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Chapter 1

Introduction

An outline for this course.

• We will observe that many phenomena in ecology, biology and biochemistry can be

modelled mathematically.

• We will focus initially on systems where spatial variation is either absent or, at least,

not important. In such cases only temporal evolution needs to be described, typically

via ordinary differential equations.

• We are inevitably confronted with systems of ordinary differential equations, and

thus we will study analytical techniques for extracting information from such equa-

tions.

• We will then consider systems where there is explicit spatial variation. The resulting

models must also incorporate spatial effects.

• In ecological and biological applications the main physical phenomenon governing

spatial variation is typically, but not exclusively, diffusion. Thus we invariably con-

sider parabolic partial differential equations. Mathematical techniques will be de-

veloped to study such systems.

• These studies will be in the context of ecological, biological and biochemical appli-

cations. In particular we will draw examples from:

1. enzyme-substrate dynamics and other biochemical reactions;

2. Trans-membrane ion channels and nerve pulses;

3. epidemics;

4. the propagation of an advantageous gene through a population;

5. biological pattern formation mechanisms;

6. chemotaxis;

7. tumour growth.

Acknowledgements: these lecture notes build on material originally developed by Pro-

fessors Philip Maini, Ruth Baker, Eamonn Gaffney, Jon Chapman and Andrew Fowler. I

am extremely grateful to them for allowing me to re-use and extend their notes.
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Chapter 1. Introduction 6

1.1 References

The main references for this lecture course will be:

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I [?].

• J. D. Murray, Mathematical Biology, 3rd edition, Volume II [?].

Other useful references include (but are no means compulsory):

• J. P. Keener and J. Sneyd, Mathematical Physiology [?].

• L. Edelstein-Keshet, Mathematical Models in Biology [?].

• N. F. Britton, Essential Mathematical Biology [?].

Note: If you have not taken the Part A short option Modelling in Mathematical Biology,

you are encouraged to work through the lecture notes. They are made available on the

course web-site.



Chapter 2

Enzyme kinetics

2.1 Introduction

Figure 2.1: How do enzymes work? An enzyme has an active site where the substrates and

enzyme fit together so that the substrates react. After the reaction, the products are released

and the enzyme assumes its original shape.

Biochemical reactions are extremely important for correct biological function. For exam-

ple, biochemical reactions are involved in:

• Metabolism and its control;

• Immunological responses;

• Cell-signalling processes.

Biochemical processes are often controlled by enzymes. Enzymes are proteins that catalyse

biochemical reactions by lowering activation energy. Even when present in very small

amounts, enzymes can have a dramatic effect on a system (see Figure 2.3). Table 2.1

illustrates how effective enzymes can be at accelerating reactions in biochemical systems.

7



Chapter 2. Enzyme kinetics 8

Figure 2.2: The enzyme catecholase catalyses a reaction between the molecule catechol and

oxygen. The product of this reaction is polyphenol, the brown substance that accumulate

when apples are exposed to air.

Enzyme Substrate Product Rate without Rate with Accel.

enzyme enzyme due to enzyme

Hexokinase Glucose Glucose < 0.0000001 1300 > 13 billion

6-Phosphate

Phosphorylase – – < 0.000000005 1600 > 320 billion

Alcohol Ethanol Acetaldehyde < 0.000006 2700 > 450 million

Dehydrogenase

Creatine Creatine Creatine < 0.003 40 > 13, 000

Kinase Phosphate

Table 2.1: Examples illustrating the impact that enzymes can have on reaction rates.

In this chapter we will focus on enzyme kinetics. These can be thought of as a special case

of an interacting species model (for details, see lecture notes on short course ’Mathematical

Modelling in Biology’). In all cases we will neglect spatial variation.

References.

• J. D. Murray, Mathematical Biology, 3rd edition, Volume I, Chapter 6 [?].

• J. P. Keener and J. Sneyd, Mathematical Physiology, Chapter 1 [?].

2.2 The Law of Mass Action

Throughout this chapter, we will consider reactions involvingm chemical species C1, . . . , Cm.

• The concentration of Ci, denoted ci, is defined to be the number of molecules of Ci
per unit volume.
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• A standard unit of concentration is moles m−3, often abbreviated to mol m−3. Recall

that 1 mole = 6.023× 1023 molecules.

We will use The Law of Mass Action to construct the reaction rates. In words, the

Law of Mass Action states:

The Law of Mass Action. A chemical reaction proceeds at a rate proportional to

the concentrations of the participating reactants. The constant of proportionality is

called the rate constant.

Suppose C1, . . . , Cm undergo the reaction

λ1C1 + λ2C2 + . . .+ λmCm
kf

GGGGGGBFGGGGGG

kb
ν1C1 + ν2C2 + . . .+ νmCm. (2.1)

The Law of Mass Action states that the forward reaction proceeds at rate

kfc
λ1
1 cλ22 . . . cλmm , (2.2)

while the backward (or reverse) reaction proceeds at the rate

kbc
ν1
1 c

ν2
2 . . . cνmm , (2.3)

where kf and kb are (non-negative) dimensional constants that must be determined em-

pirically.

Note 1. Strictly speaking, to treat kf , kb as constant, we must assume that the temper-

ature is constant. This is a good approximation for most biochemical reactions occurring

in, for example, physiological systems. However, if one wanted to model reactions that

produce significant amounts of heat for example, burning petrol, one must include temper-

ature dependence in kf and kb and, subsequently, keep track of how the temperature of the

system changes as the reaction proceeds. This typically makes the modelling significantly

more difficult. Below we assume that we are dealing with systems where the temperature

is approximately constant as the reaction proceeds.

Note 2. The Law of Mass Action for chemical reactions can be derived from statistical

mechanics under quite general conditions (see for example L. E. Riechl, A Modern Course

in Statistical Physics [?]).

Note 3. The Law of Mass Action is used in a variety of biological scenarios. For example,

we use it to write down equations describing interactions between people infected with,

and people susceptible to, a pathogen during an epidemic. In such circumstances the

validity of the Law of Mass Action must be taken as a modelling assumption; in such

scenarios one cannot rely on thermodynamic/statistical mechanical arguments to justify

the Law of Mass Action.
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Example: Stoichiometry. Suppose m molecules of A react reversibly with n

molecules of B to create C:

mA+ nB

k1



k−1

C

Then the Law of Mass Action takes the form

da
dt = −mk1a

mbn +mk−1c
db
dt = −nk1a

mbn + nk−1c
dc
dt = k1a

mbn − k−1c


as m molecules of A and n molecules of B must collide to produce one molecule of C.

Note: Mass conservation supplies

a+mc = constant, b+ nc = constant.

2.3 Michaelis-Menten kinetics

Michaelis-Menten kinetics approximately describe the dynamics of a number of enzyme

systems. The reactions are

S + E
k1

GGGGGGBFGGGGGG

k−1

C, (2.4)

C
k2

GGGGGGA P + E, (2.5)

where C represents the complex SE, and s, e, p and c denote the concentrations of S, E,

P and C respectively. From the Law of Mass Action, we can derive the following ordinary

differential equations for s, e, p and c:

ds

dt
= −k1se+ k−1c, (2.6)

dc

dt
= k1se− k−1c− k2c, (2.7)

de

dt
= −k1se+ k−1c+ k2c, (2.8)

dp

dt
= k2c. (2.9)

Note: the equation for p decouples and, hence, we can neglect it (at least initially).

