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The Strength of Lagrangian Dual Bounds

Let us consider the IP

(IP) z = max c
T

x

s.t. D1x ≤ d1,

D2x = d2,

x ∈ X = {x ∈ R
n

: Ax ≤ a, x ≥ 0, x ∈ Z
n},

with Lagrangian relaxation

(IP(u)) z(u) = max{c
T

x + u
T
(d − Dx) : x ∈ X },

and let us compare the dual bounds associated with the Lagrangian Dual and the LP relaxation of (IP),

(LD) wLD = min
u

{z(u) : u ∈ R
m
, ui ≥ 0 (i ∈ I)},

(LP) wLP = max
x

{c
T

x : D1x ≤ d1, D2x = d2, Ax ≤ a, x ≥ 0}.
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Theorem (Characterisation of Lagrangian dual bound)

The Lagrangian dual bound is characterised as follows,

(LD
′
) wLD = max

x
c
T

x

s.t. Dx ≤ d

x ∈ conv(X ).

(See Lecture 12.)

Theorem (Lagrangian dual and LP relaxation)

The Lagrangian dual bound is at least as tight as the LP relaxation bound,

z ≤ wLD ≤ wLP .

If {x ∈ R
n : Ax ≤ a, x ≥ 0} is an ideal formulation of X , then wLD = wLP .

Proof. X ⊂ {x ∈ R
n : Ax ≤ a, x ≥ 0} implies conv(X ) ⊆ {x ∈ R

n : Ax ≤ a, x ≥ 0}. Hence,
Theorem (Characterisation of Lagrangian dual) shows that (LP) is a relaxation of (LD).

Moreover, if {x ∈ R
n : Ax ≤ a, x ≥ 0} is an ideal formulation of X , then

{x ∈ R
n

: Ax ≤ a, x ≥ 0} = conv(X ),

so that (LD) and (LP) coincide.

In the latter situation the Lagrangian Dual offers an alternative to solving the LP relaxation directly in
cases where this is too costly.
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Choosing a Lagrangian Dual

Many problems have several reasonable Lagrangian Duals. In this case it is worthwhile thinking about
the advantages and disadvantages of the different formulations before starting any calculations.

Example (Generalised assignment problem (GAP))

Consider the generalised assignment problem

(IP) z = max
n
∑

j=1

m
∑

i=1

cij xij

s.t.
n
∑

j=1

xij ≤ 1 (i = 1, . . . ,m),

m
∑

i=1

aij xij ≤ bj (j = 1, . . . , n),

x ∈ {0, 1}m×n
.

In this case we have multiple choices of a Lagrangian dual:
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Example (GAP continued)

1. Dualising both sets of constraints

(IP(u)) z(u) = max
x

n
∑

j=1

m
∑

i=1

(cij − ui − aij vj )xij +
m
∑

i=1

ui +
n
∑

j=1

vjbj

s.t. x ∈ {0, 1}m×n
.

It is certainly easy to solve this IP, as the remaining feasible set X = {0, 1}m×n has the ideal
formulation {x ∈ R

m : 0 ≤ xi ≤ 1 ∀ i}. By Theorem 2, solving the Lagrangian dual minu≥0 z(u) yields

the same result as the LP relaxation of (IP). However, it might still be better to solve the Lagrangian
dual, as (IP(u)) can be solved by inspection:

x
∗
ij =

{

1 if cij − ui − aij vj > 0

0 otherwise.

2. Dualising only the second set of constraints The advantages and disadvantages of this relaxation are
similar to the first case.
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Example (GAP continued)

3. Dualising only the first set of constraints

(IP(u)) z(u) = max
x

n
∑

j=1

m
∑

i=1

(cij − ui )xij +
m
∑

i=1

ui

s.t.
m
∑

i=1

aij xij ≤ bj (j = 1, . . . , n),

x ∈ {0, 1}m×n
.

Here the remaining feasible set X =
{

x ∈ {0, 1}m×n :
∑

i aij xij ≤ bj , j = 1, . . . , n
}

is not of the

"easy" type, as

conv(X ) ⊂







x ∈ R
n

: 0 ≤ xi ≤ 1, i = 1, . . . ,m,
∑

i

aij xij ≤ bj j = 1, . . . , n







is generally a strict inclusion. Consequently, wLD may be a strictly tighter bound than the bound
obtained from the LP relaxation.

