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1.1

1 Introduction

A general optimization problem is of the form: choose x to

maximise f(x)

subject to x ∈ S

where

x = (x1, . . . , xn)
T

f : Rn → R is the objective function

S ⊆ R
n is the feasible set.

We might write this problem:

max
x

f(x) subject to x ∈ S.

1.2

For example

• f(x) = cTx for some vector c ∈ R
n

• S = {x : Ax 6 b} for some m× n matrix A and some
vector b ∈ R

m.

If f is linear and S ⊆ R
n can be described by linear

equalities/inequalities then we have a linear programming (LP)
problem.

If x ∈ S then x is called a feasible solution.

If the maximum of f(x) over x ∈ S occurs at x = x∗ then

• x∗ is an optimal solution

• f(x∗) is the optimal value.

1.3

Questions

In general:

• does a feasible solution x ∈ S exist?

• if so, does an optimal solution exist?

• if so, is it unique?

• how can we find such solutions?
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Example: activity analysis

A company produces drugs A and B using machines M1 and
M2.

• 1 ton of drug A requires 1 hour of processing on M1 and 2
hours on M2

• 1 ton of drug B requires 3 hours of processing on M1 and 1
hour on M2

• 9 hours of processing on M1 and 8 hours on M2 are
available each day

• Each ton of drug produced (of either type) yields £1
million profit

To maximise its profit, how much of each drug should the
company make per day?

1.5

Solution

Let

• x1 = number of tons of A produced

• x2 = number of tons of B produced

P1 : maximise x1 + x2 (profit in £ million)
subject to x1 + 3x2 6 9 (M1 processing)

2x1 + x2 6 8 (M2 processing)
x1, x2 > 0

1.6

x1

x2

x1 + 3x2 = 92x1 + x2 = 8

x1 + x2 = 5

The shaded region is the feasible set for P1. The maximum
occurs at x∗ = (3, 2)T with value 5.

1.7

Diet problem

A pig-farmer can choose between four different varieties of food,
providing different quantities of various nutrients.

food required
1 2 3 4 amount/wk

A 1.5 2.0 1.0 4.1 4.0
nutrient B 1.0 3.1 0 2.0 8.0

C 4.2 1.5 5.6 1.1 9.5

cost/kg £5 £7 £7 £9

The (i, j) entry is the amount of nutrient i per kg of food j.
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Let xj = number of units of food Fj in the diet.

Problem P2:

minimise 5x1 + 7x2 + 7x3 + 9x4
subject to 1.5x1 + 2x2 + x3 + 4.1x4 > 4

x1 + 3.1x2 + 2x4 > 8
4.2x1 + 1.5x2 + 5.6x3 + 1.1x4 > 9.5

x1, x2, x3, x4 > 0

1.9

General form of the diet problem

Foods Fj for j = 1, . . . , n, nutrients Ni for i = 1, . . . ,m.

Data:

• aij = amount of nutrient Ni in one unit of food Fj

• bi = required amount of nutrient Ni

• cj = cost per unit of food Fj

Let xj = number of units of food Fj in the diet.

The diet problem is

minimise c1x1 + · · ·+ cnxn
subject to ai1x1 + · · ·+ ainxn > bi for i = 1, . . . ,m

x1, . . . , xn > 0.

1.10

In matrix notation the diet problem is

min
x

cTx subject to Ax > b, x > 0.

Note that our vectors are always column vectors.

We write x > 0 to mean xi > 0 for all i. (0 is a vector of zeros.)

Similarly Ax > b means (Ax)i > bi for all i.

1.11

General form of activity analysis

Goods or activities Gj for j = 1, . . . , n.
Scarce resources Ri for i = 1, . . . ,m.

Data:

• aij = amount of Ri required to make one unit of Gj

• bi = amount of Ri available

• cj = profit contribution per unit of Gj

We want to maximise profit.

Let xj = number of units of good Gj made.

The activity analysis LP is

max
x

cTx subject to Ax 6 b, x > 0.
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Real applications
“Programming” = “planning”

May be many thousands of variables or constraints

• Production management: activity analysis, large
manufacturing plants, farms, etc

• Scheduling, e.g. airline crews:
• need all flights covered
• restrictions on working hours and patterns
• minimise costs: wages, accommodation, use of seats by

non-working staff

shift workers (call centres, factories, etc)
• Yield management (airline ticket pricing: multihops,
business/economy mix, discounts, etc)

• Network problems: transportation capacity planning in
telecoms networks

• Game theory: economics, evolution, animal behaviour

1.13

Free variables

In an LP model, some variables may be positive or negative,
e.g. there may not be a constraint x1 > 0.

Such a free variable can be replaced by

x1 = u1 − v1

where u1, v1 > 0.

1.14

Slack variables
In P1 we had

maximise x1 + x2
subject to x1 + 3x2 6 9

2x1 + x2 6 8
x1, x2 > 0.

We can rewrite as

maximise x1 + x2
subject to x1 + 3x2 + x3 = 9

2x1 + x2 + x4 = 8
x1, . . . , x4 > 0.

• x3 = unused time on machine M1

• x4 = unused time on machine M2

x3 and x4 are called slack variables.

1.15

With the slack variables included, the problem has the form

max
x

cTx subject to Ax = b

x > 0.
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Two standard forms

In fact any LP (with equality constraints, weak inequality
constraints, or a mixture) can be converted to the form

max
x

cTx subject to Ax = b

x > 0

since:

• minimising cTx is equivalent to maximising −cTx

• inequalities can be converted to equalities by adding slack
variables

• free variables can be replaced as above.

1.17

Similarly, any LP can be put into the form

max
x

cTx subject to Ax 6 b

x > 0

since e.g.

Ax = b ⇐⇒

{

Ax 6 b

−Ax 6 −b

(more efficient rewriting may be possible!).

So it is OK for us to concentrate on LPs in these forms.

1.18

Remark

We always assume that the underlying space is Rn.

In particular x1, . . . , xn need not be integers. If we restrict to
x ∈ Z

n we have an integer linear program (ILP).

ILPs are in a sense harder than LPs. Note that the optimal value
of an LP gives a bound on the optimal value of the associated
ILP.
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2 Geometry of linear programming

Definition 2.1
A set S ⊆ R

n is called convex if for all u,v ∈ S and all
λ ∈ (0, 1), we have λu+ (1− λ)v ∈ S.

u

v

convex

v

u

convex

u

v

not convex

Thus S is convex when each line segment joining points in S
stays in S.