The initial conditions are:

s(0) = s0, e(0) = e0 � s0, c(0) = 0, p(0) = 0. (2.10)
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Key Point. In systems described by the Law of Mass Action, linear combinations of

the variables are often conserved. In this example we have

d

dt
(e+ c) = 0 ⇒ e = e0 − c, (2.11)

and, hence, the equations simplify to:

ds

dt
= −k1(e0 − c)s+ k−1c, (2.12)

dc

dt
= k1(e0 − c)s− (k−1 + k2)c, (2.13)

with the dynamics of p and e readily achievable once the dynamics of s and c are known.

2.3.1 Non-dimensionalisation

We non-dimensionalise as follows:

τ = k1e0t, u =
s

s0
, v =

c

e0
, λ =

k2

k1s0
, ε

def
=

e0

s0
� 1, K

def
=

k−1 + k2

k1s0
, (2.14)

which yields

u′ = −u+ (u+K − λ)v, (2.15)

εv′ = u− (u+K)v, (2.16)

where u(0) = 1, v(0) = 0 and ε� 1. Normally ε ∼ 10−6. Setting ε = 0 yields

v =
u

u+K
, (2.17)

which is inconsistent with the initial conditions! We have a singular perturbation problem;

there must be a (boundary) region with respect to the time variable around t = 0 where

v′ � O(1). Indeed, for the stated initial conditions we find v′(0) ∼ O(1/ε), with u(0),

v(0) ≤ O(1). This gives us the scaling we need to perform a singular perturbation analysis.

2.3.2 Singular perturbation investigation

We consider

σ =
τ

ε
, (2.18)

with

u(τ, ε) = ũ(σ, ε) = ũ0(σ) + εũ1(σ) + . . . , (2.19)

v(τ, ε) = ṽ(σ, ε) = ṽ0(σ) + εṽ1(σ) + . . . . (2.20)

Proceeding in the usual way, we find that ũ0, ṽ0 satisfy

dũ0

dσ
= 0 ⇒ ũ0 = constant = 1, (2.21)

and
dṽ0

dσ
= ũ0 − (1 +K)ṽ0 = 1− (1 +K)ṽ0 ⇒ ṽ0 =

1− e−(1+K)σ

1 +K
, (2.22)
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which gives us the inner solution.

To find the outer solution we expand

u(τ, ε) = u0(τ) + εu1(τ) + . . . , (2.23)

v(τ, ε) = v0(τ) + εv1(τ) + . . . , (2.24)

within the equations

u′ = −u+ (u+K − λ)v, (2.25)

εv′ = u− (u+K)v, (2.26)

to find that
du0

dτ
= −u0 + (u0 +K − λ)v0, (2.27)

and

0 = u0 − (u0 +K)v0. (2.28)

This gives

v0 =
u0

u0 +K
and

du0

dτ
= − λu0

u0 +K
. (2.29)

In order to match the solutions as σ →∞ and τ → 0 we require

lim
σ→∞

ũ0 = lim
τ→0

u0 = 1 and lim
σ→∞

ṽ0 = lim
τ→0

v0 =
1

1 +K
. (2.30)

The resulting solution looks like that shown in Figure 2.3.
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Figure 2.3: Numerical solution of the non-dimensional Michaelis-Menten equations clearly

illustrating the two different time scales. The u dynamics are indicated by the solid line and

the v dynamics by the dashed line. Parameters are ε = 0.01, K = 0.1 and λ = 1.0.
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Often the initial, fast, transient is not seen or modelled: we consider only the outer

equations, with a suitably adjusted initial condition (ultimately determined from consis-

tency/matching with the inner solution). In particular, we often use Michaelis-Menten

kinetics where the equations are simply:

du

dt
= − λu

u+K
with u(0) = 1 and v =

u

u+K
. (2.31)

Definition. When the time derivative is fast, i.e. of the form

ε
dv

dτ
= g(u, v), (2.32)

where ε� 1 and g(u, v) ∼ O(1), taking the temporal dynamics to be trivial,

dv

dτ
' 0, (2.33)

is known as the pseudo-steady state hypothesis. This is a common assumption in the

literature. We have seen its validity for enzyme kinetics, at least away from the inner

region.

Note. While the Michaelis-Menten kinetics derived above are a useful approximation,

they hinge on the validity of the Law of Mass Action. Even in simple biological systems the

Law of Mass Action may break down. One (of many) reasons, and one that is potentially

relevant at the sub-cellular level, is that the system in question has too few reactant

molecules to justify the statistical mechanical assumptions underlying the Lass of Mass

Action. Another reason is that the reactants are not well-mixed, but vary spatially as well

as temporally. We will see what happens in this case later in the course.

2.4 More complex systems

Here we consider a number of other simple systems involving enzymatic reactions. In

each case the Law of Mass Action is used to write down a system of ordinary differential

equations describing the dynamics of the various reactants (See J. Keener and J. Sneyd,

Mathematical Physiology, for more details).

2.4.1 Several enzyme reactions and the pseudo-steady state hypothesis

We can have multiple enzymes. In general the system of equations reduces to

u′ = f(u, v1, . . . , vn), (2.34)

εiv
′
i = gi(u, v1, . . . , vn), (2.35)

for i ∈ {1, . . . , n}, while the pseudo-steady state hypothesis gives a single ordinary differ-

ential equation

u′ = f(u, v1(u), . . . , vn(u)), (2.36)
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where v1(u), . . . , vn(u) are the appropriate roots of the equations

gi(u, v1, . . . , vn) = 0, i ∈ {1, . . . , n}. (2.37)

Exercise. Consider an enzymatic reaction in which an enzyme can be activated or

inactivated by a chemical X as follows:

E +X

k1



k−1

E1, E1 +X

k2



k−2

E2, E1 + S

k3

→ P +Q+ E.

Suppose further that X is supplied at a constant rate, and removed at a rate propor-

tional to its concentration.

1. Write down differential equations for the evolution of E, E1, E2, X and S.

2. Show that E + E1 + E2 is a conserved quantity, E∗ say.

3. Nondimensionalise the system, scaling E, E1 and E2 with E∗, X and S with

X0 = X(0), and time with 1/(k1E
∗). Assuming that δ = E∗/X0 � 1, use

the resulting “quasi-steady” equations for the dimensionless quantities e, e1, e2

to solve for these variables in terms of x and s, and hence obtain the following

system of two ODEs for x and s only:

dx

dτ
= α0 − ν4x−

κ3xs

µ1 + κ3s+ x+ κ2x2/µ2
,
ds

dτ
= − κ3xs

µ1 + κ3s+ x+ κ2x2/µ2
.

Identify all parameters and variables in these equations.

2.4.2 Allosteric enzymes

Here the binding of one substrate molecule at one site affects the binding of another

substrate molecules at other sites. A typical reaction scheme is:

S + E
k1

GGGGGGBFGGGGGG

k−1

C1

k2
GGGGGGA P + E (2.38)

S + C1

k3
GGGGGGBFGGGGGG

k−3

C2

k4
GGGGGGA C1 + P. (2.39)

Further details on the investigation of such systems can be found in J. D. Murray, Math-

ematical Biology Volume I, and J. P. Keener and J. Sneyd, Mathematical Physiology.