The Lagrangian dual is more difficult to solve, but (IP(u)) decouples into blocks
({xij : i = 1, . . . ,m})nj=1

and can be parallelised.
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Solving the Lagrangian Dual

By the definition of a Lagrangian Relaxation, the map

u 7→ z(u) = max{c
T

x + u
T
(d − Dx) : x ∈ X }

is a piecewise linear function of u. Therefore, z(u) is a convex function on
D := {u ∈ R

m : ui ≥ 0, (i ∈ I)} by virtue of the following lemma:

Lemma (Pointwise maximum of convex functions)

Let {fi (u) : D → R
∣

∣ i ∈ N} be a set of convex functions defined on a convex domain D. Then

u 7→ max
i∈N

fi (u)

is a convex function on D.

Proof. For all u1, u2 ∈ D and λ ∈ [0, 1],

max
i

fi (λu1 + (1 − λ)u2) ≤ max
i

(λfi (u1) + (1 − λ)fi (u2)) ≤ λmax
i

fi (u1) + (1 − λ)max
i

fi (u2).
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Note that z(u) is not differentiable at breakpoints u where arg max{cTx + uT(d − Dx) : x ∈ X }
contains more than one point.

Lemma (Gradient characterisation of convex functions)

Let D ⊆ R
m be a convex domain and f : D → R a convex function with gradient γ = ∇f (u) at

u ∈ D. Then the first order Taylor approximation is a lower bounding function:

f (u) + γ
T
(v − u) ≤ f (v), (v ∈ D).

Proof. By definition, f is convex if for all u, v ∈ D and λ ∈ [0, 1],

f (λv + (1 − λ)u) ≤ λf (v) + (1 − λ)f (u).

Therefore,

f (u) +
f (u + λ(v − u)) − f (u)

λ
≤ f (v),

and taking the limit λ → 0 yields the result.

Definition (Extension of a convex function)

Let D ⊆ R
m be a convex domain and f : D → R a convex function. We extend f to a proper convex

function defined on R
m by setting f (u) := +∞ for u /∈ D. The extension satisfies satisfies

f (λu + (1 − λ)v) ≤ λf (u) + (1 − λ)f (v), (u, v ∈ R
m
, λ ∈ [0, 1].
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Motivated by Lemma (Gradient characterisation of convex functions), the notion of gradient can be
generalised to non-differentiable points of convex functions:

Definition (Subgradient and Subdifferential)

Let u ∈ R
m and let f : Rm → R be a proper convex function. A subgradient of f at u ∈ R

m is a vector
γ ∈ R

m such that

f (u) + γ
T
(v − u) ≤ f (v), (v ∈ R

m
).

The subdifferential ∂f (u) of f at u is the set of subgradients of f at u.

Proposition (Properties of the subdifferential)

If f is differentiable at u, then ∂f (u) = {∇f (u)} is a singleton containing only the gradient.

∂f (u) is a convex set.

u∗ ∈ arg min f (u) if and only if ~0 ∈ ∂f (u∗).

Let z(u) := max{cTx + uT(d − Dx) : x ∈ X }. Then

∂z(u) = conv
({

d − Dx
∗

: x
∗ ∈ arg max{c

T
x + u

T
(d − Dx) : x ∈ X }

})

,

where arg max is the set of all maximisers.

Proof. See problem sheet.
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Algorithm (Subgradient Algorithm for Solving (LD))

Initialise:
choose u ∈ R

m with ui ≥ 0, (i ∈ I);

X∗ := arg max{cTx + uT(d − Dx) : x ∈ X }, V := {d − Dx∗ : x∗ ∈ X∗};

while ~0 /∈ conv(V ) do

choose v ∈ V , µ > 0;
if i ∈ I then

ui := max
(

ui − µvi , 0
)

;

else

ui := ui − µvi ;
end

X∗ := arg max{cTx + uT(d − Dx) : x ∈ X }, V := {d − Dx∗ : x∗ ∈ X∗};

end

Notes:

In each iteration of the main loop the Lagrange multiplier vector is improved by correcting it in a
direction that makes the objective function z(u) decrease.

Note the built-in safeguard mechanism that prevents individual components of the updated u to
become negative for i ∈ I.

The termination criterion of the main loop can be evaluated by solving an LP (see problem
sheet).

The choice of step length µ requires further discussion.