2.1

For now we will consider LPs in the form

max cTx subject to Ax = b

x > 0.

2.2

Theorem 2.2
The feasible set

S = {x ∈ R
n : Ax = b,x > 0}

is convex.

Proof.
Suppose u,v ∈ S, λ ∈ (0, 1). Let w = λu+ (1− λ)v. Then

Aw = A[λu+ (1− λ)v]

= λAu+ (1− λ)Av

= [λ+ (1− λ)]b

= b

and w > λ0+ (1− λ)0 = 0. So w ∈ S.

2.3

Extreme points

Definition 2.3
A point x in a convex set S is called an extreme point of S if
there are no two distinct points u,v ∈ S, and λ ∈ (0, 1), such
that x = λu+ (1− λ)v.

Thus x is an extreme point when it is not in the interior of any
line segment lying in S.
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Theorem 2.4
If an LP has an optimal solution, then it has an optimal
solution at an extreme point of the feasible set.

Proof.
Idea: If a given optimal point is not extremal, it’s on some line
segment within S all of which is optimal: move along the line
until we find an optimal point with more zero co-ordinates.

Since there exists an optimal solution, there exists an optimal
solution x∗ with a minimal number of non-zero components.

Suppose x∗ is not extremal, so that

x∗ = λu+ (1− λ)v

for some u 6= v ∈ S and λ ∈ (0, 1).

2.5

Since x∗ is optimal, cTu 6 cTx∗ and cTv 6 cTx∗.

But also cTx∗ = λcTu+ (1− λ)cTv so in fact
cTu = cTv = cTx∗.

Consider the line defined by

x(ε) = x∗ + ε(u− v) for ε ∈ R.

Then

(a) Ax∗ = Au = Av = b so Ax(ε) = b for all ε

(b) cTx(ε) = cTx∗ for all ε

(c) if x∗j = 0 then uj = vj = 0, so x(ε)j = 0 for all ε

(d) if x∗j > 0 then x(0)j > 0, so x(ε)j > 0 if |ε| is sufficiently
small

(e) for some j, uj 6= vj and x∗j > 0.

2.6

It follows that we can move ε from zero, in a positive direction
(if some uj < vj) or a negative direction (otherwise), keeping
x(ε) > 0, until at least one extra co-ordinate of x(ε) becomes
zero.

This gives an optimal solution with strictly fewer non-zero
co-ordinates than x∗, contradicting the choice of x∗.

So x∗ must be extreme.

‘Extreme point’ has a geometric flavour - algebraic next.

2.7

Basic solutions

Let aj be the jth column of the m× n matrix A, so that

Ax = b ⇐⇒
n∑

j=1

xjaj = b.

Definition 2.5

(1) A solution x̃ of Ax = b is called a basic solution if the
family of vectors (aj : x̃j 6= 0) is linearly independent.

(2) A basic solution satisfying x > 0 is called a basic feasible
solution (BFS).

Note. Since A has m rows, at most m columns can be linearly
independent. So any basic solution has at least n−m zero
co-ordinates. More later.
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Theorem 2.6
x̃ is an extreme point of

S = {x : Ax = b,x > 0}

if and only if x̃ is a BFS.

Proof.

(1) Let x̃ be a BFS. Suppose x̃ = λu+(1−λ)v for u,v ∈ S and
λ ∈ (0, 1). To show x̃ is extreme we want to show u = v.

Let J = {j : x̃j > 0}.

(a) If j 6∈ J then x̃j = 0, which implies uj = vj = 0.

2.9

(b) Au = Av = b, so A(u− v) = 0. Thus

0 =
n∑

j=1

(uj − vj)aj =
∑

j∈J

(uj − vj)aj

since uj = vj = 0 for j 6∈ J .

This implies that uj = vj for j ∈ J since (aj : j ∈ J) is linearly
independent.

Hence u = v, and so x̃ is an extreme point.

2.10

(2) Suppose x̃ is not a BFS, i.e. (aj : j ∈ J) is linearly
dependent, where as before J = {j : x̃j > 0}.

Then there exists u 6= 0 with uj = 0 for j 6∈ J such that
Au = 0.
For small enough ε > 0, x̃± εu are both feasible, and

x̃ =
1

2
(x̃+ εu) +

1

2
(x̃− εu)

so x̃ is not extreme.

2.11

Corollary 2.7

If there is an optimal solution, then there is an optimal BFS
(that is, an optimal solution which is also a BFS).

Proof.
This is immediate from Theorems 2.4 and 2.6.
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Discussion
Recall: our constraints are Ax = b, where A is m× n.

Typically we may assume A has rank m (its rows are linearly
independent): for if not, either we have a contradiction, or
redundancy which we can remove).

Then (n > m and) Ax = b always has a solution.

Indeed we may assume n > m (more variables than constraints):
for if n = m there is a unique solution, easily found.

Also: x̃ is a basic solution ⇐⇒ there is a set B ⊆ {1, . . . , n} of
size m such that

• x̃j = 0 if j 6∈ B,

• (aj : j ∈ B) is linearly independent.

Proof.
Simple exercise. Augment {aj : x̃j 6= 0} to a larger linearly
independent set if necessary.

2.13

To look for basic solutions:

• choose B ⊆ {1, . . . , n} of size m.

• set xj = 0 for j 6∈ B,

• look at the m columns (aj : j ∈ B).
Are they linearly independent? If so we have an invertible
m×m matrix.
Solve for {xj : j ∈ B} to give

∑

j∈B xjaj = b.
Then

Ax =
n∑

j=1

xjaj =
∑

j∈B

xjaj = b

as required.

In this way we obtain all basic solutions (at most
(
n
m

)
of them).

2.14

Bad algorithm:

• look through all basic solutions

• which are feasible?

• what is the value of the objective function?

We can do much better!

Simplex algorithm:

• move from one BFS to another, improving the value of the
objective function at each step.

2.15 2.16



3 The simplex algorithm (1)

The simplex algorithm works as follows.

1. Start with an initial BFS.

2. Is the current BFS optimal?

3. If YES, stop.
If NO, move to a new and improved BFS, then return to 2.

From Corollary 2.7, it is sufficient to consider only BFSs when
searching for an optimal solution (though this will emerge
anyway).

