
Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

B6.3 Integer Programming

Raphael Hauser

Mathematical Institute

University Of Oxford

Michaelmas Term 2018

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

1 Practical Subgradient Algorithm

2 Preprocessing

3 The Cutting Plane Algorithm

4 Chvàtal Cuts

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Practical Subgradient Algorithm

Theorem (Step length choice in subgradient algorithm)

i) If
∑

k µk →∞ and
∑

k µ2

k
→ 0 as k →∞, then z(u[k])→ wLD .

ii) If
∑

k µk →∞ and µk → 0 as k →∞, then z(u[k])→ wLD .

iii) If µk = µ0ρ
k for some fixed ρ ∈ (0, 1) for µ0 sufficiently large and ρ sufficiently close to 1,

then z(u[k])→ wLD .

iv) if w ≥ wLD and

µk =
εk ×

(

z(u[k])− w
)

‖v [k]‖2
,

where εk ∈ (0, 2) for all k, then either z(u[k])→ wLD for k →∞, or else w ≥ z(u[k]) ≥ wLD
occurs for some finite k.

Step length choice iv) gives the most useful step lengths in practice, but note that for µk to be positive,

we need an upper bound w ∈ (wLD , z(u[k])). In practical applications such a bound is not available
explicitly.

Note however:
Lower bounds w of wLD are available by ways of using heuristics that produce primal feasible
solutions.
If the bound w in Rule iv) is chosen too low, µk is positive but possibly too large. If

z(u[k+1]) < z(u[k]), this does not pose a problem, as descent is achieved and the point u[k+1]

can be accepted as the next iterate.

If z(u[k+1]) ≥ z(u[k]), the step µk took the iterate to a point where the objective function z(u)
increases again. The guess of w then needs to be increased to reduce the step length µk .

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Algorithm (Practical Subgradient Algorithm for Solving (LD))

Initialise:
fix ε ∈ (0, 2), choose u ∈ R

m with ui ≥ 0, (i ∈ I);

X∗ := arg max{cTx + uT(d − Dx) : x ∈X }, V := {d − Dx∗ : x∗ ∈ X∗};
find x ∈F = X ∩ {D1x ≤ d1, D2x = d2};

set w := w := cTx;

while ~0 /∈ conv(V ) do

choose v ∈ V ;

z+ := +∞;

while z+ ≥ z(u) do

w :=
z(u)+w

2
; // this is our guess of a suitable dual bound

µ :=
ε(z(u)−w)

‖v‖2
;

if i ∈ I then

u+
i

:= max
(

ui − µvi , 0
)

; // compute candidate updates

else

u+
i

:= ui − µvi ; // compute candidate updates

end

z+ := z(u+); // evaluate candidate updates

end

u := u+; // accept candidate updates as actual updates

w := w ;

X∗ := arg max{cTx + uT(d − Dx) : x ∈X }, V := {d − Dx∗ : x∗ ∈ X∗};

end

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Example (STSP)

We revisit the Lagrangian Dual of the STSP from last lecture, this time without assuming that we have
a priori knowledge of the optimal u.

The dualised constraints were the degree constraints

∑

e∈δ(i )

xe = 2 (i ∈ V ).

Since these are equality constraints, the Lagrange multipliers u are unconstrained, and the updating rule
is

u
[k+1]
i

= u
[k]
i

+ µk

(

2−
∑

e∈δ(i )

x
∗
e (u

[k]
)
)

.

The STSP being a minimisation problem rather than a maximisation problem, we have to replace all
mins by maxes, lower bounds by upper bounds and so forth.

We step length rule iii) with εk = 1, that is,

µk =
w − z(u[k])

∑

i∈V

(

2−
∑

e∈δ(i ) x∗
e (u[k])

)

2
,

where w is a lower bound on wLD , and where we had to invert the sign of µk because (LD) is a
maximisation problem.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Example (STSP continued)

Initialisation: We apply the greedy heuristic and find the tour 1→ 2→ 3→ 4→ 5→ 1 of length 148.