R. Hauser B6.3 Integer Programming



The Strength of the Lagrangian Dual
Choosing a Lagrangian Dual
Solving the Lagrangian Dual

Let u[k], v [k] and µk be the values of u, v and µ in the k-th iteration of the main loop. Let

zk := z(u[k]), U∗ := arg minu z(u), z∗ := minu z(u) and dist(u[1],U∗) := minu∗∈U∗ ‖u[1] − u∗‖2.

Lemma (Convergence of the subgradient algorithm)

Suppose ‖v [k]‖2 ≤ G for all k. Then

min
i∈[1,k]

zi − z
∗ ≤

dist(u[1],U∗) + G2
∑k

i=1
µ2

i

2
∑k

i=1
µi

.

Proof. For any u∗ ∈ U∗,

‖u
[k+1] − u

∗‖2

2
≤ ‖u

[k] − µkv
[k] − u

∗‖2

2
(see problem sheet)

= ‖u
[k] − u

∗‖2

2
− 2µkv

[k] T
(u

[k] − u
∗
) + µ

2

k‖v
[k]‖2

2

≤ ‖u
[k] − u

∗‖2

2
− 2µk

(

zk − z
∗)

+ µ
2

kG
2

(since v
[k]

is a subgradient).

By recursion, ‖u[k+1] − u∗‖2

2
≤ ‖u[1] − u∗‖2

2
− 2

∑k
i=1

µi
(

zi − z∗
)

+
∑k

i=1
µ2

i G2, and hence,

2





k
∑

i=1

µi



×

(

min
i∈[1,k]

zi − z
∗

)

≤ 2
k
∑

i=1

µi
(

zi − z
∗)

+ ‖u
[k+1] − u

∗‖2

2

≤ ‖u
[1] − u

∗‖2

2
+

k
∑

i=1

µ
2

i G
2
.
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Theorem (Step length choice in subgradient algorithm)

i) If
∑

k µk → ∞ and
∑

k µ2

k
→ 0 as k → ∞, then z(u[k]) → wLD .

ii) If
∑

k µk → ∞ and µk → 0 as k → ∞, then z(u[k]) → wLD .

iii) If µk = µ0ρ
k for some fixed ρ ∈ (0, 1) for µ0 sufficiently large and ρ sufficiently close to 1,

then z(u[k]) → wLD .

iv) if w ≥ wLD and

µk =
εk ×

(

z(u[k]) − w
)

‖v [k]‖2
,

where εk ∈ (0, 2) for all k, then either z(u[k]) → wLD for k → ∞, or else w ≥ z(u[k]) ≥ wLD
occurs for some finite k.

Step length choice iv) gives the most useful step lengths in practice, but note that for µk to be positive,

we need an upper bound w ∈ (wLD , z(u[k])). In practical applications such a bound is not available
explicitly.

Note however:

Lower bounds w of wLD are available by ways of using heuristics that produce primal feasible
solutions.

If the bound w in Rule iv) is chosen too low, µk is positive but possibly too large. If

z(u[k+1]) < z(u[k]), this does not pose a problem, as descent is achieved and the point u[k+1]

can be accepted as the next iterate.

If z(u[k+1]) ≥ z(u[k]), the step µk took the iterate to a point where the objective function z(u)
increases again. The guess of w then needs to be increased to reduce the step length µk .

R. Hauser B6.3 Integer Programming



The Strength of the Lagrangian Dual
Choosing a Lagrangian Dual
Solving the Lagrangian Dual

Algorithm (Practical Subgradient Algorithm for Solving (LD))

Initialise:
fix ε ∈ (0, 2), choose u ∈ R

m with ui ≥ 0, (i ∈ I);

X∗ := arg max{cTx + uT(d − Dx) : x ∈ X }, V := {d − Dx∗ : x∗ ∈ X∗};
find x ∈ F = X ∩ {D1x ≤ d1, D2x = d2};

set w := w := cTx;

while ~0 /∈ conv(V ) do

choose v ∈ V ;

z+ := +∞;

while z+ ≥ z(u) do

w :=
z(u)+w

2
; // this is our guess of a suitable dual bound

µ :=
ε(z(u)−w)

‖v‖2
;

if i ∈ I then

u+
i

:= max
(

ui − µvi , 0
)

; // compute candidate updates

else

u+
i

:= ui − µvi ; // compute candidate updates

end

z+ := z(u+); // evaluate candidate updates

end

u := u+; // accept candidate updates as actual updates

w := w ;

X∗ := arg max{cTx + uT(d − Dx) : x ∈ X }, V := {d − Dx∗ : x∗ ∈ X∗};

end
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