3.1

Recall the first activity analysis P1, expressed without slack
variables:

maximise x1 + x2
subject to x1 + 3x2 6 9

2x1 + x2 6 8
x1, x2 > 0

3.2

x1

x2

x1 + 3x2 = 92x1 + x2 = 8
A

B

E

D F

C

3.3

Rewrite:

x1 +3x2 +x3 = 9 (1)
2x1 + x2 +x4 = 8 (2)
x1 + x2 = f(x) (3)

Put x1, x2 = 0, giving x3 = 9, x4 = 8, f = 0 (we’re at the BFS

x = (0, 0, 9, 8)T ).

Note: In writing the three equations as (1)–(3) we are
effectively expressing x3, x4, f in terms of x1, x2.

We call x3, x4 the basic variables, and x1, x2 the non-basic
variables.

3.4



1. Start at the initial BFS x = (0, 0, 9, 8)T , vertex A, where
f = 0.

2. From (3), increasing x1 or x2 will increase f(x). Let’s
increase x1.

From (1): we can increase x1 to 9, when x3 decreases to 0.
From (2): we can increase x1 to 4, when x4 decreases to 0.

The stricter restriction on x1 is from (2), the pivot row.

3. So (keeping x2 = 0),

(a) increase x1 to 4, decrease x4 to 0 – using (2), this maintains
equality in (2),

(b) and, using (1), decreasing x3 to 5 maintains equality in (1).

With these changes we move to a new and improved BFS

x = (4, 0, 5, 0)T , f(x) = 4, vertex D. The new basic variables
are x1, x3.

3.5

To see if this new BFS is optimal, rewrite (1)–(3) so that

• each basic (non-zero) variable appears in exactly one
constraint,

• f is in terms of the non-basic variables (which are zero at
vertex D).

Alternatively, we want to express x1, x3, f in terms of the
non-basic variables x2, x4.

How? Add multiples of the pivot equation (2) to the other
equations.

3.6

(1)− 1

2
× (2) : 5

2
x2 +x3 −1

2
x4 = 5 (4)

1

2
× (2) : x1 +1

2
x2 +1

2
x4 = 4 (5)

(3)− 1

2
× (2) : 1

2
x2 −1

2
x4 = f − 4 (6)

Now f = 4 + 1

2
x2 −

1

2
x4 for each feasible x.

So we should increase x2 to increase f .

3.7

1′. We are at vertex D, x = (4, 0, 5, 0)T and f = 4.

2′. From (6), increasing x2 will increase f (increasing x4 would
decrease f).

From (4): we can increase x2 to 2, if we decrease x3 to 0.
From (5): we can increase x2 to 8, if we decrease x1 to 0.

The stricter restriction on x2 is from (4), the new pivot row.

3′. So increase x2 to 2, decrease x3 to 0 (x4 stays at 0, and from
(5) x1 decreases to 3).
With these changes we move to the BFS x = (3, 2, 0, 0)T ,
vertex C.
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Rewrite (4)–(6) so that they correspond to vertex C:

2

5
× (4) : x2 +2

5
x3 −1

5
x4 = 2 (7)

(5)− 1

5
× (4) : x1 −1

5
x3 +3

5
x4 = 3 (8)

(6)− 1

5
× (4) : −1

5
x3 −2

5
x4 = f − 5 (9)

1′′. We are at vertex C, x = (3, 2, 0, 0)T and f = 5.

2′′. We have deduced that f = 5− 1

5
x3 −

2

5
x4 6 5 for each

feasible x.

So x3 = x4 = 0 is the best we can do!

In that case we can read off x1 = 3 and x2 = 2.

So x = (3, 2, 0, 0)T , which has f = 5, is optimal.

3.9

Summary

At each stage:

• let B = {j : xj is basic}

• we express xj , j ∈ B and f in terms of xj , j 6∈ B

• setting xj = 0, j 6∈ B, we can read off f and xj , j ∈ B
(gives a BFS!).

At each update:

• look at f as expressed in terms of xj , j 6∈ B

• which xj , j 6∈ B, would we like to increase?

• if none, STOP!

• otherwise, choose one and increase it as much as possible,
i.e. until a variable xj , j ∈ B, becomes 0.

3.10

Summary continued

So at each update

• one new variable enters B (becomes basic, typically
becomes non-zero)

• another one leaves B (becomes non-basic, becomes 0).

This gives a new BFS.

We update our expressions to correspond to the new B.

3.11

Simplex algorithm
We can write equations

x1 +3x2 +x3 = 9 (1)
2x1 + x2 +x4 = 8 (2)
x1 + x2 = f − 0 (3)

as a ‘tableau’

x1 x2 x3 x4
x3 1 3 1 0 9 ρ1
x4 2 1 0 1 8 ρ2

1 1 0 0 0 ρ3

This initial tableau represents the BFS x = (0, 0, 9, 8)T at which
f = 0. The basic variables are specified on the left.

Note the identity matrix in the x3, x4 columns (first two rows),
and the zeros in the bottom row below it.

3.12



The tableau

At a given stage, the tableau has the form

(aij) b

cT f

which means:

Ax = b which has the same solutions as Ax = b

and

f(x) = cTx− f for each x such that Ax = b.

We start from A = A, b = b, c = c and f = 0.

Updating the tableau is called pivoting.

3.13

To update (‘pivot’)

1. Choose a pivot column
Choose a j such that cj > 0 (corresponds to the non-basic
variable xj that we want to increase from 0).
Here we can take j = 1 .

2. Choose a pivot row
Among the i’s with aij > 0, choose i to minimize bi/aij
(strictest limit on how much we can increase xj).
Here i = 2 since 8/2 < 9/1.

3.14

3. Do row operations so that column j gets a 1 in row i and 0s
elsewhere:

• multiply row i by
1

aij

• for i′ 6= i

add −
ai′j
aij

× (row i) to row i′

• add −
cj
aij

× (row i) to objective function row.

(These row operations do not change which sets of constraint
columns are linearly independent.)

3.15

In our example we pivot on j = 1, i = 2. The updated tableau is

x1 x2 x3 x4

x3 0 5

2
1 −1

2
5 ρ′

1
= ρ1 − ρ′

2

x1 1 1

2
0 1

2
4 ρ′

2
= 1

2
ρ2

0 1

2
0 −1

2
−4 ρ′

3
= ρ3 − ρ′

2

which means

5

2
x2 +x3 −1

2
x4 = 5

x1 +1

2
x2 +1

2
x4 = 4

1

2
x2 −1

2
x4 = f − 4

non-basic variables x2, x4 are 0, x = (4, 0, 5, 0)T .