As no lower bound w on wLD is known at present, we use the primal (upper) bound w = 148 instead

and see how far this allows us to decrease z(u[k]), knowing that at a later time we will probably have to
replace w by a smaller value, as 148 is usually not a lower bound.

Iteration 0: Starting with u[0] = [0, 0, 0, 0, 0], the revised costs are given by

c̄
[0]
ij

= cij − u
[0]
i
− u

[0]
j

= cij .

Solving the associated min-cost 1-tree problem, we find the optimal 1-tree with edge incidence matrix

[x
∗
ij (u

[0]
)] =











− 1 1 0 0
− − 1 0 0
− − − 1 1
− − − − 0
− − − − −











,

leading to the objective value z(u[0]) = 130.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Example (STSP continued)

The subgradient of z(u) at u[0] is

[(

2−
∑

e∈δ(i )

x
∗
e (u

[0]
)
)

i=1,...,m

]

= [0, 0,−2, 1, 1],

and as µ0 = (148− 130)/6 = 3, we find u[1] = u[0] + 3 · [0, 0,−2, 1, 1] = [0, 0,−6, 3, 3].

Iteration 1: The new cost matrix is

[c̄
[1]
ij

] =











− 30 32 47 37
− − 30 37 47
− − − 27 29
− − − − 24
− − − − −











.

The optimal 1-tree is found as

[x
∗
ij (u

[1]
)] =











− 1 1 0 0
− − 1 0 0
− − − 1 0
− − − − 1
− − − − −











,

leading to the objective value z(u[1]) = 143 + 2
∑

i u
[1]
i

= 143.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Example (STSP continued)

Updating the Lagrange multipliers, we obtain

u
[2]

= u
[1]

+
148− 143

2
· [0, 0,−1, 0, 1] =

[

0, 0,−
17

2
, 3,

11

2

]

.

Iteration 2: The new cost matrix and optimal 1-tree are

[c̄
[2]
ij

] =











− 30 34.5 47 34.5
− − 32.5 37 44.5
− − − 29.5 29
− − − − 21.5
− − − − −











, [x
∗
ij (u

[2]
)] =











− 1 0 0 1
− − 1 0 0
− − − 0 1
− − − − 1
− − − − −











,

leading to the objective value z(u[2]) = 147.5.

This means that 147.5 is a lower bound on the optimal value z of the STSP. But since [cij ] is integer
valued, this implies

148 = ⌈147.5⌉ ≤ z ≤ w = 148,

which shows that the greedy tour 1→ 2→ 3→ 4→ 5→ 1 was STSP-optimal!

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Preprocessing Linear Programming Problems

LP or IP models can often be simplified by reducing the number of variables and constraints, and IP
models can be tightened before any actual branch-and-bound computations are performed.

Example (Preprocessing an LP)

Consider the LP instance

max 2x1 + x2 − x3

s.t. 5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

1 ≤ x3.

Tightening bounds: Isolating x1 in the first constraint and using x2 ≤ 1, −x3 ≤ −1 yields

5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2× 1− 8× 1 = 9,

and hence, x1 ≤ 9/5, which tightens the bound x1 ≤ 3.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Likewise, isolating x3 in the first constraint, and using the bound constraints, we find

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2× 1− 5× 0 = 17.

This implies x3 ≤ 17/8 and tightens x3 ≤ ∞.

And finally, isolating x2 in the first constraint,

2x2 ≥ 5x1 + 8x3 − 15 ≥ 5× 0 + 8× 1− 15 = −7

yields x2 ≥ −7/2 which does not tighten x2 ≥ 0.

Proceeding similarly with the second and third constraints, we obtain the tightened bound

8x1 ≥ 9− 3x2 + x3 ≥ 9− 3 + 1 = 7,

yielding the improved bound x1 ≥ 7/8.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

As some of the bounds have changed after the first sweep, we may now go back to the first constraint
and tighten the bounds yet further. Isolating x3, we obtain

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2− 5×
7

8
=

101

8
,

yielding the improved bound x3 ≤ 101/64.

