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Lagrangian Relaxation

Many IPs have a structure

(IP) z = max c
T

x

s.t. Ax ≤ a

Dx ≤ d

x ≥ 0, x ∈ Z
n
,

such that relaxing the constraints Dx ≤ d yields a substantially more tractable problem where Ax ≤ a is
a benign set of constraints (e.g., totally unimodular) in the sense that

max c
T

x

s.t. Ax ≤ a

x ≥ 0, x ∈ Z
n
.

Thus, we may interpret Ax ≤ a as benign and Dx ≤ d as malicous constraints that render the problem
(IP) hard to solve.

Note that what is benign or malicous is in the eye of the beholder, as it may be that

max c
T

x

s.t. Dx ≤ d

x ≥ 0, x ∈ Z
n

is also an easy problem, but it is the combination of the two constraint sets Ax ≤ a and Dx ≤ d that
renders the problem hard.
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Example (Uncapacitated facility location (UFL))

Consider the uncapacitated facility location problem from Lecture 1,

(IP) z = max
∑

i∈M

∑

j∈N

cij xij −
∑

j∈N

fj yj

s.t.
∑

j∈N

xij = 1 (i ∈ M)

xij − yj ≤ 0 (i ∈ M, j ∈ N)

x ∈ R
|M|×|N|
+ , y ∈ {0, 1}

|N|
,

where

M is the set of customer locations,

N is the set of potential facility locations,

fj are the fixed costs for opening facility j,

we replaced the original servicing costs cij with −cij to turn the problem into a maximisation
problem.

One may take the viewpoint that it is the demand constraints

(1)
∑

j∈N

xij = 1, (i ∈ M)

that render the problem hard, because these constraints introduce a functional dependence between the
decisions pertaining to different facility locations.
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Example (UFL continued)

Instead of imposing these constraints, let us add a multiple ui of each residual

1 −
∑

j∈N

xij

to the objective function. The objective function is now

∑

i∈M

∑

j∈N

cij xij −
∑

j∈N

fj yj +
∑

i∈M

ui (1 −
∑

j∈N

xij ),

and we say that the constraints (1) have been dualised.

The new problem is called a Lagrangian relaxation,

(IP(u)) z(u) = max
∑

i∈M

∑

j∈N

(cij − ui )xij −
∑

j∈N

fj yj +
∑

i∈M

ui

s.t. xij − yj ≤ 0 (i ∈ M, j ∈ N)

x ∈ R
|M|×|N|
+ , y ∈ {0, 1}

|N|
.
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Example (UFL continued)

Note that because the constraint that linked the different facility locations to one another have been
subsumed in the objective function, (IP(u)) decouples,

z(u) =
∑

j∈N

zj (u) +
∑

i∈M

ui ,

where zj (u) is the optimal solution of the following problem,

(IPj (u)) zj (u) = max
∑

i∈M

(cij − ui )xij − fj yj

s.t. xij − yj ≤ 0 (i ∈ M)

xij ≥ 0 (i ∈ M), yj ∈ {0, 1}
|N|

.

Furthermore, (IPj (u)) is easily solved by inspection:

If yj = 0, then xij = 0 for all i , and the objective value is 0.

If yj = 1, then all clients i for which cij − ui > 0 will be served, and the objective value is
∑

i∈M max(0, cij − ui ).

Therefore, zj (u) = max
(

0,
∑

i∈M max(0, cij − ui ) − fj

)

.
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Definition (Relaxation)

A relaxation of an integer programming problem (IP) z = max{f (x) : x ∈ F} is any optimisation
problem (R) w = max{g(x) : x ∈ R} with feasible set R ⊇ F and an objective function g(x) that
satisfies g(x) ≥ f (x) for all x ∈ F .

Lemma (Dual bounds by relaxation)

If (R) is a relaxation of (IP), then w ≥ z.

Proof. See Problem Sheet 4.

Corollary (Optimality by relaxation)

Let x∗ ∈ arg max{g(x) : x ∈ R}. If x∗ ∈ F and g(x∗) = f (x∗), then x∗ is an optimal solution of
(IP).

Proof. By Lemma (Dual bounds by relaxation) then the following inequality holds for all x ∈ F ,

c
T

x ≤ z ≤ w = g(x
∗
) = c

T
x
∗
.
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Example (UFL continued)

Problem (IP(u)) constructed in Example (UFL) is indeed a relaxation:

Giving up on the requirement
∑

j∈N xij = 1 constitutes an enlargement of the feasible set.

