb{R} \to [-\infty, \infty]$ is Lebesgue (resp. Borel) measurable if for every Borel subset G, $f^{-1}(G)$ is Lebesgue (resp. Borel) measurable and both $f^{-1}(\infty)$ and $f^{-1}(-\infty)$ are Lebesgue (resp. Borel) measurable.

f is a simple function (with respect to the σ -algebra \mathcal{M}_{Leb}) if $f = \sum_{k=1}^{n} c_k \mathbf{1}_{E_k}$ for some *n*, some real numbers c_k and some Lenesgue measurable subsets E_k .

If φ is non-negative, Lebesgue measureable simple function, and if $\varphi = \sum_{k=1}^{n} c_k \mathbf{1}_{E_k}$ where $c_k \ge 0$ are real numbers, E_k are Lebesgue measurable, then

$$\int_{\mathbb{R}} \varphi dm = \sum_{k=1}^{n} c_k m\left(E_k\right).$$

If $f \ge 0$ is Lebesgue measurable we define

$$\int_{\mathbb{R}} f dm = \sup \left\{ \int_{\mathbb{R}} \varphi dm : \varphi \ge 0 \text{ simple, and } \varphi \le f \right\}.$$

In this case, i.e. for a non-negative measurable function f, we say f is integrable if $\int_{\mathbb{R}} f dm < \infty$. If f is measurable, then both $f^+ = \max\{f, 0\}$ and $f^- \max\{-f, 0\}$ are measurable, f is integrable if both f^+ and f^- are integrable, and define

$$\int_{\mathbb{R}} f dm = \int_{\mathbb{R}} f^+ dm - \int_{\mathbb{R}} f^- dm.$$

f is p-th Lebesgue integrable if f is measuirable, and if $|f|^p$ is integrable. The L^p -norm $||f||_p = \left(\int_{\mathbb{R}} |f|^p dm\right)^{\frac{1}{p}}$. Suppose f is p-th Lebesgue integrable on \mathbb{R} , where $p \geq 1$, then

$$m\left\{|f| \ge \lambda\right\} = \int_{\left\{|f| \ge \lambda\right\}} dm \le \int_{\mathbb{R}} \frac{|f|^p}{\lambda^p} dm = \frac{1}{\lambda^p} \left\|f\right\|_p^p$$

In particular, if f is Lebesgue integrable, then

$$m\left\{ |f| \geq \lambda
ight\} \leq rac{1}{\lambda} \int_{\mathbb{R}} |f| dm$$

While

$$m\left\{|f|=\infty\right\} \le m\left\{|f|\ge\lambda\right\} \le \frac{1}{\lambda}\int_{\mathbb{R}}|f|dm$$

for any $\lambda > 0$, by letting $\lambda \uparrow \infty$ to obtain

$$m\left\{|f|=\infty\right\}\leq \lim_{\lambda\uparrow\infty}\frac{1}{\lambda}\int_{\mathbb{R}}|f|dm=0$$

so that $\{|f| = \infty\}$ is a Lebesgue zero set, so f is finite almost everywhere.

Q3. Let $\{f_n\}$ be a sequence of Lebesgue measurable functions. State 1) MCT – If $f_{n+1} \ge f_n \ge 0$ almost everywhere for every *n*, then

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n dm = \int_{\mathbb{R}} f dm.$$

where $f = \lim_{n \to \infty} f_n$.

MCT series version – if $f_n \ge 0$ almost everywhere for all n then

$$\int_{\mathbb{R}} \sum_{n=1}^{\infty} f_n dm = \sum_{n=1}^{\infty} \int_{\mathbb{R}} f_n dm$$

Fatou's Lemma – if $f_n \ge 0$ for all n, then

$$\int_{\mathbb{R}} \liminf_{n \to \infty} f_n dm \le \liminf_{n \to \infty} \int_{\mathbb{R}} f_n dm.$$

DCT (Lebesgue's dominated convergence theorem) –If $f_n \to f$ almost everywhere, and there is an integrable function g such that $|f_n| \leq g$ almost everywhere for all n, then all f_n and f are integrable and

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n dm = \int_{\mathbb{R}} f dm$$

2) f_n converges to f in L^1 if $\int_{\mathbb{R}} |f_n - f| \, dm \to 0$ as $n \to \infty$. 3) Show that, if $f_n \to f$ almost everywhere, then $f_n \to f$ in L^1 if and only if $\int_{\mathbb{R}} |f_n| \, dm \to \int_{\mathbb{R}} |f| \, dm$ as $n \to \infty$.

