
B8.1 Martingales Through Measure Theory

Problem Sheet 0, solutions, MT 2016

Q1. µ is an outer measure on a measurable space (Ω,F) if (1) µ(Ø) = 0, (2) µ (A) ≤ µ(B) if A,B ∈ F and
A ⊂ B, (3) µ is countably sub-additive:

µ

(

∞
⋃

n=1

An

)

≤

∞
∑

n=1

µ (An)

for any sequence An ∈ F .
µ is a measure on (Ω,F) if (1) and (2) above are satisfied, and (3)’ µ is countably additive:

µ

(

∞
⋃

n=1

An

)

=

∞
∑

n=1

µ (An)

for any disjoint sequence An ∈ F .
Let us prove µ∗ is an outer measure. Let An ∈ F . If

∑∞
n=1 µ

∗(An) = ∞ then the sub-additivity is trivial,
thus we assume that

∑∞
n=1 µ

∗(An) < ∞. Hence µ∗(An) < ∞ for each n. By definition, for every ε > 0 there is

a countable cover {E
(n)
i : i = 1, 2, · · · } of An, where E

(n)
i ∈ F , such that

∑∞
i=1 |E

(n)
i | ≤ µ∗(An) +

ε
2n . Then

{E
(n)
i : i, n = 1, 2, · · · } forms a countable cover of ∪∞

n=1An so that

µ∗

(

∞
⋃

n=1

An

)

≤

∞
∑

n=1

∞
∑

i=1

µ
(

E
(n)
i

)

≤

∞
∑

n=1

(

µ∗(An) +
ε

2n

)

=

∞
∑

n=1

µ∗(An) + ε.

Since ε > 0 is arbitrary, so by letting ε ↓ 0 we conclude that

µ

(

∞
⋃

n=1

An

)

≤
∞
∑

n=1

µ (An)

.

Q2. Let (R,MLeb,m) be the Lebesgue space. A function f : R → [−∞,∞] is Lebesgue (resp. Borel)
measurable if for every Borel subset G, f−1(G) is Lebesgue (resp. Borel) measurable and both f−1 (∞) and
f−1 (−∞) are Lebesgue (resp. Borel) measurable.
f is a simple function (with respect to the σ-algebra MLeb) if f =

∑n
k=1 ck1Ek

for some n,some real numbers
ck and some Lenesgue measurable subsets Ek.

If ϕ is non-negative, Lebesgue measureable simple function, and if ϕ =
∑n

k=1 ck1Ek
where ck ≥ 0 are real

numbers, Ek are Lebesgue measurable, then

ˆ

R

ϕdm =

n
∑

k=1

ckm (Ek) .

If f ≥ 0 is Lebesgue measurable we define

ˆ

R

fdm = sup

{
ˆ

R

ϕdm : ϕ ≥ 0 simple, and ϕ ≤ f

}

.

In this case, i.e. for a non-negative measurable function f , we say f is integrable if
´

R
fdm < ∞. If f is

measurable, then both f+ = max {f, 0} and f− max {−f, 0} are measurable, f is integrable if both f+ and f−

are integrable, and define
ˆ

R

fdm =

ˆ

R

f+dm−

ˆ

R

f−dm.



f is p-th Lebesgue integrable if f is measuirable, and if |f |p is integrable. The Lp-norm ||f ||p =
(´

R
|f |pdm

)
1

p .
Suppose f is p-th Lebesgue integrable on R, where p ≥ 1, then

m {|f | ≥ λ} =

ˆ

{|f |≥λ}

dm ≤

ˆ

R

|f |p

λp
dm =

1

λp
‖f‖

p

p .

In particular, if f is Lebesgue integrable, then

m {|f | ≥ λ} ≤
1

λ

ˆ

R

|f |dm.

While

m {|f | = ∞} ≤ m {|f | ≥ λ} ≤
1

λ

ˆ

R

|f |dm

for any λ > 0, by letting λ ↑ ∞ to obtain

m {|f | = ∞} ≤ lim
λ↑∞

1

λ

ˆ

R

|f |dm = 0

so that {|f | = ∞} is a Lebesgue zero set, so f is finite almost everywhere.

Q3. Let {fn} be a sequence of Lebesgue measurable functions. State
1) MCT – If fn+1 ≥ fn ≥ 0 almost everywhere for every n, then

lim
n→∞

ˆ

R

fndm =

ˆ

R

fdm.

where f = limn→∞ fn.
MCT series version – if fn ≥ 0 almost everywhere for all n then

ˆ

R

∞
∑

n=1

fndm =
∞
∑

n=1

ˆ

R

fndm.

Fatou’s Lemma – if fn ≥ 0 for all n, then

ˆ

R

lim inf
n→∞

fndm ≤ lim inf
n→∞

ˆ

R

fndm.

DCT (Lebesgue’s dominated convergence theorem) –If fn → f almost everywhere, and there is an integrable
function g such that |fn| ≤ g almost everywhere for all n, then all fn and f are integrable and

lim
n→∞

ˆ

R

fndm =

ˆ

R

fdm.