2.4.3 Autocatalysis and activator-inhibitor systems

Here a molecule catalyses its own production. The simplest example is the reaction scheme

A+B
k→ 2B, (2.40)

although the positive feedback in autocatalysis is usually ameliorated by inhibition from

another molecule. This leads to an example of an activator-inhibitor system which can

have a very rich behaviour. Other examples of these systems are given below.
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Example 1

This model qualitatively incorporates activation and inhibition:

du

dt
=

a

b+ v
− cu, (2.41)

dv

dt
= du− ev. (2.42)

Example 2

This model is commonly referred to as the Gierer-Meinhardt model and was proposed in

1972:

du

dt
= a− bu+

u2

v
, (2.43)

dv

dt
= u2 − v. (2.44)

Example 3

This model is commonly referred to as the Thomas model. Proposed in 1975, it is an

empirical model based on a specific reaction involving uric acid and oxygen:

du

dt
= a− u− ρR(u, v), (2.45)

dv

dt
= α(b− v)− ρR(u, v), (2.46)

where

R(u, v) =
uv

1 + u+Ku2
, (2.47)

represents the interactive uptake.



Chapter 3

Ions and Excitable Systems

3.1 Introduction

3.1.1 Background

The cell membrane is a phospholipid bilayer separating the cell interior (the cytoplasm)

from the extracellular environment. The membrane contains numerous proteins, and is

approximately 7.5nm thick. The most important property of the cell membrane is its

selective permeability: it allows the passage of some molecules but restricts the passage

of others, thereby regulating the passage of materials into and out of the cell. Many

substances penetrate the cell membrane at rates reflected by their diffusive behaviour

in a pure phospholipid bilayer. However, certain molecules and ions such as glucose,

amino acids and Na+ pass through cell membranes much more rapidly, indicating that the

membrane proteins selectively facilitate transport.

Figure 3.1: A schematic of the phospholipid membrane double layer, with a gating protein

in one of two configurations, Ce and Ci, spanning the membrane, as part of a passive, carrier-

mediated transport system.

The membrane contains water-filled pores with diameters of about 0.8nm, and protein-

lined pores, called channels or gates, which allow the passage of specific molecules. Both

the intracellular and extracellular environments comprise (among other things) a dilute

aqueous solution of dissolved salts, mainly NaCl and KCl, which dissociate into Na+, K+

and Cl− ions. The cell membrane acts as a barrier to the free flow of these ions and to

the flow of water.

16
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Figure 3.2: Representation of an exchange pump which actively transports across the cell

membrane.

The mechanisms that facilitate transport across the cellular membrane can be divided

into active and passive processes. Active processes requires energy expenditure, while

passive processes result solely from the random motion of molecules, for example, diffusion.

Action potentials, or ’nerve impulses’, are brief changes in the membrane potential of a

cell produced by the flow of ionic current across the cell membrane. They enable commu-

nication by many cell types, including neurons, cardiac and muscle cells. In section 3.3 we

will study the Fitzhugh Nagumo equations which describe nerve impulses in axons. First,

we outline the basic physical concepts needed to study ion channels and nerve impulses,

and introduce basic mathematical models for ionic currents and channel gating.

Note: Much of the material covered in this course is extended and studied in greater

detail in the Part C Course Mathematical Physiology.

3.1.2 Basic Concepts

First, we note that:

• numerous fundamental particles, ions and molecules have an electric charge, e.g. the

electron, e−, and the sodium ion, Na+;

• it is an empirical fact that total charge is conserved;

• electric charges exert electrical forces on one another such that like charges repel and

unlike charges attract. The electric potential, denoted V , is the potential energy of

a unit of charge due to such forces and is measured in volts;

• a concentration of positive particles has a large positive potential, while a concen-

tration of negative particles has a large, but negative potential;

• electric current is defined to be the rate of flow of electric charge, measured in Amps.
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Resistance

Ohms Law, ∆V = IR, holds in most situations, where ∆V is the change in potential, I is

the current flowing and R, which may depend on material properties and geometries but

not on I nor V is the resistance.

Key point. Suppose one uses a wire of low resistance to connect a region with a con-

centration of positive charges to a region with a concentration of negative charges. The

charges will, very quickly, flow onto/off the wire until the potential is constant and there

is no further flow of charge.

Ionic Currents and Capacitance

The flow of ions across the cell membrane due to concentration differences leads to a build

up of charge near the cell membrane and a potential difference across the cell membrane.

The cell membrane acts as a capacitor. The voltage (or potential difference) across any

capacitor is related to the charge stored Q by

V =
Q

C
,

where C is the capacitance.

Capacitance. A simple example of a capacitor is two conducting plates, separated by

an insulator (e.g. an air gap).

Connecting a battery to the plates, as illustrated, using wires of low resistance causes

charge to flow onto/off the plates. It will equilibrate very quickly. Let ±Qeqm denote the
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charges stored on the two plates. The capacitance of the plates, C, is defined to be

C =
Qeqm
V

> 0, (3.1)

where C is a constant, independent of V . Thus the higher the capacitance, the better the

plates are at storing charge, for a given potential.

If I is the ionic current out of the cell (the rate of flow of positive charges outwards),then

the stored charge changes according to

I = −dQ
dt
. (3.2)

Thus, assuming the capacitance is constant

C
dV

dt
+ I = 0. (3.3)

This equation is the basis for much theoretical electrophysiology. The difference between

various models relates to the expression used for the ionic current I.

The simplest models assume linear dependent of I on V (as in Ohms law). For a single

ion S, with Nernst potential VS , this gives an ionic current

IS = gS(V − VS),

where the constant gS is the ion-specific membrane conductance, since the current must

vanish when V = VS . If more than one ion is present, then the currents from the different

ions are added together to produce the total ionic current.

3.2 Channel gating

3.2.1 Simple Gates

In practice, gS is not constant: it depends on V and time t. One explanation for this is that

the channels are not always open (they may be open or closed), and the transition rates

between open and closed states depends on the potential difference, V . The membrane

conductance may then be written as ngS , where gS is the constant conductance that would

result if all channels were open, and n is the proportion of open channels.

For a generic ion, let n be the proportion of open ion channels. Denoting the open

channels by O and the closed channels by C, the reaction scheme is simply

C
α(V )



β(V )

O (3.4)
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Figure 3.3: Schematic diagram of channel gating.

where α(V ) and β(V ) represent voltage dependent rates of switching between the closed

and open states. Using the law of mass action we obtain

dn

dt
= α(V )(1− n)− β(V )n, (3.5)

or, equivalently,

τn(V )
dn

dt
= n∞(V )− n, (3.6)

where n∞(V ) = α/(α + β) is the equilibrium value of n and τn(V ) = 1/(α + β) is the

timescale for approach to this equilibrium (Note: both n∞ and τn can be determined

experimentally).

3.2.2 Multiple gates

The simple model presented above can be generalised to channels with multiple identical

subunits, each of which can be in either the open or closed state.

We assume that the channel consists of two “gates”, both of which may exist in open

or closed states. The ion channel is open only if both “gates” are open; the ion channel is

closed if any one gate within the ion channel is closed. If we denote by Si (i ∈ {0, 1, 2})
the proportion of channels with exactly i gates open, then

S0 + S1 + S2 = 1 (3.7)

and the reaction scheme

S0

2α(V )



β(V )

S1

α(V )



2β(V )

S2. (3.8)

The 2s arise because there are two possible states with one gate open and one gate closed.