Continuing the second sweep by isolating each variable in turn in each of the constraints 1–3, and using
the bound constraints, several bound constraints may further tighten in general, but not in the present
example.

How many sweeps of this process are needed? One can show that after two sweeps of all the constraints
and variables, the bounds cannot improve any further!

Redundant Constraints: Using the final upper bounds in constraint 3,

x1 + x2 + x3 ≤
9

5
+ 1 +

101

64
< 6,

so that this constraint is redundant and can be omitted.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

The remaining problem is

max 2x1 + x2 − x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

7

8
≤ x1 ≤

9

5
, 0 ≤ x2 ≤ 1, 1 ≤ x3 ≤

101

64
.

Variable fixing:

Increasing x2 makes the objective function grow and loosens all constraints except x2 ≤ 1.
Therefore, in an optimal solution we must have x2 = 1.

Decreasing x3 makes the objective function grow and loosens all constraints except 1 ≤ x3.
Thus, in an optimal solution we must have x3 = 1.

This leaves the trivial problem

max

{

2x1 :
7

8
≤ x1 ≤

9

5

}

.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Preprocessing Integer Programming Problems

In the preprocessing of IPs we have further possibilities:

For all xj with an integrality constraint xj ∈ Z any bounds lj ≤ xj ≤ uj can be tightened to

⌈lj ⌉ ≤ xj ≤ ⌊uj ⌋.

For binary variables new logical or Boolean constraints can be derived that tighten the
formulation and hence lead to fewer branching nodes in a branch-and-bound procedure.

The latter point is illustrated in the next example:

Example (Preprocessing a Binary Programming Problems)

Consider a BIP instance whose feasible set is defined by the following constraints,

7x1 + 3x2 − 4x3 − 2x4 ≤ 1

−2x1 + 7x2 + 3x3 + x4 ≤ 6

−2x2 − 3x3 − 6x4 ≤ −5

3x1 − 2x3 ≥ −1

x ∈ {0, 1}
4
.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Generating logical inequalities: The first constraint shows that x1 = 1⇒ x3 = 1, which can be written
as x1 ≤ x3. Likewise, x1 = 1⇒ x4 = 1, or equivalently, x1 ≤ x4.

Finally, constraint 1 also shows that the problem is infeasible if x1 = x2 = 1. Therefore, the following
constraint must hold,

x1 + x2 ≤ 1.

We can process the remaining constraints in a similar vein:

Constraint 2 yields the inequalities x2 ≤ x1 and x2 + x3 ≤ 1.

Constraint 3 yields x2 + x4 ≥ 1 and x3 + x4 ≥ 1.

Constraint 4 yields x1 ≥ x3.

Although the introduction of the new logical constraints makes the problem seem more complicated, the
formulation becomes tighter and thus easier to solve. Furthermore, we can now process the problem
further:

Combining pairs of logical inequalities: We now consider pairs involving the same variables.

x1 ≤ x3 and x1 ≥ x3 yield x1 = x3.

x1 + x2 ≤ 1 and x2 ≤ x1 yield x2 = 0, and then x2 + x4 ≥ 1 yields x4 = 1.

Simplifying: Substituting the identities x2 = 0, x3 = x1 and x4 = 1 we found, all four constraints
become redundant.
We are left with the choice x1 ∈ {0, 1}, and hence the feasible set contains only two points

S = {(1, 0, 1, 1), (0, 0, 0, 1)}.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

The Cutting Plane Algorithm

The above discussion of preprocessing steps shows that it is possible to derive valid inequalities for the
integer feasible solutions of an IP from its polyhedral formulation. This idea can be generalised and
systematically exploited in the design of algorithms.

Consider the problem

(IP) max c
T

x

s.t. x ∈X = P ∩ Z
n
,

where P = {x ∈ R
n : aT

i x = bi , (i = 1, . . . ,m), x ≥ 0}.