Note the identity matrix inside (aij) telling us this.
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Next pivot: column 2, row 1 since
5

5/2
<

4

1/2
.

x1 x2 x3 x4

x2 0 1 2

5
−1

5
2 ρ′

1
= 2

5
ρ1

x1 1 0 −1

5

3

5
3 ρ′

2
= ρ2 −

1

2
ρ′
1

0 0 −1

5
−2

5
−5 ρ′

3
= ρ3 −

1

2
ρ′
1

Now we have only non-positive entries in the bottom row: STOP.
x = (3, 2, 0, 0)T , f(x) = 5 optimal.

3.17

Geometric picture for P1

x1

x2

x1 + 3x2 = 92x1 + x2 = 8
A

B

E

D F

C

3.18

x1 x2 x3 x4
A 0 0 9 8
B 4 0 5 0
C 3 2 0 0
D 0 3 0 5

A,B,C,D are BFSs. E,F are basic solutions but not feasible.

Simplex algorithm: A → D → C (or A → B → C is we choose a
different column for the first pivot).

Higher-dimensional problems are less trivial!

3.19

Comments on simplex tableaux

• We always find an m×m identity matrix embedded in
(aij), in the columns corresponding to the basic variables
xj , j ∈ B. (We are assuming A has rank m.)

• In the objective function row (bottom row) we find zeros in
these columns.

Hence f and xj , j ∈ B, are all written in terms of xj , j 6∈ B.
Since we set xj = 0 for j 6∈ B, it’s then trivial to read off the
values of f and xj , j ∈ B.
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Comments on simplex algorithm

• Choosing a pivot column
We may choose any j such that the reduced profit cj > 0.
In general, there is no easy way to tell which such j will
result in fewest pivot steps.

• Choosing a pivot row
Having chosen pivot column j (which variable xj to
increase), we look for rows with aij > 0.

If aij 6 0, constraint i places no restriction on the increase
of xj .

If aij 6 0 for all i, xj can be increased without limit: the
objective function is unbounded.

Otherwise, the most stringent limit comes from an i that
minimises bi/aij .

3.21 3.22
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4 The simplex algorithm (2)

Two issues to consider:

• can we always find a BFS from which to start the simplex
algorithm?

• does the simplex algorithm always terminate, i.e. find an
optimal BFS or show the objective function is unbounded?

4.1

Initialisation

To start the simplex algorithm, we need to start from a BFS,
with basic variables xj , j ∈ B, written in terms of non-basic
variables xj , j 6∈ B.

If b > 0 and A already contains Im as an m×m submatrix,
this is easy!

This always happens if b > 0 and A is created by adding slack
variables to make 6 inequalities into equalities.

4.2

Suppose the constraints are

Ax 6 b, x > 0

where b > 0. Then an initial BFS is immediate: introducing
slack variables z = (z1, . . . , zm),

Ax+ z = b, x, z > 0

the initial tableau is

x1 · · · xn z1 · · · zm

A Im b

cT 0T 0

An initial BFS is
(
x
z

)
=

(
0
b

)
, with the slack variables as basic

variables.

4.3

Example

max 6x1 + x2 + x3
s.t. 9x1 + x2 + x3 6 18

24x1 + x2 + 4x3 6 42
12x1 + 3x2 + 4x3 6 96

x1, x2, x3 > 0.

Add slack variables:

9x1 + x2 + x3 + x4 = 18
24x1 + x2 + 4x3 + x5 = 42
12x1 + 3x2 + 4x3 + x6 = 96

x1, . . . , x6 > 0.

4.4



Solve by simplex

9 1 1 1 0 0 18
24 1 4 0 1 0 42
12 3 4 0 0 1 96

6 1 1 0 0 0 0

This initial tableau is already in the form we need.

9 1 1 1 0 0 18 ρ′
1
= ρ1

15 0 3 −1 1 0 24 ρ′
2
= ρ2 − ρ1

−15 0 1 −3 0 1 42 ρ′
3
= ρ3 − 3ρ1

−3 0 0 −1 0 0 −18 ρ′
4
= ρ4 − ρ1

This solution is optimal: x2 = 18, x1 = 0, x3 = 0, f = 18.

4.5

What if A doesn’t have this form?
In general we can write the constraints as

Ax = b, x > 0 (4.1)

where b > 0 (if necessary, multiply rows by −1 to get b > 0).

If there is no obvious initial BFS and we need to find one, we
can introduce artificial variables w1, . . . , wm and solve the LP

problem

min
x,w

m∑

i=1

wi

subject to Ax+w = b

x,w > 0.

(4.2)

(We do not need wi if the ith unit m-vector is a column of A.)

4.6

Two cases arise:

(1) if (4.1) has a feasible solution, then (4.2) has optimal
value 0 with w = 0.

(2) if (4.1) has no feasible solution, then the optimal value of
(4.2) is > 0.

We can apply the simplex algorithm to determine whether it’s
case (1) or (2).

• In case (2), stop and check the data!

• In case (1), the optimal BFS for (4.2) with wi ≡ 0 yields a
BFS for (4.1).

This leads us to the two-phase simplex algorithm.

4.7

Two-phase simplex algorithm

Example:

maximize 3x1 + x3
subject to x1 + 2x2 + x3 = 30

x1 − 2x2 + 2x3 = 18
x > 0

With artificial variables:

minimize w1 + w2

subject to x1 + 2x2 + x3 + w1 = 30
x1 − 2x2 + 2x3 + w2 = 18

x,w > 0.
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Note: To minimise w1 + w2, we can maximise −w1 − w2. So
start from the ‘nearly proper’ simplex tableau

x1 x2 x3 w1 w2

1 2 1 1 0 30
1 −2 2 0 1 18

0 0 0 −1 −1 0

The objective function row should be expressed in terms of
non-basic variables (the entries under the ‘identity matrix’
should be 0).

4.9

So start by adding row 1 + row 2 to objective row:

x1 x2 x3 w1 w2

1 2 1 1 0 30
1 −2 2 0 1 18

2 0 3 0 0 48

Now start with simplex – pivot on a23:

x1 x2 x3 w1 w2

1

2
3 0 1 −1

2
21

1

2
−1 1 0 1

2
9

1

2
3 0 0 −3

2
21

4.10

Pivot on a12:

x1 x2 x3 w1 w2

1

6
1 0 1

3
−1

6
7

2

3
0 1 1

3

1

3
16

0 0 0 −1 −1 0

So we have found a point with −w1 − w2 = 0, i.e. w = 0.