Since each gate is identical we lump these two states into one variable S1. Using mass

action kinetics gives

dS0

dt
= β(V )(1− S0 − S2)− 2α(V )S0, (3.9)

dS2

dt
= α(V )(1− S0 − S2)− 2β(V )S2, (3.10)

Figure 3.4: Schematic diagram of two identical gate units.
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where, in general, V is a function of time (and possibly space too). We could also write

down an equation for S1, but it is superfluous since S1 can be determined from (3.7).

Let n denote the proportion of open gates; then

dn

dt
= α(V )(1− n)− β(V )n. (3.11)

Simple substitution shows that (3.7) , (3.9) and (3.10) are satisfied by

S0 = (1− n)2, S1 = 2n(1− n), S2 = n2. (3.12)

In fact, it is possible to derive a stronger result. Suppose

S0 = (1− n)2 + y0, S2 = n2 + y2, (3.13)

so that S1 = 2n(1− n)− y0 − y2. It then follows that

dy0

dt
= −2αy0 − β(y0 + y2),

dy2

dt
= −α(y0 + y2)− 2βy2. (3.14)

This linear system has eigenvalues −(α+β), −2(α+β), and so y0, y2 decay exponentially

to zero. Thus, regardless of the initial conditions, the solution will still approach expo-

nentially that given by (3.11) and (3.12) (i.e. (3.11) and (3.12) define a stable invariant

manifold of the full system (3.7), (3.9) and (3.10)).

The analysis of a two-gated channel generalises easily to channels containing three or

more gates. In the case of k identical gates the fraction of open channels is nk, where

n again satisfies (3.11). We will find that a model with 4 gates agree with empirical

observations of K+ channels, and will be used below.

3.2.3 Non-identical gates

Often channels are controlled by multiple proteisn. Each protein may control a set of

identical gates, but the gates of each protein are assumed to be different and independent.

Consider, for example, a channel with two types of gate, m and h say, each of which may

be open or closed. For illustrative purposes, we will assume that the channel has two m

subunits and one h subunit. With Sij the proportion of channels with i ∈ {0, 1, 2} of the

m-gates open and j ∈ {0, 1} of the h-gates open, the reaction scheme is

Simple substitution shows that the corresponding law of mass action equations are

satisfied by

S00 = (1−m)2(1− h), S10 = 2m(1−m)(1− h), S20 = m2(1− h), (3.15)

S01 = (1−m)2h, S11 = 2m(1−m)h, S21 = m2h, (3.16)

so that the proportion of open channels is m2h, provided

dm/dt = α(V )(1−m)− β(V )m (3.17)

dh/dt = γ(V )(1− h)− δ(V )h. (3.18)

As before, such solutions form a stable invariant manifold.
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3.3 The Fitzhugh Nagumo equations

An axon is a part of a nerve cell. The nerve signal along the axon is, in essence, a

propagating pulse in the potential difference across the plasma (i.e. outer) membrane of

the axon. This potential difference, V , arises due to the preferential permeability of the

axon plasma membrane which allows potassium and sodium ions, K+ and Na+, to pass

through the membrane at rates which differ between the two ions and vary with V . In the

rest state, V = Vrest ' −70mV (millivolts); in a nerve signal pulse in V rises to a peak of

∼ 15mV. We wish to model this pulse.

dendrites

nucleus

soma (cell body)

axon

synapse

axon terminals

dendrite of 

another cell

direction of signal propagation

The axon can be viewed as a cylindrical tube. An axon is axisymmetric, so we may ignore

θ dependence in our models of the axon.
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3.3.1 Deducing the FitzHugh Nagumo Equations

A common, simplifying, experimental scenario is to space-clamp the axon, i.e. to place a

conducting wire along the axon’s axis of symmetry.

• The interior of the axon will quickly equilibrate, and there will be no spatial variation

in the potential difference, nor any current, along the inside of the axon.

• Thus, by conservation of charge, the total current flowing across the axon membrane

must be zero.

• Note: any changes in the interior due, for example to the axon allowing K+ and

Na+ to pass through its membrane, will occur on a much slower timescale and,

hence, one has that the interior of the space-clamped axon has no spatial variation

in its potential difference, no current flowing along the inside of the axon, and, most

importantly, the total current flowing through the axon membrane is zero.

The basic model for the space-clamped axon plasma membrane potential is given by

0 = total transmembrane current per unit area,

= c
dV

dt
+ INa + IK + I0 + Iapplied(t), (3.19)

where

• Iapplied(t) is the applied current, i.e. the current injected through the axon plasma

membrane in the experiment, which is only function of time in most experimental

set-ups. We will take Iapplied(t) = 0 below.
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• cdV/dt is the capacitance current through a unit area of the membrane. Recall:

Rate of flow on/off capacitor = C dV/dt.

Therefore rate of flow of charge per unit area of membrane = cdV/dt where c is the

membrane capacitance per unit area.

• INa, IK are the voltage dependent Na+ and K+ currents. I0 is a voltage dependent

background current.

These currents actually take complicated forms, involving numerous other variables

which satisfy complex equations, that can be simplified, if somewhat crudely. An

excellent account is given in T. F. Weiss, Cellular Biophysics.

The resulting equations may be written in terms of the non-dimensional variables v =

(V − Vrest)/|Vrest| and τ = t/T where T = 6 ms, the time scale of a typical nerve pulse.

These equations state

ε
dv

dτ
= Av(δ − v)(v − 1)− n, (3.20)

dn

dτ
= −γn+ v, (3.21)

where A, γ, ε, δ are positive parameters such that A, γ ∼ O(1), 0 < ε� δ � 1.

Key point. Equations, (3.20)-(3.21) are known as the Fitzhugh Nagumo equations.

They model (in approximate terms!) the spatially independent behaviour of a space-

clamped axon.

3.3.2 A brief analysis of the Fitzhugh Nagumo equations

We have

ε
dv

dτ
= Av(δ − v)(v − 1)− n, (3.22)

dn

dτ
= −γn+ v, (3.23)

where A, γ, ε, δ are positive parameters such that A, γ ∼ O(1), 0 < ε� δ � 1.

The (n, v) phase plane

The nullclines of equations (3.20)-(3.21) are the lines where v̇ = 0 and ṅ = 0. A plot of

the nullclines separates the (v, n) phase plane into four regions, as shown in Figure 3.5.

There are several things to note about the dynamics.

• There is one stationary point which is a stable focus.
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Figure 3.5: The phase plane for the Fitzhugh-Nagumo equations with the v nullcline shown

in red and the n nullcline in green. The trajectories for two different initial perturbations

from the steady state are shown as dashed lines. Parameters are as follows: A = 1, γ = 0.5,

δ = 0.1 and ε = 0.001.

• Thus, with initial conditions sufficiently close to the stationary point, the system

evolves to the stationary point in a simple manner.

• Consider initial conditions with n ∼ 0, but v increased sufficiently. The system

does not simply relax back to the equilibrium. However, one can understand the

qualitative behaviour of the system by considering the phase plane.

• We anticipate that v = (V −Vrest)/|Vrest| behaves in the manner shown in Figure 3.6

for a sufficiently large perturbation in v.

0.0 0.2 0.4 0.6 0.8 1.0
-0.4

0.0

0.4

0.8

1.2

time (t)

1.0 1.5 2.0 2.5
-0.01

0.00

0.01

time (t)

Figure 3.6: Solutions of the Fitzhugh Nagumo equations with v dynamics indicated by the

solid line and n dynamics by the dashed line. The right-hand figure shows the oscillations

that arise for large t. Parameters are as follows: A = 1, γ = 0.5, δ = 0.1 and ε = 0.01.

