
Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

B6.3 Integer Programming

Raphael Hauser

Mathematical Institute

University Of Oxford

Michaelmas Term 2018

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

1 Recap on Delayed Column Generation

2 The Branch & Price Algorithm

3 The Cutting Stock Problem

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Recap on Delayed Column Generation
Starting with an IP of the form

(IP) z = max
x

K
∑

k=1

c
k T

x
k

s.t.
K
∑

k=1

A
k
x
k

= b

x
k

∈ X
k

= {x
k

∈ Z
nk
+ : D

k
x
k

≤ d
k
}, (k = 1, . . . ,K),

the Dantzig-Wolfe reformulation yields the IP Master Problem

(IPM) z = max
λ

K
∑

k=1

Tk
∑

t=1

(c
k T

x
k,t

)λk,t

s.t.
K
∑

k=1

Tk
∑

t=1

(A
k
x
k,t

)λk,t = b,

Tk
∑

t=1

λk,t = 1, (k = 1, . . . ,K),

λk,t ∈ {0, 1}, (t = 1, . . . ,Tk ; k = 1, . . . ,K).

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

The LP relaxation of the IP Master Problem is the LP Master Problem,

(LPM) z
LPM

= max
λ

K
∑

k=1

Tk
∑

t=1

(c
k T

x
k,t

)λk,t

s.t.
K
∑

k=1

Tk
∑

t=1

(A
k
x
k,t

)λk,t = b,

Tk
∑

t=1

λk,t = 1, (k = 1, . . . ,K),

λk,t ≥ 0, (t = 1, . . . ,Tk ; k = 1, . . . ,K).

The dual of the LP Master Problem is the Dual Master Problem

(DM) z
DM

= min
µ,π

m
∑

i=1

biπi +
K
∑

k=1

µk

s.t. π
T

A
k
x
k
+ µk ≥ c

k T
x
k
, (x

k
∈ X

k
).

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Take a Restricted LP Master Problem

(RM) z̃
RM

= max c̃
T
λ̃

s.t. Ãλ̃ = b̃,

λ̃ ≥ 0,

obtained by setting all but a few λk,t = 0 and forcing them to be non-basic variables. Only the

remaining columns of (LPM) need to be generated.

Using the simplex algorithm, find an optimal solution λ̃∗ of (RM) and, by complementary slackness, the

corresponding optimal solution (π, µ) ∈ R
m × R

K of the dual of (RM).

In parallel, for all k ∈ [1,K] solve

(CGIPk) x̃
k

= arg max
x

(c
k
− π

T
A

k
)x − µk

s.t. x ∈ X
k
.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

If the reduced prices ζk := (ck − πTAk)x̃k − µk ≤ 0 for all k, then (π, µ) is (DM)-feasible and

λ̃∗ is (LPM)-optimal.

Otherwise, pick k such that ζk > 0 and add the column







ck x̃k

Ak x̃k

ek







to (RLPM) to obtain a new restricted LP master problem (RLPM+). Re-optimise using
warmstarting.

At all every iteration, we monitor our progress toward solving (LPM) by storing the primal and
dual bounds

c̃
T
λ̃
∗

≤ z
LPM

≤ πb +
K
∑

k=1

µk +
K
∑

k=1

ζk .

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

The Branch & Price Algorithm

The application of column generation in the context of branch-and-bound for binary IPs is called
branch-and-price.

The master problem is in the format

z = max
K
∑

k=1

Tk
∑

t=1

(c
k T

x
k,t

)λk,t

s.t.
K
∑

k=1

Tk
∑

t=1

(A
k
x
k,t

)λk,t = b,

Tk
∑

t=1

λk,t = 1, (k = 1, . . . ,K),

λk,t ∈ {0, 1}, (t = 1, . . . ,Tk ; k = 1, . . . ,K),

and the vectors xk,t are binary.

Subproblems will also be in this format. To guarantee this, we need to discuss a tailored
branching method.

We already know how delayed column generation is able to generate primal and dual bounds at
each node (subproblem primal and dual bounds that can be used to update the global primal and
dual bound of the root problem in the usual branch & bound fashion).

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Since the points xk,t ∈ Xk are all distinct 0-1 vectors,

x̃
k

=

Tk
∑

t=1

λ̃k,tx
k,t

is a 0-1 vector if and only if λ̃ is integer valued.