The restriction of the new objective

max
x,y

g(x, y) =
∑

i∈M

∑

j∈N

cij xij −
∑

j∈N

fj yj +
∑

i∈M

ui (1 −
∑

j∈N

xij )

to the feasible set of the UFL coincides with the objective of the latter,

max
x,y

∑

i∈M

∑

j∈N

cij xij −
∑

j∈N

fj yj ,

as any (UFL)-feasible solution (x, y) satisfies the demand constraints
∑

j∈N xij = 1, which

implies
∑

i∈M

ui (1 −
∑

j∈N

xij ) = 0.
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Generalisation

Let us now consider an (IP) in the slightly more general form

(IP) z = max c
T

x

s.t. D1x ≤ d1,

D2x = d2,

x ∈ X = {x ∈ R
n

: Ax ≤ a, x ≥ 0, x ∈ Z
n
}

where X is a feasible set of "benign" type.

We write D = [DT

1
,DT

2
]T and d = [dT

1
, dT

2
]T in block form and denote the set of row indices of D that

correspond to inequality constraints by I and indices corresponding to equality constraints by E.

Definition (Lagrangian relaxation)

A Lagrangian relaxation of (IP) is a problem of the form

(IP(u)) z(u) = max{c
T

x + u
T
(d − Dx) : x ∈ X }

where u ∈ R
m is a fixed vector Lagrange multipliers chosen so that ui ≥ 0 for i ∈ I.
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Proposition (Lagrangian relaxations)

Problem (IP(u)) is a relaxation of problem (IP).

Proof. The feasible region of (IP(u)) contains that of (IP), since

X ⊇ F = {x ∈ X : D1x ≤ d1, D2x = d2}.

For all (IP)-feasible x, the objective function of (IP(u)) is at least as large as that of (IP),

c
T

x + u
T
(d − Dx) = c

T
x +

∑

i∈I

ui (di − Di,:x) ≥ c
T

x.
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In the context of Lagrangian relaxations, Corollary (Optimality by relaxation) can be recast in terms of a
complementarity condition:

Proposition (Optimality by Lagrangian relaxation)

Let x(u) be an optimal solution of the Lagrangian relaxation

(IP(u)) x(u) ∈ arg max
x

{c
T

x + u
T
(d − Dx) : x ∈ X }.

If x(u) is (IP)-feasible, that is Di x ≤ di for all (i ∈ I) and Di x = di for all (i ∈ E), and if the
complementarity conditions

ui (di − [Dx(u)]i ) = 0 ∀ i ∈ I

are satisfied, then x(u) is an optimal solution of (IP).

Proof. By complementarity, z ≤ z(u) = cTx(u) + uT(d − Dx(u)) = cTx(u) ≤ z, hence cTx(u) = z.
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Example (Lagrangian relaxation of STSP)

Recall our formulation of the symmetric travelling salesman problem from Lecture 1,

(IP) z = min
∑

e∈E

cexe

s.t.
∑

e∈δ(i )

xe = 2 (i ∈ V )

∑

e∈E(S)

xe ≤ |S| − 1 (S ⊂ V s.t. 2 ≤ |S| ≤ |V | − 1)

x ∈ {0, 1}
|E|

,

Lemma (Redundant subtour elimination constraints)

Half the subtour elimination constraints
∑

e∈E(S) xe ≤ |S| − 1 are redundant.

Proof. For any x feasible for the LP relaxation of (IP) we have

|S| −
∑

e∈E(S)

xe =
1

2

∑

i∈S

∑

e∈δ(i )

xe −
∑

e∈E(S)

xe =
1

2

∑

e∈δ(S,Sc )

xe ,

where δ(S, Sc ) is the set of edges in E that are incident to one node from S and one from Sc := V \ S.
Since δ(S, Sc ) = δ(Sc , S), we now have

|S| −
∑

e∈E(S)

xe =
1

2

∑

e∈δ(S,Sc )

xe = |S
c
| −

∑

e∈E(Sc )

xe ,

and hence,
∑

e∈E(S) xe ≤ |S| − 1 ⇔
∑

e∈E(Sc ) xe ≤ |Sc | − 1.
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Example (Lagrangian relaxation of STSP continued)

Introduce a new (redundant) constraint
∑

e∈E xe = n, obtained by summing all degree
constraints.

Eliminate all subtour elimination constraints corresponding to sets S that contain node 1, which
are redundant by Lemma (Redundant subtour elimination constraints).

Dualise the degree constraints
∑

e∈δ(i ) xe = 2, (i 6= 1).

This yields the following Lagrangian relaxation of (STSP),

(IP(u)) z(u) = min
∑

e=(ij)∈E

(ce − ui − uj )xe + 2
∑

i∈V

ui

∑

e∈δ(1)

xe = 2

∑

e∈E(S)

xe ≤ |S| − 1, ∀S ⊂ V s.t. 2 ≤ |S| ≤ |V | − 1, 1 /∈ S

∑

e∈E

xe = n

x ∈ {0, 1}
|E|

.