Phase I is finished. A BFS of the original problem is
x = (0, 7, 16)T .

4.11

Deleting the w columns and replacing the objective row by the
original objective function 3x1 + x3:

x1 x2 x3
1

6
1 0 7

2

3
0 1 16

3 0 1 0

Again we want zeros below the identity matrix – subtract row 2
from row 3:

x1 x2 x3
1

6
1 0 7

2

3
0 1 16

7

3
0 0 −16

Now do simplex.

4.12



Pivot on a21:

x1 x2 x3

0 1 −1

4
3

1 0 3

2
24

0 0 −7

2
−72

Done! Maximum at x1 = 24, x2 = 3, x3 = 0, f = 72.

(When (4.1) is feasible as here, w = 0 at the end of phase I. We
expect that each artificial variable wj is non-basic – if not, there
is a minor complication, which we shall ignore.)

4.13

Shadow prices

Recall the activity analysis P1:

max x1 + x2
s.t. x1 + 3x2 6 9

2x1 + x2 6 8
x1, x2 > 0

4.14

We had initial tableau

1 3 1 0 9 ρ1
2 1 0 1 8 ρ2
1 1 0 0 0 ρ3

and final tableau

0 1 2

5
−1

5
2 ρ′

1

1 0 −1

5

3

5
3 ρ′

2

0 0 −1

5
−2

5
−5 ρ′

3

If we increase x3 from 0 to t (for some small t > 0) the profit
(objective function) goes down by t

5
. This suggests that the

marginal value of time on machine M1 is 1

5
.

4.15

From the mechanics of the simplex algorithm:

• ρ′
1
, ρ′

2
are created by taking linear combinations of ρ1, ρ2

• ρ′
3
is ρ3 − (a linear combination of ρ1, ρ2).

Directly from the tableaux (look at columns 3 and 4):

ρ′1 =
2

5
ρ1 −

1

5
ρ2

ρ′2 = −1

5
ρ1 +

3

5
ρ2

ρ′3 = ρ3 −
1

5
ρ1 −

2

5
ρ2
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Suppose we change the constraints to

x1 + 3x2 6 9 + ε1

2x1 + x2 6 8 + ε2.

Then the final tableau will change to

0 1 2

5
−1

5
2 + 2

5
ε1 −

1

5
ε2

1 0 −1

5

3

5
3− 1

5
ε1 +

3

5
ε2

0 0 −1

5
−2

5
−5− 1

5
ε1 −

2

5
ε2

4.17

This is still a valid tableau as long as

2 + 2

5
ε1 −

1

5
ε2 > 0

3− 1

5
ε1 +

3

5
ε2 > 0.

In that case we still get an optimal BFS from it, with optimal
value

5 + 1

5
ε1 +

2

5
ε2.

The profit increases by 1

5
per extra hour on M1 and by 2

5
per

extra hour on M2 (if the changes are ‘small enough’).

These shadow prices can always be read off from the initial
tableau.

4.18

Termination of simplex algorithm

‘Typical situation’: each BFS has exactly m non-zero and n−m
zero variables.

Then each pivoting operation (moving from one BFS to another)
strictly increases the new variable ‘entering the basis’ and so
strictly increases the objective function.

Since there are only finitely many BFSs, we have the following
theorem.

Theorem 4.1
If each BFS has exactly m non-zero variables, then the simplex
algorithm terminates (i.e. finds an optimal solution or proves
that the objective function is unbounded).

4.19

What if some BFSs have extra zero variables?

We say that the problem is degenerate.

Almost always: this is no problem.

In rare cases, some choices of pivot columns/rows may cause
the algorithm to cycle (repeat itself). There are various ways to
avoid this (e.g. always choosing the leftmost column, and then
the highest row, can be proved to work always.)

See e.g. Chvátal’s book for a nice discussion.
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5 Duality: Introduction
Recall the activity analysis P1:

maximise x1 + x2

subject to x1 + 3x2 6 9 (5.1)

2x1 + x2 6 8 (5.2)

x1, x2 > 0.

‘Obvious’ bounds on f(x) = x1 + x2:

x1 + x2 6 x1 + 3x2 6 9 from (5.1)

x1 + x2 6 2x1 + x2 6 8 from (5.2).

By combining the constraints we can improve the bound, e.g.
1

3
[(5.1) + (5.2)]:

x1 + x2 6 x1 +
4

3
x2 6

17

3
.

5.1

More systematically?

For y1, y2 > 0, consider y1 × (5.1) + y2 × (5.2). We obtain

(y1 + 2y2)x1 + (3y1 + y2)x2 6 9y1 + 8y2.

Since we want an upper bound for x1 + x2, we need
coefficients > 1:

y1 + 2y2 > 1

3y1 + y2 > 1.

How to get the best bound by this method?

D1 : minimise 9y1 + 8y2
subject to y1 + 2y2 > 1

3y1 + y2 > 1
y1, y2 > 0.

P1 = ‘primal problem’, D1 = ‘dual of P1’.

5.2

Duality: General

In general, given a primal problem

P : maximise cTx subject to Ax 6 b, x > 0

the dual of P is defined by

D : minimise bTy subject to ATy > c, y > 0.

Exercise
The dual of the dual is the primal (with suitable recasting).

5.3

Weak duality

Theorem 5.1 (Weak duality theorem)

If x is feasible for P , and y is feasible for D, then

cTx 6 bTy.

Proof.
Since x > 0 and ATy > c

cTx 6 (ATy)Tx = yTAx.

Since y > 0 and Ax 6 b

yTAx 6 yTb = bTy.

Hence cTx 6 yTAx 6 bTy
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Comments

Suppose y is a feasible solution to D. Then any feasible
solution x to P has value bounded above by bTy.

So D feasible =⇒ P has bounded value (or is infeasible).

Similarly P feasible =⇒ D has bounded value (or is infeasible).

5.5

Corollary 5.2 (Optimality Test)

If x∗ is feasible for P , y∗ is feasible for D, and cTx∗ = bTy∗,
then x∗ is optimal for P and y∗ is optimal for D.