• This is essentially a nerve pulse (although because of the space clamping all of the

nerve axon is firing at once).
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Definition. A system which, for a sufficiently large perturbation from a stationary

point, undergoes a large change before eventually returning to the same stationary

point is referred to as excitable.

3.4 Modelling nerve signal propagation - NON-EXAMINABLE

In the following, we generalise the ideas we have seen for modelling the plasma membrane

potential of an axon to scenarios where this potential can vary along the axon. This

material is not examinable and will be better understood after we have covered spatial

models. It is included here for completeness only (and to whet your appetite for the

Mathematical Physiology Course at Part C).

3.4.1 The cable model

In the model we are about to develop we make following assumptions.

• The cell membrane is a cylindrical membrane separating two conductors of electric

current, namely the extracellular and intracellular mediums. These are assumed to

be homogeneous and to obey Ohm’s law.

• The model has no θ dependence.

• A circuit theory description of current and voltages is adequate, i.e. quasi-static

terms of Maxwell’s equations are adequate; for example, electromagnetic radiation

effects are totally negligible.

• Currents flow through the membrane in the radial direction only.

• Currents flow through the extracellular medium in the axial direction only and the

potential in the extracellular medium is a function of z only. Similarly for the

potential in the intracellular medium.

These assumptions are appropriate for unmyelinated nerve axons. Deriving the model

requires considering the following variables:

• Ie(z, t) – external current;

• Ii(z, t) – internal current;

• J(z, t) – total current through the membrance per unit length;
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• Jion(z, t) – total ion current through the membrance per unit area;

• V (z, t) = Vi(z, t)− Ve(z, t) – transmembrane potential;

• ri – internal resistance per unit length;

• re – external resistance per unit length;

• C – membrane capacitance per unit area.

Consider the axial current in the extracellular medium, which has resistance re per unit

length. We have

Ve(z + dz)− Ve(z) = −reIe(z)dz ⇒ reIe(z) = −∂Ve
∂z

, (3.24)

where the minus sign appears because of the convention that positive current is a flow of

positive charges in the direction of increasing z. Hence, if Ve(z+dz) > Ve(z) then positive

charges flow in the direction of decreasing z giving a negative current. Similarly,

riIi(z) = −∂Vi
∂z

. (3.25)

Using conservation of current, we have

Ie(z + dz, t)− Ie(z, t) = J(z, t)dz = Ii(z, t)− Ii(z + dz, t), (3.26)

which gives

J(z, t) = −∂Ii
∂z

=
∂Ie
∂z

. (3.27)

Hence

J =
1

ri

∂2Vi
∂z2

= − 1

re

∂2Ve
∂z2

, (3.28)

and so
∂2V

∂z2
= (ri + re)J. (3.29)
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Putting this all together gives

0 = −∂(Ii + Ie)

∂z
=

∂

∂z

(
1

re

∂Ve
∂z

+
1

ri

∂Vi
∂z

)
=

(
re + ri
reri

)
∂2Ve
∂z2

+
1

ri

∂2V

∂z2
, (3.30)

and so

0 =
1

ri

∂2V

∂z2
−
(
re + ri
ri

)
∂Ie
∂z

=
1

ri

(
∂2V

∂z2
+ (re + ri)J(z, t)

)
. (3.31)

We also have that

J(z, t) = 2πa

(
Jion(V, z, t) + C

∂V

∂t

)
, (3.32)

and finally, therefore,

1

2πa(ri + re)

∂2V

∂z2
= C

∂V

∂t
+ Jion(V, z, t). (3.33)

This gives an equation relating the cell plasma membrane potential, V , to the currents

across the cell plasma membrane due to the flow of ions, Jion(V, z, t).

Note 1. Note even though, physically, there is no diffusion, we still have a parabolic

partial differential equation, so the techniques we have previously studied are readily

applicable.

Note 2. From the above equation one can model cell plasma membrane potentials given

suitable initial and boundary conditions, and a suitable expression for Jion(z, t).

We use the same expression for Jion(z, t), i.e. the expression for INa + IK + I0 as in the

Fitzhugh Nagumo model of a space-clamped axon.

Thus with v = (V − Vrest)/|Vrest| and x = Kz, where K is a constant, we have

ε
∂v

∂τ
= ε2

∂2v

∂x2
+Av(δ − v)(v − 1)− n, (3.34)

dn

dτ
= −γn+ v, (3.35)

where 0 < A, γ ∼ O(1), 0 < ε� δ � 1.

Note that K has been chosen so that the coefficient infront of the vxx term is ε2. This

means, with respect to such variables, the front of the nerve pulse is extremely sharp.

Hence, for such a scaling to exist, the extent of the nerve pulse must be less than εL, where

L is the length of the axon; this constraint holds true for typical parameter estimates. The

reason for the choice of this scaling is simply mathematical convenience in a travelling wave

analysis.

We are interested in nerve pulses, so we take the boundary conditions to be n, v → 0 as

x→ ±∞.

We thus again have a system of parabolic partial differential equations to solve, and we

are particularly interested in travelling pulse solutions. This entails that a travelling wave
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analysis would be most insightful. With the travelling wave coordinate y = x − cτ and

v(y) = v(x, τ), n(y) = n(x, τ), we obtain

ε2
d2v

dy2
+ εc

dv

dy
+Av(δ − v)(v − 1)− n = 0, (3.36)

c
dn

dy
− γn+ v = 0. (3.37)

We have 0 < A ∼ O(1), 0 < γ−1, δ, ε � 1. One can readily investigate these ordinary

differential equations to find that the travelling wave speed is unique, giving a unique

prediction for the speed of a nerve pulse in terms of biophysical parameters.



Chapter 4

Introduction to spatial variation

We have considered biological, biochemical and ecological phenomena for which spatial

effects are not important. This is, however, often not the case. Consider a biochemical

reaction as an example. Suppose this reaction involves solutes in a relatively large, un-

stirred solution. Then the system dynamics are governed not only by the rates at which

the biochemicals react, but also by possible spatial variation in solute concentrations; in

such cases, diffusion of the reactants can occur. Modelling such systems requires that we

account for both reaction and diffusion.

A similar problem arises in population and ecological models when we wish to describe

the tendency of a species to spread into a region it has not previously populated. Notable

examples include ecological invasions, where one species invades another’s territory (as

with grey and red squirrels in the UK [?]), or the spread of disease. When developing

mathematical descriptions of some, though by no means all, of these ecological and disease-

spread systems, the appropriate transport mechanism is again diffusion; when modelling

such systems we must include both reaction and diffusion.

In addition, motile cells can move in response to external influences, such as chemical

concentrations, light, mechanical stress and electric fields, among others. Of particular

interest is modelling when motile cells respond to gradients in chemical concentrations, a

process known as chemotaxis; we will also consider this scenario.

In the following chapters, we will learn how to model such phenomena and how (when

possible) to solve the resulting partial differential equations, for a range of models drawn

from biology, biochemistry and ecology.

Most of the PDEs that we will study can be written in the general form

(
rate of change

of species

)
=

(
net movement/flux

of species

)
+

(
net rate of production

of species

)

This is the Principle of Mass Balance.

30
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As an example, consider Fisher’s equation for growth and spread of a population in one

spatial dimension:

∂N

∂t
= D

∂2N

∂x2︸ ︷︷ ︸ + rN

(
1− N

K

)
︸ ︷︷ ︸

diffusion logistic growth

References.