"Only if" part is easy. In fact, if $f_n \to f$ in L^1 , then, by the triangle inequality,

$$||f_n| - |f|| \le |f_n - f|$$

so that

$$0 \le \left| \int_{\mathbb{R}} |f_n| dm - \int_{\mathbb{R}} |f| dm \right| = \left| \int_{\mathbb{R}} \left(|f_n| - |f| \right) \right| \le \int_{\mathbb{R}} |f_n - f| d\mu \to 0$$

which implies that $\int_{\mathbb{R}} |f_n| d\mu \to \int_{\mathbb{R}} |f| d\mu$. Proof of "If" part. Assume that $f_n \to f$ almost surely and $\int_{\mathbb{R}} |f_n| d\mu \to \int_{\mathbb{R}} |f| d\mu$, show that $f_n \to f$ in L^1 . Let $A_n = \{f_n f \ge 0\}, B_n = \{f_n f < 0\}$. Then

$$|f_n - f| = ||f_n| - |f||$$
 on A_n

and, by the triangle inequality,

$$|f_n - f| = ||f_n| + |f|| \le ||f_n| - |f|| + 2|f|$$
 on B_n

Hence

$$\begin{split} \int_{\mathbb{R}} |f_n - f| d\mu &= \int_{A_n} |f_n - f| \, d\mu + \int_{B_n} |f_n - f| \, d\mu \\ &\leq \int_{A_n} ||f_n| - |f|| \, d\mu + \int_{B_n} [||f_n| - |f|| + 2|f|] \, d\mu \\ &= \int_{\mathbb{R}} ||f_n| - |f|| \, d\mu + 2 \int_{B_n} |f| d\mu \\ &= \int_{\mathbb{R}} ||f_n| - |f|| \, d\mu + 2 \int_{\mathbb{R}} \mathbf{1}_{B_n} |f| d\mu. \end{split}$$

The first term on the right-hand side of the previous inequality many be rewriten as the following

$$\begin{split} \int_{\mathbb{R}} ||f_n| - |f|| \, d\mu &= \int_{\mathbb{R}} \left(|f_n| - |f| \right)^+ d\mu + \int_{\mathbb{R}} \left(|f_n| - |f| \right)^- d\mu \\ &= \int_{\mathbb{R}} \left(|f_n| - |f| \right) d\mu + 2 \int_{\mathbb{R}} \left(|f_n| - |f| \right)^- d\mu \end{split}$$

where we have used the identity

$$|g| = g^+ + g^- = g^+ - g^- + 2g^- = g + 2g^-$$

Putting together we obtain the following estimate for the L^1 -norm of $f_n - f$:

$$\int_{\mathbb{R}} |f_n - f| d\mu \leq \int_{\mathbb{R}} ||f_n| - |f|| d\mu + 2 \int_{\mathbb{R}} 1_{B_n} |f| d\mu
= \int_{\mathbb{R}} (|f_n| - |f|) d\mu + 2 \int_{\mathbb{R}} (|f_n| - |f|)^{-} d\mu + 2 \int_{\mathbb{R}} 1_{B_n} |f| d\mu.$$
(1)

We next want to let $n \to \infty$ in the inequality above. The first term on the right-hand side tends to zero as $n \to \infty$ by assumption. In fact

$$\int_{\mathbb{R}} \left(|f_n| - |f| \right) d\mu = \int_{\mathbb{R}} |f_n| d\mu - \int_{\mathbb{R}} |f| d\mu \to 0$$

as $n \to \infty$. For the second term, we observe that

$$(|f_n| - |f|)^- = 0$$
 on $\{|f_n| \ge |f|\}$

and

$$(|f_n| - |f|)^- = |f_n| - |f| \le |f_n| \le |f|$$
 on $\{|f_n| < |f|\}$

so that

$$\left(\left|f_{n}\right|-\left|f\right|\right)^{-} \leq \left|f\right|$$

for all n, |f| is integrable, and $(|f_n| - |f|)^- \to 0$ almost surely, thus by the Dominated Convergence Theorem we conclude that

$$\int_{\mathbb{R}}^{r} \left(|f_n| - |f| \right)^{-} d\mu \to 0.$$

To show the last term on the right-hand side of (1) $\int_{B_n} |f| d\mu$ tends to zero, we prove that $|f| 1_{B_n} \to 0$. While it is clear that $|f| 1_{B_n} = 0$ on $\{|f| = 0\}$ for all n. If |f(x)| > 0, and $f_n(x) \to f(x)$, then there is N (depending on x in general) such that $|f_n(x) - f(x)| < \frac{1}{2} |f(x)|$ so that $f_n(x)f(x) > 0$ for all n > N, hence $x \notin B_n$ for n > N. Thus $1_{B_n}(x) = 0$ for all n > N, which yields that $|f| 1_{B_n}(x) = 0$ for all n > N. Since $f_n \to f$ almost surely, we thus can conclude that $|f| 1_{B_n} \to 0$ almost everywhere as $n \to \infty$. $|f| 1_{B_n}$ is controlled by the integrable function |f|, so that, by DCT we have $\int_{B_n} |f| d\mu = \int_{\Omega} |f| 1_{B_n} d\mu \to 0$.

Therefore, by Sandwich lemma for limits, it follows from (1) that $\lim_{n\to\infty}\int_{\mathbb{R}}|f_n-f|d\mu=0$.

Q4. If $\rho \ge 0$ is continuous, then ρ is bounded on [-n, n] for every n, thus there is M_n such that $|\rho(x)| \le M_n$

for every $x \in [-n, n]$, so that

$$\mu\left(\left[-n,n\right]\right) \le 2nM_n < \infty$$

for every $n = 1, 2, \cdots$. Since $\bigcup_{n=1}^{\infty} [-n, n] = \mathbb{R}$, by definition, μ is σ -finite. μ is a finite measure if and only if $\mu(\mathbb{R}) = \int_{\mathbb{R}} \rho dm < \infty$, i.e. if and only if ρ is integrable.