2) fn converges to f in L1 if
´

R
|fn − f | dm → 0 as n → ∞.

3) Show that, if fn → f almost everywhere, then fn → f in L1 if and only if
´

R
|fn| dm →

´

R
|f | dm as

n → ∞.
“Only if” part is easy. In fact, if fn → f in L1, then, by the triangle inequality,

||fn| − |f || ≤ |fn − f |

so that

0 ≤

∣

∣

∣

∣

ˆ

R

|fn|dm−

ˆ

R

|f |dm

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

R

(|fn| − |f |)

∣

∣

∣

∣

≤

ˆ

R

|fn − f |dµ → 0

which implies that
´

R
|fn|dµ →

´

R
|f |dµ.

Proof of “If” part. Assume that fn → f almost surely and
´

R
|fn|dµ →

´

R
|f |dµ, show that fn → f in L1.

Let An = {fnf ≥ 0}, Bn = {fnf < 0}. Then

|fn − f | = ||fn| − |f || on An



and, by the triangle inequality,

|fn − f | = ||fn|+ |f || ≤ ||fn| − |f ||+ 2|f | on Bn.

Hence
ˆ

R

|fn − f |dµ =

ˆ

An

|fn − f | dµ+

ˆ

Bn

|fn − f | dµ

≤

ˆ

An

||fn| − |f || dµ+

ˆ

Bn

[||fn| − |f ||+ 2|f |] dµ

=

ˆ

R

||fn| − |f || dµ+ 2

ˆ

Bn

|f |dµ

=

ˆ

R

||fn| − |f || dµ+ 2

ˆ

R

1Bn
|f |dµ.

The first term on the right-hand side of the previous inequality many be rewrriten as the following

ˆ

R

||fn| − |f || dµ =

ˆ

R

(|fn| − |f |)
+
dµ+

ˆ

R

(|fn| − |f |)
−
dµ

=

ˆ

R

(|fn| − |f |) dµ+ 2

ˆ

R

(|fn| − |f |)
−
dµ

where we have used the identity

|g| = g+ + g− = g+ − g− + 2g− = g + 2g−.

Putting together we obtain the following estimate for the L1-norm of fn − f :

ˆ

R

|fn − f |dµ ≤

ˆ

R

||fn| − |f || dµ+ 2

ˆ

R

1Bn
|f |dµ

=

ˆ

R

(|fn| − |f |) dµ+ 2

ˆ

R

(|fn| − |f |)
−
dµ+ 2

ˆ

R

1Bn
|f |dµ. (1)

We next want to let n → ∞ in the inequality above. The first term on the right-hand side tends to zero as
n → ∞ by assumption. In fact

ˆ

R

(|fn| − |f |) dµ =

ˆ

R

|fn|dµ−

ˆ

R

|f |dµ → 0

as n → ∞. For the second term, we observe that

(|fn| − |f |)
−
= 0 on {|fn| ≥ |f |}

and
(|fn| − |f |)

−
= |fn| − |f | ≤ |fn| ≤ |f | on {|fn| < |f |}

so that
(|fn| − |f |)

−
≤ |f |

for all n, |f | is integrable, and (|fn| − |f |)
−

→ 0 almost surely, thus by the Dominated Convergence Theorem
we conclude that

ˆ

R

(|fn| − |f |)
−
dµ → 0.

To show the last term on the right-hand side of (1)
´

Bn
|f |dµ tends to zero, we prove that |f |1Bn

→ 0. While it

is clear that |f |1Bn
= 0 on {|f | = 0} for all n. If |f(x)| > 0, and fn(x) → f(x), then there is N (depending on

x in general) such that |fn(x)− f(x)| < 1
2 |f(x)| so that fn(x)f(x) > 0 for all n > N , hence x /∈ Bn for n > N .

Thus 1Bn
(x) = 0 for all n > N , which yields that |f |1Bn

(x) = 0 for all n > N . Since fn → f almost surely,
we thus can conclude that |f |1Bn

→ 0 almost everywhere as n → ∞. |f |1Bn
is controlled by the integrable

function |f |, so that, by DCT we have
´

Bn
|f |dµ =

´

Ω
|f |1Bn

dµ → 0.

Therefore, by Sandwich lemma for limits, it follows from (1) that limn→∞

´

R
|fn − f |dµ = 0.



Q4. If ρ ≥ 0 is continuous, then ρ is bounded on [−n, n] for every n, thus there is Mn such that |ρ(x)| ≤ Mn

for every x ∈ [−n, n], so that
µ ([−n, n]) ≤ 2nMn < ∞

for every n = 1, 2, · · · . Since
⋃∞

n=1 [−n, n] = R, by definition, µ is σ-finite. µ is a finite measure if and only if
µ(R) =

´

R
ρdm < ∞, i.e. if and only if ρ is integrable.