Proof.
For all x feasible for P ,

cTx 6 bTy∗ by weak duality, Theorem 5.1

= cTx∗

and so x∗ is optimal for P .

Similarly, for all y feasible for D,

bTy > cTx∗ = bTy∗

and so y∗ is optimal for D.

5.6

As an example of applying this result, look at x∗ = (3, 2)T ,
y∗ = (1

5
, 2
5
)T for P1 and D1 above.

Both are feasible, both have value 5. So both are optimal.

Does this nice situation always occur?

5.7

Strong duality

Theorem 5.3 (Duality Theorem)

Suppose that P and D have feasible solutions. Then both have
optimal solutions x∗ and y∗ respectively, and

cTx∗ = bTy∗.

Proof.
Write the constraints of P as Ax+ z = b, x, z > 0.

We can start the simplex method on P , and since P has
bounded value, the simplex method must terminate with an
optimal tableau.

Consider the bottom row in this tableau.
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x-columns z-columns
︷ ︸︸ ︷ ︷ ︸︸ ︷

c∗
1

· · · c∗n −y∗
1

· · · −y∗m −f∗

Here f∗ is the optimal value of cTx,

c∗j 6 0 for all j (5.3)

−y∗i 6 0 for all i (5.4)

By looking at the z-columns, we find that to obtain the final
bottom row from the initial one we subtract

∑

i y
∗

i ρi, where ρi
is the ith row of the initial tableau.

(To see this, think first of the case b > 0, with the slack
variables as initial basic variables. The result still holds if we
use the two-phase method to get started.)

5.9

Thus −f∗ = −
∑

i y
∗

i bi, so

f∗ = bTy∗. (5.5)

Also c∗j = cj − y∗Taj (where aj is the jth column of A), so

c∗ = c−ATy∗.

From (5.3) c∗ 6 0, hence

ATy∗
> c. (5.6)

5.10

Inequalities (5.4) and (5.6) show that y∗ is feasible for D.

Also, equation (5.5) shows that the objective function of D at
y∗ is bTy∗ = f∗ = optimal value of P .

So by the Optimality Test (Corollary 5.2), y∗ is optimal
for D.

5.11

Comments

Note:

• the coefficients y∗ from the bottom row in the columns
corresponding to slack variables give us (when negated) the
optimal solution to D

• comparing with the shadow prices discussion: these
optimal values for the dual variables are the shadow prices!
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Example

It is possible that neither P nor D has a feasible solution:
consider the problem

maximise 2x1 − x2
subject to x1 − x2 6 1

− x1 + x2 6 −2
x1, x2 > 0.

5.13

Example

Consider the problem

maximise 2x1 + 4x2 + x3 + x4
subject to x1 + 3x2 + x4 6 4

2x1 + x2 6 3
x1 + 4x3 + x4 6 3

x1, . . . , x4 > 0

Add slack variables x5, x6, x7 and use the simplex method.

5.14

The final tableau is

x1 x2 x3 x4 x5 x6 x7

0 1 0 2

5

2

5
· · 1

1 0 0 −1

5
−1

5
· · 1

0 0 1 3

10

1

20
· · 1

2

0 0 0 −1

2
−5

4
−1

4
−1

4
−13

2

(1) By the proof of the Duality Theorem (Theorem 5.3),
y∗ = (5

4
, 1
4
, 1
4
)T is optimal for the dual.

5.15

(2) Suppose the RHSs of the original constraints become 4 + ε1,
3 + ε2, 3 + ε3. Then the objective function becomes
13

2
+ 5

4
ε1 +

1

4
ε2 +

1

4
ε3.

If the original RHSs of 4, 3, 3 correspond to the amount of
raw material i available, then the marginal value of raw
material 1, ‘the most you’d be prepared to pay per
additional unit’, is y∗

1
= 5

4
(and similarly for raw material 2

and y∗
2
= 1

4
, and so on).
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(3) Suppose raw material 1 is available at a price < 5

4
per unit.

How much should you buy? With ε1 > 0, ε2 = ε3 = 0, the
final tableau would be

1 + 2

5
ε1

· · · 1− 1

5
ε1

1

2
+ 1

20
ε1

For this tableau to represent a BFS, the three entries in the
final column must be > 0, giving ε1 6 5. So we should buy
at least 5 additional units of raw material 1.

5.17

(4) The optimal solution x∗ = (1, 1, 1
2
, 0)T is unique as the

entries in the bottom row corresponding to non-basic
variables (i.e. the −1

2
, −5

4
, −1

4
, −1

4
) are < 0.

(5) Suppose now that we can sell the first scarce resource for 5

4

per unit. Then x5 has (initial) objective function coefficient
5

4
not 0.

The reduced profit at the final tableau for x5 now becomes
0 not −5

4
.

We could pivot in that column (observe that there would be
somewhere to pivot) to get a second optimal BFS x∗∗.

Then λx∗ + (1− λ)x∗∗ is optimal for all λ ∈ [0, 1].

5.18
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6 Duality: Complementary slackness

Recall

P : maximise cTx subject to Ax 6 b, x > 0

D : minimise bTy subject to ATy > c, y > 0

The optimal solutions to P and D satisfy ‘complementary
slackness conditions’, that we can use for example to solve one
problem when we know a solution of the other.

6.1

Theorem 6.1 (Complementary Slackness Theorem)

Suppose x is feasible for P and y is feasible for D. Then x and
y are optimal (for P and D respectively) if and only if

(ATy − c)jxj = 0 for all j (6.1)

and

(b−Ax)iyi = 0 for all i. (6.2)

Conditions (6.1) and (6.2) are called the complementary
slackness conditions.

6.2

Interpretation

Condition (6.1) says:

if a dual constraint is slack, then the corresponding primal
variable is zero

or equivalently

if a primal variable is > 0, then the corresponding dual
constraint is tight.

Condition (6.2) says the same except with ‘primal’ and ‘dual’
swapped.

6.3

Proof.
As in the proof of the weak duality theorem,

cTx 6 (ATy)Tx = yTAx 6 yTb. (6.3)

From the Duality Theorem,

x,y both optimal

⇐⇒ cTx = bTy

⇐⇒ cTx = yTAx = bTy from (6.3)

⇐⇒ (yTA−cT )x = 0 and yT(b−Ax) = 0

⇐⇒

n∑

j=1

(ATy−c)jxj = 0 and

m∑

i=1

(b−Ax)iyi = 0.
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But ATy > c and x > 0, so
∑n

j=1
(ATy − c)jxj is a sum of

non-negative terms. Hence
∑n

j=1
(ATy − c)jxj = 0 is equivalent

to (6.1).