For notational convenience we included a term u1(2 −
∑

e∈δ(1) xe ) = 0 in the objective.

R. Hauser B6.3 Integer Programming



Lagrangian Relaxation
The Lagrangian Dual Problem

Lemma (1-Tree Characterisation)

A binary vector x ∈ {0, 1}|E| is (IP(u))-feasible if and only if its support E(x) := {e ∈ E : xe = 1}) is
a 1-tree in G = (V ,E).

Proof.
∑

e∈δ(1) xe = 2 guarantees that in the subgraph Gx := (V ,E(x)) exactly two edges are incident

to node 1 .

Constraints
∑

e∈E(S) xe ≤ |S| − 1 guarantee that when node 1 is removed, then there is no cycle left

in E(x) \ δ(1).

∑

e∈E xe = n guarantees that |E(x) \ δ(1)| = n − 2 is a cycle free subgraph on |V \ {1}| = n − 1

nodes, which is only possible if E(x) \ δ(1) is a spanning tree on V \ {1}.

Conversely, if E(x) is a 1-tree, then
∑

e∈δ(1) xe = 2 and
∑

e∈E xe = n are clearly satisfied, and since

E(x) \ δ(1) a tree, the subtour elimination constraints are satisfied.
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Example (Lagrangian relaxation of STSP continued)

Let us now look at a numerical example and consider the STSP on 5 nodes with edge cost matrix

[ce ] =











− 30 26 50 40
30 − 24 40 50
26 24 − 24 26
50 40 24 − 30
40 50 26 30 −











.

Note that the Lagrange multipliers u are unrestricted, since dualised constraints are equality constraints.
Therefore,

u =
[

0 0 −15 0 0 0
]

is a legitimate choice.

Writing c̄ij := cij − ui − uj , we obtain the revised edge cost matrix

[c̄e ] =











− 30 41 50 40
30 − 39 40 50
41 39 − 39 41
50 40 39 − 30
40 50 41 30 −











.

Using the greedy algorithm, we find that {(1, 2), (1, 5), (4, 5), (2, 3), (3, 4)} is a minimum weight 1-tree
for the revised edge costs. Since this is a Hamiltonian tour, it must be an optimal solution of the STSP
by Proposition (Optimality by Lagrangian relaxation).
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The Lagrangian Dual Problem

In summary so far, it follows from Proposition (Lagrangian relaxations)
and Lemma (Dual bounds by relaxation) that for all u ∈ R

m with ui ≥ 0
for i ∈ I,

z(u) := max{cTx + uT(d − Dx) : x ∈ X }

is a dual bound on the optimal objective value of problem (IP),

z = max {cTx : x ∈ X , D1x ≤ d1, D2x = d2}.

Definition (Lagrangian Dual)

The problem of finding the best upper bound obtainable in this fashion
can now be cast as an optimisation problem over the Lagrange multipliers
u as decision variables,

(LD) wLD = min{z(u) : u ∈ R
m
, ui ≥ 0 (i ∈ I)}.

This is called the Lagrangian Dual of problem (IP),
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Theorem (Characterisation of Lagrangian dual bound)

The Lagrangian dual bound is characterised as follows,

(LD
′
) wLD = max

x
c
T

x

s.t. D1x ≤ d1

D2x = d2

x ∈ conv(X ).

Proof. We give the proof in the special case where X = {x [1], . . . , x [T ]} is a finite set. Then

wLD = min
ui≥0, i∈I

z(u) = min
ui≥0, i∈I

{

max{c
T

x
[t]

+ u
T
(d − Dx

[t]
) : t = 1, . . . ,T}

}

= min
(η,u)∈Rm+1

{

η : η ≥ c
T

x
[t]

+ u
T
(d − Dx

[t]
), (t = 1, . . . ,T ), ui ≥ 0, i ∈ I

}

= min
(η,u)∈Rm+1

{

η + 0
T

u : η + (Dx
[t]

− d)
T

u ≥ c
T

x
[t]

, (t = 1, . . . ,T ), ui ≥ 0, i ∈ I
}

.

Taking the dual of the latter LP, strong LP duality implies

wLD = max
µ∈RT

{

T
∑

t=1

µt (c
T

x
[t]

) :
T
∑

t=1

µt (Dx
[t]

− d)i ≤ 0, (i ∈ I),
T
∑

t=1

µt (Dx
[t]

− d)i = 0,

(i ∈ E),
T
∑

t=1

µt = 1, µ ≥ 0
}

= max
µ∈RT

{

c
T

x : D1x − d1 ≤ 0, D2x − d2 = 0, x ∈ conv({x
[1]

, . . . , x
[T ]

})
}

.
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