If the optimal solution λ̃ of (LPM) (found by delayed column generation) is not integer, there exists
therefore κ, j such that x̃κ

j , the j-th component of x̃κ, is fractional.

We would like to branch by splitting the feasible set S = S0 ∪ S1 into

S0 = S ∩ {x : x
κ
j = 0},

S1 = S ∩ {x : x
κ
j = 1}.

But can we identify the master problems corresponding to S0 and S1?

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

For δ = 0, 1, the requirement that

δ = x
κ
j =

Tκ
∑

t=1

λκ,tx
κ,t
j

implies that x
κ,t
j

= δ for all t with λκ,t > 0. Therefore, the master problem for Sδ is

z(Sδ) = max
∑

k 6=κ

Tk
∑

t=1

(c
k
x
k,t

)λk,t +
∑

t: x
κ,t
j

=δ

(c
κ
x
κ,t

)λκ,t

s.t.
∑

k 6=κ

Tk
∑

t=1

(A
k
x
k,t

)λk,t +
∑

t: x
κ,t
j

=δ

(A
κ
x
κ,t

)λκ,t = b,

Tk
∑

t=1

λk,t = 1, (k 6= κ),

∑

t: x
κ,t
j

=δ

λκ,t = 1

λk,t ∈ {0, 1}, (t = 1, . . . ,Tk ; k = 1, . . . ,K).

Thus, the problem has the same structure as the master problem for S, but some of the columns are
permanently excluded. This has the beneficial effect that the deeper the node in the branch-and-bound

tree, the fewer patterns xk,t need to be considered.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

The column generation subproblems are unchanged for k 6= κ,

x̃
k

= arg max (c
k
− πA

k
)x − µk

s.t. x ∈ X
k
,

but take the new form

x̃
κ
(Sδ) = arg max (c

κ
− πA

κ
)x − µκ

s.t. x ∈ X
k
,

xj = δ

for k = κ.

Similar further restrictions apply of course deeper down the branches, where the subproblems are further
branched.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

The Cutting Stock Problem (CSP)

The above ideas can be applied to solve the cutting-stock problem in an
approach developed by Gilmore & Gomoroy.

Example (Cutting Stock Problem)

A factory has an unlimited stock of 20-inch paper rolls that it can cut
into rolls of smaller widths.

They receive an order of 301 9-inch paper rolls, 401 8-inch paper rolls,
201 7-inch paper rolls and 501 6-inch paper rolls.

Assuming both trim loss and overproduction are waste, how to fill all the
orders under minimal cost?

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Details of Branch-and-Price for the Cutting Stock Problem:

More generally, if the stock rolls have width W and there are m different widths wi

(i = 1, . . . ,m) in the order, we can generate all patterns aj = [a1j ... amj]T of patterns
consisting of aij rolls of width wi that can be cut into a roll of width W , i.e., such that

m
∑

i=1

wi aij ≤ W .

Note that aij ∈ Z+ = {0, 1, 2, 3, . . . } for all i, j.

Conceptually, we assemble the columns aj into a matrix A (although we never want to generate

the full data).

Decision variables: xj ∈ N0, the number of times pattern j is used (j = 1, . . . , n). (Note: the xj
play the roles of variables λk,t used earlier.)

Constraints: if there are bi orders of width wi , filling the orders requires Ax ≥ b, and due to the
assumption that overproduction is waste, w.l.o.g.,

Ax = b.

Objective: minimise
∑n

j=1
xj , the total number of stock rolls used.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

This yields the IP model

(ICS) min
n

∑

j=1

xj

s.t. Ax = b,

x ∈ Z
n
+.

The LP relaxation is given by

(LCS) min~1
T

x

s.t. Ax = b,

x ≥ 0,

which has the dual

(DCS) max b
T

y

s.t. A
T

y ≤ ~1.

The number n of patterns can be huge, so apply delayed column generation to solve (LCS), e.g.,
starting with initial restricted pattern set

Ã =









⌊W/w1⌋ 0

. . .

0 ⌊W/wm⌋









R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Here we select only m patterns in each simplex iteration, i.e., the columns corresponding to the
basic variables. All other variables (the non-basic variables) are forced to zero.

To solve the restricted subproblem, we only need to solve a linear system,

x̃ = Ã
−1

b.