Similarly, Ax 6 b and y > 0, so
∑m

i=1
(b−Ax)iyi is a sum of

non-negative terms. Hence
∑m

i=1
(b−Ax)iyi = 0 is equivalent

to (6.2).

6.5

Comments

What’s the use of complementary slackness?

Among other things, given an optimal solution of P (or D), it
makes finding an optimal solution of D (or P ) easy, because we
know which the non-zero variables can be and which constraints
must be tight.

Sometimes one of P and D is much easier to solve than the
other, e.g. with 2 variables, 5 constraints, we can solve
graphically, but 5 variables and 2 constraints is not so easy.

6.6

Example
Consider P and D with

A =

(
1 4 0
3 −1 1

)

, b =

(
1
3

)

, c =





4
1
3



 .

Is x̃ = (0, 1
4
, 13

4
)T optimal? It is feasible. If it is optimal, then

since x̃2 > 0, for any optimal y we have (ATy)2 = c2, that is
4y1 − y2 = 1; and

since x̃3 > 0, for any optimal y we have (ATy)3 = c3, that is
0y1 + y2 = 3.

These equations give y = (y1, y2)
T = (1, 3)T .

The remaining dual constraint y1 + 3y2 > 4 is also satisfied, so
ỹ = (1, 3)T is feasible for D.

6.7

Thus x̃ = (0, 1
4
, 13

4
)T and ỹ = (1, 3)T are feasible and satisfy

complementary slackness, therefore they are optimal by
Theorem 6.1.

Alternatively, at this point we could note that x̃ and ỹ are
feasible and cT x̃ = 10 = bT ỹ, so they are optimal by the
Optimality Test (Corollary 5.2).
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Example continued

If we don’t know the solution to P , we can first solve D
graphically.

feasible set

y1

y2

y2 = 3

y1 + 3y2 = 4

4y1 − y2 = 1

6.9

The optimal solution is at ỹ = (1, 3)T , and we can use this to
solve P : for any optimal x

since ỹ1 > 0, x1 + 4x2 = 1

since ỹ2 > 0, 3x1 − x2 + x3 = 3

since ỹ1 + 3ỹ2 > 4, x1 = 0

and so x = (0, 1
4
, 13

4
)T .

6.10

Example
Consider the primal problem

maximise 10x1 + 10x2 + 20x3 + 20x4
subject to 12x1 + 8x2 + 6x3 + 4x4 6 210

3x1 + 6x2 + 12x3 + 24x4 6 210
x1, . . . , x4 > 0

with dual

minimise 210y1 + 210y2

subject to 12y1 + 3y2 > 10 (1)

8y1 + 6y2 > 10 (2)

6y1 + 12y2 > 20 (3)

4y1 + 24y2 > 20 (4)

y1, y2 > 0.

6.11

dual feasible set

y1

y2

(1) (2)
(3)

(4)

The dual optimum is where lines (1) and (3) intersect.
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Since the second and fourth dual constraints are slack at the
optimum, each optimal x has x2 = x4 = 0.

Also, since y1, y2 > 0 at the optimum,

12x1 + 6x3 = 210

3x1 + 12x3 = 210

}

and so x1 = 10, x3 = 15.

Hence the optimal x is (10, 0, 15, 0)T .

6.13

Example continued

Suppose the second 210 is replaced by 421.

The new dual optimum is where (3) and (4) intersect, at which
point the first two constraints are slack, so each optimal x has
x1 = x2 = 0.

Also, since y1, y2 > 0 at the new optimum,

6x3 + 4x4 = 210

12x3 + 24x4 = 421

}

and so x3 = 35− 1

24
, x4 =

1

16
.

Hence the new optimum is at x = (0, 0, 35− 1

24
, 1

16
)T .

6.14

Activity analysis, duality and CS

A firm makes goods Gj for j = 1, . . . , n using scarce resources
Ri for i = 1, . . . ,m.

Each unit of Gj requires aij units of Ri, and yields return of cj .

Let xj = number of units of good j made.

Primal P:

max
x

cTx subject to Ax 6 b, x > 0

Dual D:
min
y

bTy subject to ATy > c, y > 0

6.15

A competitor wants to buy the firm. She offers yi > 0 per unit
for resource Ri such that, for each good Gj , the return cj per
unit is at most the price of the resources to make it, that is

cj 6 a1jy1 + a2jy2 + · · ·+ amjym

(so the firm has no incentive to continue production).
Thus the buyer chooses y > 0 such that ATy > c.

Subject to this, she aims to minimise the cost bTy. So the
buyer faces D.

Complementary Slackness. Let x̃ be optimal in P and let ỹ be
optimal in D. Then:

(Ax̃)i < bi =⇒ ỹi = 0: ‘resources in excess supply are free’

(AT ỹ)j > cj =⇒ x̃j = 0: ‘unprofitable goods are not made’
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7 Two-player zero-sum games (1)

We consider games that are zero-sum in the sense that one
player wins what the other loses.

Each player has a list of possible actions.

Players move simultaneously.

7.1

Payoff matrix

There is a payoff matrix A = (aij):

Player II plays j

1
Player I plays i 2

3





1 2 3 4
−5 3 1 20
5 5 4 6

−4 6 0 −5





If the row player Player I plays i and the column player Player
II plays j, then Player I wins aij from Player II.

The game is defined by the payoff matrix.

Note that our convention is that I wins aij from II, so aij > 0 is
good for the row player, Player I.

7.2

Suppose Player I plays conservatively. What’s the ‘worst that
can happen’ to him if he chooses row 1? row 2? row 3? (We
look at the smallest entry in the appropriate row.)

Similarly, what’s the ‘worst that can happen’ to Player II if
Player II chooses a particular column? (We look at the largest
entry in that column.)

The matrix above has a special property.

Entry a23 = 4 is both

• the smallest entry in row 2

• the largest entry in column 3

(2, 3) is a ‘saddle point’ of A.

7.3

We see that:

• Player I can guarantee to win at least 4 by choosing row 2.

• Player II can guarantee to lose at most 4 by choosing
column 3.

• Thus both guarantees are best possible.

• The guarantess still hold if either player announces their
strategy in advance.