• J. D. Murray, Mathematical Biology Volume I, Chapter 11 [?].

• N. F. Britton, Essential Mathematical Biology, Chapter 5 [?].

4.1 Derivation of the reaction-diffusion equations

Let i ∈ {1, . . . ,m}. Suppose the chemical species Ci, of concentration ci, is undergoing a

reaction such that, in the absence of diffusion, one has

dci
dt

= Ri(c1, c2, . . . , cm). (4.1)

In equation (4.1, Ri(c1, c2, . . . , cm) is the total rate of production/destruction of Ci per

unit volume, i.e. it is the rate of change of the concentration ci.

Let t denote time, and x denote the position vector of a point in space. We define

• c(x, t) to be the concentration of a chemical (typically measured in mol m−3).

• q(x, t) to be the flux of the same chemical (typically measured in mol m−2 s−1).

Now the flux of a chemical is defined to be such that, for a given infinitesimal surface

element, of area dS and unit normal n̂, the amount of chemical flowing through the

surface element in an infinitesimal time interval, of duration dt, is given by

n̂ · q dSdt. (4.2)

Definition. Fick’s Law of Diffusion relates the flux q to the gradient of c via

q = −D∇c, (4.3)

where D, the diffusion coefficient, is independent of c and ∇c.
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Using the Principle of Mass Balance, we have, for any closed volume V (fixed in time and

space), with bounding surface ∂V ,

d

dt

∫
V
ci dV = −

∫
∂V

q · n dS +

∫
V
Ri(c1, c2, . . . , cm) dV, i ∈ {1, . . . ,m}. (4.4)

Hence

d

dt

∫
V
ci dV = −

∫
V
∇ · q dV +

∫
V
Ri(c1, c2, . . . , cm) dV (4.5)

=

∫
V
{∇ · (Di∇ci) +Ri(c1, c2, . . . , cm)} dV, (4.6)

and thus for any closed volume, V , with surface ∂V , we have∫
V

{
∂ci
∂t
−∇ · (Di∇ci)−Ri

}
dV = 0, i ∈ {1, ...,m}. (4.7)

Hence
∂ci
∂t

= ∇ · (Di∇ci) +Ri, x ∈ D, (4.8)

which constitutes a system of reaction-diffusion equations for the m chemical species in

the finite domain D. Such equations must be supplemented with initial and boundary

conditions for each of the m chemicals.

Warning. Given, for example, that∫ 2π

0
cos θ dθ = 0 6⇒ cos θ = 0, θ ∈ [0, 2π], (4.9)

are you sure one can deduce equation (4.8)?

Suppose
∂ci
∂t
−∇ · (Di∇ci)−Ri 6= 0, (4.10)

at some x = x∗. Without loss of generality, we can assume the above expression is positive

i.e. the left-hand side of equation (4.10) is positive.

Then ∃ ε > 0 such that
∂ci
∂t
−∇ · (Di∇ci)−Ri > 0, (4.11)

for all x ∈ Bε(x∗).

In this case ∫
Bε(x∗)

[
∂ci
∂t
−∇ · (Di∇ci)−Ri

]
dV > 0, (4.12)

contradicting our original assumption, equation (4.7).

Hence our initial supposition is false and equation (4.8) holds for x ∈ D.
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Remark. With one species, with a constant diffusion coefficient, in the absence of reac-

tions, we have the diffusion equation. In one dimension this reduces to

∂c

∂t
= D

∂2c

∂x2
. (4.13)

For a given length scale, L, and diffusion coefficient, D, the timescale of the system is T =

L2/D. For a cell, L ∼ 10−5m = 10−3cm, and for a typical protein D ∼ 10−7cm2s−1 would

not be unreasonable. Thus the timescale for diffusion to homogenise spatial gradients of

this protein within a cell is

T ∼ L2

D
∼ 10−6 cm2

10−7 cm2 s−1 ∼ 10 s, (4.14)

therefore we can often neglect diffusion in a cell. However, as the scale doubles the time

scale squares e.g. L→ L× 10⇒ T → T × 102 and L→ L× 102 ⇒ T → T × 104.

Note. The above derivation generalises to situations more general than modelling chem-

ical or biochemical diffusion. For example, let I(x, y, t) denote the number of infected peo-

ple per unit area. Assume the infectives, on average, spread out via a random walk and

interact with susceptibles, as described by the Law of Mass Action (see Section (5.2.1)).

Then the flux of infectives, qI , is given by

qI = −DI∇I, (4.15)

where DI is a constant, with dimensions of (length)2 (time)−1. Thus, via precisely the

same ideas and arguments as above, we have that

∂I

∂t
= ∇ · (DI∇I) + rIS − aI, (4.16)

where S(x, y, t) is the number of susceptibles per unit area, and r is the rate at which

susceptibles become infected on contact with infecteds, and a is the rate at which infecteds

recover from the disease (see Section 5.2.1 for more details).

Fisher’s Equation. A common example is the combination of logistic growth and dif-

fusion which, in one spatial dimension, gives rise to Fisher’s Equation:

∂u

∂t
= D

∂2u

∂x2
+ ru

(
1− u

K

)
. (4.17)

This equation was first proposed to model the spread of an advantageous gene through a

population. See Section 5.1 for more details.

4.2 Chemotaxis

As briefly mentioned earlier, motile cells can move in response to spatial gradients in

chemical concentrations, a process known as chemotaxis. This leads to slightly more

complicated transport equations, as we shall see.
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The diffusive flux for the population density of the cells, n, is as previously: JD = −Dn∇n.
The flux due to chemotaxis (assuming it is an attractant rather than a repellent) takes

the form:

JC = nχ(a)∇a = n∇Φ(a), (4.18)

where a is the chemical concentration and Φ(a) increases monotonically with a. Clearly

χ(a) = Φ′(a); the cells move in response to a gradient of the chemical in the direction in

which the function Φ(a) is increasing at the fastest rate.

Thus the total flux J is

J = JD + JC = −Dn∇n+ nχ(a)∇a. (4.19)

If we assume that the behaviour of the cells is dominated by their diffusive and chemotactic

transport, and their rate of reproduction and/or death, then we can use the principle of

mass balance to derive a PDE that describes how their distribution changes over time. We

need an additional (reaction-diffusion) equation for the chemical: we assume it diffuses

and, typically, is secreted and degrades. In this way, we arrive at the following equations

for the cells n and the cell-derived chemical a:

∂n

∂t
= ∇ · (Dn∇n)−∇ · (nχ(a)∇a) + f(n, a), (4.20)

∂a

∂t
= ∇ · (Da∇a) + λn− µa. (4.21)

In the above the above f(n, a) is often taken to be a logistic growth term while the function

χ(a) describing chemotaxis has many forms, including

χ(a) =
χ0

a
, (4.22)

χ(a) =
χ0

(k + a)2
, (4.23)

where the latter represents a receptor law, with Φ(a) taking a Michaelis-Menten form [?].