Theorem (Complementary Slackness) implies that the optimal dual variables of the restricted

LPM are given by ỹ = Ã− T~1.

If ỹ is dual feasible (feasible for (DCS)), x̃ is optimal for (LCS).

Else there exists a pattern j (an column of the full matrix A that has not yet been generated)
corresponding to a non-basic variable xj such that

m
∑

i=1

aij ỹi > 1.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Although pattern j has not yet been generated, we can find out whether or not it exists by
solving the knapsack problem

(KS) p
∗

= arg max
p

ỹ
T

p

s.t.
m
∑

i=1

wi pi ≤ W ,

p ∈ Z
m
+ .

If ỹTp ≤ 1, then ỹ is dual feasible, and we are in the first case. Else take (aij)
m
i=1

:= (p∗
i)mi=1

as
the entering pattern.

The exiting variable is determined in the usual simplex fashion, and the dictionary/tableau is
pivoted in the usual fashion.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Example (CSP continued)

We follow through by applying delayed column generation to solve the LP relaxation of the ICS of our

example. Since Ã, x̃, ỹ change in each iteration, we write A(k), x(k), y (k) for the corresponding data in

iteration k, and we write z(k) =
∑

j x
(k)
j

for the objective value.

Using the initialisation discussed above, we have

A
(0)

=









2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3









,

x
(0)

= (A
(0)

)
−1









301
401
201
501









=









150.5
200.5
100.5
167









,

z
(0)

= 618.5, (objective value)

y
(0)

=
(

(A
0
)
−1

)

T









1
1
1
1









=









1/2
1/2
1/2
1/3









.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Example (CSP continued)

To find the entering variable xj , we need to identify whether or not a corresponding column
exists and generate it, i.e., solve the knapsack problem

(KP) p
∗

= arg max
p

1

2
p1 +

1

2
p2 +

1

2
p3 +

1

3
p4

s.t. 9p1 + 8p2 + 7p3 + 6p4 ≤ 20,

pi ∈ Z+, (i = 1, . . . , 4).

Solving (KP) with branch-and-bound, we find p∗ = [0, 0, 2, 1]T. Since (y (0))Tp∗ = 4/3 > 1, p∗

will enter the basic cutting patterns as a column of A(1).

To identify the pattern that corresponds to the leaving basic variable, we must calculate

x
(0)

./(A
(0)

)
−1

p
∗

= [∞,∞, 140, 500]
T
.

It is x3 that imposes the most restrictive bound, thus the third column of A(0) leaves the basis.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Example (CSP continued)

Next iteration:

A
(1)

=









2 0 0 0
0 2 0 0
0 0 2 0
0 0 1 3









,

x
(1)

= (A
(1)

)
−1









301
401
201
501









=









150.5
200.5
100.5
133.5









,

z
(1)

= 585.

Solving another knapsack problem identifies p∗ = [0, 1, 0, 2]T as entering pattern, and column 4

of A(1) as leaving pattern.

Next iteration:

A
(2)

=









2 0 0 0
0 2 0 1
0 0 2 0
0 0 1 2









,

x
(2)

=









150.5
100.375
100.5
200.25









,

z
(2)

= 551.625.

R. Hauser B6.3 Integer Programming

Recap on Delayed Column Generation
The Branch & Price Algorithm

The Cutting Stock Problem

Example (CSP continued)

This time the optimal solution of the knapsack problem yields (y (2))Tp∗ ≤ 1, showing that y (2)

is dual optimal, and hence, x(2) is primal optimal.

The dual bound z(2) = 551.625 could now be used in a branch-and bound algorithm to solve the
(ICS).

Alternatively, note that rounding down the usage of each pattern leaves a shortfall of 1 roll of
each of the ordered widths, which can be covered by two additional stock rolls cut into patterns
[1, 1, 0, 0] and [0, 0, 1, 1]. This shows that

551.625 ≤ zIP ≤ 550 + 2,

and hence, zIP = 552 and we have found the optimal solution.

This rounding procedure cannot be guaranteed to yield the optimal solution in general, but it
produces a primal and a dual bound which often sandwich zIP in a narrow interval, thus yielding
an approximation guarantee.

R. Hauser B6.3 Integer Programming

	Recap on Delayed Column Generation
	The Branch & Price Algorithm
	The Cutting Stock Problem