Hence the game is ‘solved’ and it has ‘value’ 4.
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Mixed strategies

Consider the game of Scissors-Paper-Stone:

• Scissors beats Paper,

• Paper beats Stone,

• Stone beats Scissors.

Scissors Paper Stone
Scissors
Paper
Stone





0
−1
1

1
0

−1

−1
1
0





No saddle point.

If either player announces a fixed action in advance (e.g. ‘play
Paper’) the other player can take advantage.

7.5

So we consider a mixed strategy : each action is played with a
certain probability. (This is in contrast with a pure strategy
which is to select a single action with probability 1.)

Suppose Player I plays i with probability pi, i = 1, . . . ,m.

Then Player I’s expected payoff if Player II plays j is

m∑

i=1

aijpi.

Suppose Player I wishes to maximise (over p) his minimal
expected payoff

min
j

m∑

i=1

aijpi.

7.6

Similarly Player II plays j with probability qj , j = 1, . . . , n, and
may look to minimise (over q)

max
i

n∑

j=1

aijqj .

This aim for Player II may seem like only one of several sensible
aims (and similarly for the earlier aim for Player I).

Soon we will see that they lead to a ‘solution’ in a very
appropriate way, corresponding to the solution for the case of
the saddle point.

7.7

LP formulation

Consider Player II’s problem ‘minimise maximal expected
payout’:

min
q






max

i

n∑

j=1

aijqj






subject to

n∑

j=1

qj = 1, q > 0.

This is not yet an LP – look at the objective function.
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Equivalent formulation
An equivalent formulation is:

min
q,v

v subject to
n∑

j=1

aijqj 6 v for i = 1, . . . ,m

n∑

j=1

qj = 1

q > 0.

since for any given q, when we minimize v it will decrease until
it takes the value maxi

∑n
j=1

aijqj .

If v∗ is the optimal value then Player II can guarantee expected
loss 6 v∗.

This is an LP but not yet in the most useful form for us.

7.9

We could add a constant k to each aij so that aij > 0 for all i, j.
This doesn’t change the nature of the game, but guarantees
v > 0.

So WLOG assume aij > 0 for all i, j.

Now change variables to xj = qj/v. The problem becomes:

choose x, v to

min v subject to
n∑

j=1

aijxj 6 1 for i = 1, . . . ,m

n∑

j=1

xj = 1/v

x > 0.

7.10

This transformed problem for Player II is equivalent to

P : choose x to

max
n∑

j=1

xj subject to Ax 6 1, x > 0

which is now in our ‘standard form’. (1 denotes a vector of 1s.)

If x∗ is an optimal solution to P then Player II can guarantee
expected loss 6 1∑

j x
∗

j

.

7.11

Doing the same transformations for Player I’s problem

max
p

{

min
j

m∑

i=1

aijpi

}

subject to
m∑

i=1

pi = 1, p > 0

turns it into

D : choose y to

min
m∑

i=1

yi subject to ATy > 1, y > 0.

(Check: on problem sheet.)

Observe: P and D are dual LPs and so have the same optimal
value.
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Conclusion

Let x∗,y∗ be optimal for P,D. Then:

• Player I can guarantee an expected gain of at least
v = 1/

∑m
i=1

y∗i , by following strategy p = vy∗.

• Player II can guarantee an expected loss of at most
v = 1/

∑n
j=1

x∗j , by following strategy q = vx∗.

• The above is still true if a player announces his strategy in
advance.

So the game is ‘solved’ as in the saddle point case (this was just
a special case where the strategies were pure).

v is the value of the game (the amount that Player I should
‘fairly’ pay to Player II for the chance to play the game).

7.13 7.14
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8 Two-player zero-sum games (2)

Some games are easy to solve without the LP formulation, e.g.

A =

(
−2 2
4 −3

)

Suppose Player I chooses row 1 with probability p, row 2 with
probability 1− p. Then he should maximise

min(−2p+ 4(1− p), 2p− 3(1− p))

=min(4− 6p, 5p− 3)

8.1

p

4− 6p

5p− 3

1

8.2

So the min is maximised when

4− 6p = 5p− 3

which occurs when p = 7

11
.

And then v = 35

11
− 3 = 2

11
.

(We could go on to find Player II’s optimal strategy too.)

8.3

A useful trick: dominated actions
Consider the game

A =





4 2 2
1 3 4
3 0 5



 .

Player II should never play column 3, since column 2 is always
at least as good as column 3 (column 2 dominates column 3.)
So we reduce to 



4 2
1 3
3 0





(and this makes no difference to player I).

Now Player I will never play row 3 since row 1 is always better,
so (

4 2
1 3

)

has the same value (and ‘same’ optimal strategies) as A.
8.4



Final example

Consider the game

A =





−1 0 1
1 −1 0

−1 3 −1



 .

Add 1 to each entry

Ã =





0 1 2
2 0 1
0 4 0



 .

The game Ã has value > 0 (consider e.g. strategy (1
3
, 1
3
, 1
3
)T for

Player I).

8.5

Solve the LP for Player II’s optimal strategy:

max
x1,x2,x3

x1 + x2 + x3 subject to





0 1 2
2 0 1
0 4 0









x1
x2
x3



 6





1
1
1





x > 0.

8.6

Initial simplex tableau:

0 1 2 1 0 0 1
2 0 1 0 1 0 1
0 4 0 0 0 1 1

1 1 1 0 0 0 0

final tableau:

0 0 1 1

2
0 −1

8

3

8

1 0 0 −1

4

1

2

1

16

5

16

0 1 0 0 0 1

4

1

4

0 0 0 −1

4
−1

2
− 3

16
−15

16

8.7

Optimum: x1 =
5

16
, x2 =

1

4
, x3 =

3

8
, and x1 + x2 + x3 =

15

16
.

So value v = 1/(x1 + x2 + x3) =
16

15
.

Player II’s optimal strategy: q = vx = 16

15
( 5

16
, 1
4
, 3
8
) = (1

3
, 4

15
, 2
5
).

Dual problem for Player I’s strategy has solution y1 =
1

4
,

y2 =
1

2
, y3 =

3

16
(from bottom row of final tableau).

So Player I’s optimal strategy:
p = vy = 16

15
(1
4
, 1
2
, 3

16
) = ( 4

15
, 8

15
, 3

15
).

The game Ã has value 16

15
, so the original game A has value

16

15
− 1 = 1

15
, and the same optimal strategies p and q.

end

8.8
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