4.3 Positional Information and Pattern Formation

Patterns are ubiquitous in biology. Consider, for example, animal coat markins on tigers,

leopards and tropical fish. Consider, also, the well-defined pattern of bones and digits

(fingers, thumbs and toes) and teeth that appear during human development. There are

two main theories about how such patterns arise:

• Alan Turing’s concept of diffusion-driven instability which we will study in chap-

ter 6 (see, also, Turing, 1952);

• Lewis Wolpert’s theory of positional information which is also known as the

French Flag Model (see: Wolpert, 1969 and Wolpert 1971); we study this theory

below.
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The French Flag Model

Consider a one-dimensional chain of cells that occupies the region 0 ≤ x ≤ L. Suppose that

a morphogen, m(x, t), or signalling molecule enters the domain through x = 0, diffuses

across the domain (with diffusion coefficient D), and is removed at x = L. If we assume

that initially there is no mophogen in the domain, then the distribution of m(x, t) can be

described by the following equations

∂m

∂t
= D

∂2m

∂x2
, (4.24)

with m(0, t) = m0, m(L, t) = 0, m(x, 0) = 0, (4.25)

where the positive constant m0 defines the morphogen concentration at x = 0.

We assume that the morphogen rapidly establishes a fixed spatial profile which we deter-

mine by setting ∂
∂t = 0 in equation (4.24):

0 =
d2m

dx2
⇒ m(x) = m0

(
1− x

L

)
(4.26)

since m(x = 0) = m0 and m(x = L) = 0. Cells on the left (near x = 0) sense high

morphogen levels and respond in some way (e.g. they turn blue). Cells in the centre and

on the right sense intermediate and low levels of morphogen respectively and response in

different ways (e.g. they turn white and red: see Figure 4.1).

To determine the widths of the red, white and blue regions, we introduce the positive

constants 0 < mW < mB < m0 and define the spatial locations 0 < xB < xW < L such

that

m(x = xB) = mB, m(x = xW ) = mW .

Since m(x) = m0(1− x/L), it is straightforward to show:

width of blue region = xB =

(
1− mB

m0

)
L

width of white region = xW − xB =

(
mB

m0
− mW

m0

)
L

width of red region = L− xW =

(
mW

m0

)
L

Remarks:

• The sizes of the red, white and blue regions are independent of the morphogen

diffusion coefficient: do you think this is realistic?

• How do the widths of the different change as the domain size L and m0 are varied?

How do they depend on the threshold morphogen levels mB and mW ?

• More complex models for positional information can be developed, to account for
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Figure 4.1: Schematic diagram illustrating the principles of positional information.

– multiple morphogens,

– different boundary conditions,

– the decay of morphogens as they diffuse across the domain.

• In other biological applications (e.g. the intestinal crypt), positional information

may determine whether cells proliferate, mature and/or die and, in this way, specify

tissue size. In chapter 6, we will study problems of this type, where the domain size

depends on the distribution of a morphogen.



Chapter 5

Fisher’s Equation and travelling

waves

Certain types of models exhibit wave-type behaviour. Here we will be interested in trav-

elling waves, i.e. those that move at constant speed, without change in shape.

References.

• J. D. Murray, Mathematical Biology Volume I, Chapter 13.

• J. D. Murray, Mathematical Biology Volume II, Chapter 1.

• N. F. Britton, Essential Mathematical Biology, Chapter 5.

5.1 Fisher’s equation: an investigation

Fisher’s equation, after suitable non-dimensionalisation, can be written as

∂β

∂t
=
∂2β

∂z2
+ β(1− β), (5.1)

where β, z, t are dimensionless variables.

Clearly the solution of these equations will depend on the initial and boundary conditions

we impose. For the time being, we state these conditions as

β(z, t)→ β±∞ as z → ±∞ and β(z, t = 0) = β0(z), (5.2)

where β±∞, β0, are constants.

5.1.1 Key points

• We will investigate whether a solution exists for the above equation which propagates

without a change in shape and at a constant (but as yet unknown) speed v. Such

wave solutions are defined to be travelling wave solutions.

37
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• Our investigation of the existence of a travelling wave solution will be substantially

easier if we first transform to the moving coordinate frame y = z − vτ as, by the

definition of a travelling wave, the wave profile will be independent of time in a frame

moving at speed v.

• Using the chain rule and noting that we seek a solution that is time independent

with respect to the y variable, we have

∂β

∂t
=
∂β

∂y

∂y

∂t
+
∂β

∂τ

∂τ

∂t
and

∂β

∂z
=
∂β

∂y

∂y

∂z
+
∂β

∂τ

∂τ

∂z
, (5.3)

i.e.
∂

∂t
7→ −v ∂

∂y
+

∂

∂τ
and

∂

∂z
7→ ∂

∂y
. (5.4)

Assuming β = β(y) so that ∂β/∂τ = 0 the partial differential equation, (5.1),

transforms to

β′′ + vβ′ + β(1− β) = 0 where ′ =
d

dy
. (5.5)

• One must choose appropriate boundary conditions at ±∞ for the travelling wave

equations. These are the same as the boundary conditions for the full partial differ-

ential equation (but rewritten in terms of y), i.e.

β(y)→ β±∞ as y → ±∞, (5.6)

where the constants β±∞ are identical to those specified in equation (5.2).

• We require that β±∞ only take the values zero or unity:∫ ∞
−∞

[
β′′ + vβ′ + β(1− β)

]
dy = 0, (5.7)

gives [
β′ + vβ

]∞
−∞ +

∫ ∞
−∞

β(1− β)dy = 0. (5.8)

If we want β → constant as y → ±∞ and β, β′ finite for ∀y we must have either

β → 0 or β → 1 as y →∞ and similarly for y → −∞.

• With the boundary conditions β(−∞) = 1 and β(∞)) = 0, we anticipate v > 0.

Indeed there are no solutions of the Fisher travelling wave equations with these

boundary conditions and v ≤ 0.

• Solutions to equations (5.1) and (5.2) are unique. The proof is an exercise in the

theory of partial differential equations.
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• The solutions of the travelling wave equations are not unique. One may have solu-

tions for different values of the unknown v. Also, if β(y) solves (5.5) for any fixed

value of v then, for the same value of v, so does β(y +A), where A is any constant.

For both v and A fixed the solution of the travelling wave equations are normally

unique.

• Note that the solutions of the travelling wave equations, (5.5), can only be solutions

of the full partial differential equation, when considered on an infinite domain. [Re-

alistically one requires that the length scale of variation of the system in question

is much less than the length scale of the physical domain for a travelling wave to

(have the potential to) be an excellent approximation to the reaction-diffusion wave

solutions on the physical, i.e. finite, domain].

• One “loses” the initial conditions associated with equations (5.1) and (5.2). The

solution of the travelling wave equations given above for β are only a solution of

the full PDE, (5.1), for all time if the travelling wave solution is consistent with the

initial conditions specified in (5.2).

• However, often (or rather usually!), one finds that for a particular choice of v the

solutions of the full PDE system, (5.1) and (5.2), tend, as t → ∞, to a solution

of the travelling wave equations (5.5), with fixed v and A, for a very large class of

initial conditions.

• The Russian mathematician Kolmogorov proved that solutions of the full partial

differential equation system, (5.1) and (5.2), do indeed tend, as t→∞, to a solution

of the travelling wave equations for v = 2 for a large class of initial conditions.

5.1.2 Existence and the phase plane

We will investigate the existence of solutions of Fisher’s equation, equation (5.5), with

the boundary conditions β(−∞) = 1 and β(∞) = 0 and v > 0, via a series of exercises

involving the phase plane (β, β′).

Consider the travelling wave equation

d2β

dy2
+ v

dβ

dy
+ β(1− β) = 0, (5.9)

with v > 0 and the boundary conditions (β(−∞), β(∞)) = (1, 0).