Definition (Valid inequalities and cuts)

A valid inequality for X is an inequality of the form

α
T

x ≤ α0

that is satisfied for all x ∈X (but not necessarily for all x ∈P).

A cut for x∗ ∈P is a valid inequality for X such that

α
T

x
∗

> α0,

that is, P ∩ {x : αTx ≤ α0} is a tighter formulation of X that excludes x∗.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Algorithm (Cutting Plane Algorithm)

solve LP relaxation x∗ = arg maxx{c
Tx : x ∈P}; // initialisation

while x∗ fractional do

find a cut αTx ≤ α0 for x∗;

P ←P ∩ {x : αTx ≤ α0};

solve LP relaxation x∗ = arg maxx{c
Tx : x ∈P};

end

Notes:

The algorithm relies on systematic methods to generate cuts, an issue we will discuss further.

In contrast to the Branch & Bound Algorithm, the convergence of the Cutting Plance Algorithm
is not guaranteed but depends on the nature of the cuts that are applied.

Ideally, one would like to apply cuts that are easily computed and cut off a large part of P, but
the two goals are often contradictory.

The Cutting Plane Algorithm can be combined with the Branch-and-Bound Method, which
yields the most powerful black-box solvers for IPs (Branch-and-Cut Algorithm).

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

Chvàtal Cuts

Example (Chvàtal cut)

Consider the IP minx{−x1 − x2 − x3 : x ∈X } with X = P ∩ Z
3 and

P = {x ∈ R
3
: x1 + x2 ≤ 1, x2 + x3 ≤ 1, x1 + x3 ≤ 1, x ≥ 0}.

Using slack variables, the LP relaxation of (IP) reads

(LP) min
x≥0

−x1 − x2 − x3 s.t.











x1 + x2 + x4 = 1

x2 + x3 + x5 = 1

x1 + x3 + x6 = 1

Multiplying the three equality constraints with 0.5 and adding them yields

x1 + x2 + x3 + 0.5x4 + 0.5x5 + 0.5x6 = 1.5.

Using the non-negativity of x4, x5, x6, this implies x1 + x2 + x3 ≤ 1.5, which is a valid inequality not
only for X but also for P. Now using the integrality of x1, x2, x3, we obtain the valid inequality

x1 + x2 + x3 ≤ 1,

which is a cut for x∗ because x∗
1

+ x∗
2

+ x∗
3

= 1.5.

R. Hauser B6.3 Integer Programming



Practical Subgradient Algorithm
Preprocessing

The Cutting Plane Algorithm
Chvàtal Cuts

We now generalise the approach described above: For any r ∈ R
n , let ⌊r⌋ = [⌊r1⌋, . . . , ⌊rn⌋].

Definition (Chvàtal cuts)

Let P
(0) = {x ≥ 0 : Ax = b} be a polyhedron given by a system of m equations and n non-negativity

constraints, and let u ∈ R
m . The Chvàtal cut associated with u is given by

α
T

x ≤ α0,

where αT := ⌊uTA⌋ and α0 := ⌊uTb⌋.

Lemma (Chvàtal cuts are valid inequalities)

All Chvàtal cuts are valid inequalities for the set X = P
(0) ∩ Z

n .

Proof. x ∈X implies Ax = b, and hence, uTAx = uTb. Using x ≥ 0 this implies ⌊uTA⌋x ≤ uTb, and

using integrality of xi , (i = 1, . . . , n), this implies ⌊uTA⌋x ≤ ⌊uTb⌋.

We state the next result without proof.

Theorem (Separation of non-integral vertices)

Given a vertex x∗ of P
(0), there exists a vector u ∈ R

m such that ⌊uTA⌋x ≤ ⌊uTb⌋ is a cut for x∗.

R. Hauser B6.3 Integer Programming


	Practical Subgradient Algorithm
	Preprocessing
	The Cutting Plane Algorithm
	Chvàtal Cuts