Exercise 1. Show that the stationary point at (β, β′) = (1, 0) is always a saddle point

and the stationary point at (β, β′) = (0, 0) is a stable node for v ≥ 2 and a stable focus

for v < 2.

Solution. Writing β′ = γ gives

d

dy

(
β

γ

)
=

d

dy

(
β

β′

)
=

(
γ

−vγ − β(1− β)

)
=

(
f(β, γ)

g(β, γ)

)
. (5.10)
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The Jacobian, J , is given by

J =

(
∂f
∂β

∂f
∂γ

∂g
∂β

∂g
∂γ

)
=

(
0 1

−1 + 2β −v

)
. (5.11)

At (0, 0) we have

det(J − λI) = det

(
−λ 1

−1 −v − λ

)
⇒ λ2 + vλ+ 1 = 0, (5.12)

and hence

λ =
−v ±

√
v2 − 4

2
. (5.13)

Therefore:

• if v < 2 we have λ = −v/2± iµ and hence a stable spiral;

• if v > 2 we have λ = −v/2± µ and hence a stable node;

• if v = 2 we have λ = −1 and hence a stable node.

At (1, 0) we have

det(J − λI) = det

(
−λ 1

1 −v − λ

)
⇒ λ2 + vλ− 1 = 0, (5.14)

and hence

λ =
−v ±

√
v2 + 4

2
. (5.15)

Therefore (1, 0) is a saddle point.

Exercise 2. Explain why solutions of Fisher’s travelling wave equations must tend to

phase plane stationary points as y → ±∞. Hence explain why solutions of (5.9) with

v < 2 are unphysical.

Solution. (β, γ) ≡ (β, β′) will change as y increases, unless at a stationary point. Therefore

they will keep moving along a phase space trajectory as y → ∞ unless the y → ∞ limit

evolves to a stationary point.

To satisfy limy→0 β(y) = 0, we need to be on a phase space trajectory which “stops” at

β = 0. Therefore we must be on a trajectory which tends to a stationary point with β = 0

as y →∞.

Hence (β, β′) must tend to (0, 0) as y →∞ to satisfy limy→∞ β(y) = 0 as y →∞.

An analogous argument holds as y → −∞.

If v < 2 then β < 0 at some point on the trajectory: this is unphysical:
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Exercise 3. Show that the gradient of the unstable manifold at (β, β′) = (1, 0) is given

by
1

2

(
−v +

√
v2 + 4

)
. (5.16)

Sketch the qualitative form of the phase plane trajectories near to the stationary points

for v ≥ 2.

Solution. We require the eigenvectors of the Jacobian at (1, 0):(
0 1

1 −v

)(
1

q±

)
= λ±

(
1

q±

)
⇒ q± = λ± and 1− vq± = λ±q±. (5.17)

Hence

v± =

(
1

1
2

[
−v ±

√
v2 + 4

] ) . (5.18)

Exercise 4. Explain why any physically relevant phase plane trajectory must leave

(β, β′) = (1, 0) on the unstable manifold pointing in the direction of decreasing β.

Solution. Recall that, close to the stationary point,(
β

γ

)
−

(
β∗

γ∗

)
= a−e

λ−yv− + a+e
λ+yv+. (5.19)

The solution moves away from the saddle along the unstable manifold, which corresponds

to a−.
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Exercise 5. Consider v ≥ 2. With γ
def
= β′ show that for β ∈ (0, 1] the phase plane

trajectories, with gradient
dγ

dβ
= −v − β(1− β)

γ
, (5.20)

satisfy the constraint dγ/dβ < −1 whenever γ = −β.

Solution.
dγ

dβ

∣∣∣∣
β=−γ

= −v + (1− β) ≤ (−v + 2)− (1 + β) < −1. (5.21)

Exercise 6. Hence show that with v ≥ 2 the unstable manifold leaving (β, β′) = (1, 0)

and entering the region β′ < 0, β < 1 enters, and can never leave, the region

R def
= {(β, γ) | γ ≤ 0, β ∈ [0, 1], γ ≥ β}. (5.22)

Solution. Along L1 = {(β, γ) | γ = 0, β ∈ (0, 1)} the trajectories point vertically into R
as ∣∣∣∣dγdβ

∣∣∣∣→∞ as we approach L1 and γ′ = −β(1− β) < 0. (5.23)

Along L2 = {(β, γ) | β = 1, γ ∈ (−1, 0)} we have

dγ

dβ

∣∣∣∣
L2

= −v − β(1− β)

γ
= −v < 0. (5.24)

Hence trajectories that enter R cannot leave. There any trajectory must end at a station-

ary point and trajectories are forced to the point (β, γ) = (0, 0).

Exercise 7. Thus prove that that there exists a monotonic solution, with β ≥ 0, to

equation (5.9) for every value of v ≥ 2 and, with v ≥ 2 fixed, the phase space trajectory

is unique.

Solution. The above analysis is valid for v ≥ 2. For v fixed a trajectory enters the region

R along the unstable manifold (only one unstable manifold enters R). The solution is

monotonic as γ < 0 throughout R.

Figure 5.1 shows the results of numerical simulation of the Fisher equation (5.1) with

initial and boundary conditions given by (5.2) at a series of time points.

5.1.3 Relation between the travelling wave speed and initial conditions

We have seen that, for v fixed, the phase space trajectory of Fisher’s travelling wave

equation is unique. The non-uniqueness associated with the fact that if β(y) solves Fisher’s

travelling wave equation then so does β(y + A) for A constant simply corresponds to a

shift along the phase space trajectory. This, in turn, corresponds simply to translation of

the travelling wave.
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Figure 5.1: Solution of the Fisher equation (5.1) with initial and boundary conditions given

by (5.2) at times t = 10, 20, 30, 40, 50.

Key question. We showed above that if Fisher’s equation possesses a travelling wave

(TW) solution then its wavespeed satisfies v2 ≥ 4. When are such TW solutions realised,

and with what wavespeeds? A rough estimate can be obtained by studying Fisher’s

equation near the leading front of the TW where β is small. Linearising about β = 0

yields the following linear PDE:

∂β

∂t
=
∂2β

∂x2
+ β.

We will assume that

β(x, 0) ∼ Be−ax x→∞ (B, a > 0),

and seek TW solutions of the linearised Fisher equation of the form

β(x, t) ∼ Be−a(x−vt).

The linearised PDE yields the following dispersion relation which defines the wavespeed v

in terms of the decay rate of the initial data

av = a2 + 1 ⇒ v = a+
1

a
≥ 2,

with equality iff a = 1. We will consider separately the cases a > 1 and a < 1.

Case 1: a < 1.

a < 1 ⇒ e−ax > e−x

⇒ I.C.s decay less rapidly than TW with min wavespeed

⇒ behaviour dominated by I.C.s

⇒ v = a+ a−1.

Case 2: a > 1.

a > 1 ⇒ e−ax < e−x

⇒ I.C.s decay more rapidly than TW with min wavespeed

⇒ behaviour dominated by TW with min wavespeed

⇒ v = 2.
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Non-Examinable: initial conditions of compact support

Kolmogorov considered the equation

∂ψ

∂τ
=
∂2ψ

∂z2
+ ψ(1− ψ), (5.25)

with the boundary conditions

ψ(z, τ)→ 1 as z → −∞ and ψ(z, τ)→ 0 as z →∞, (5.26)

and non-negative initial conditions satisfying the following: there is a K, with 0 < K <∞,

such that

ψ(z, τ = 0) = 0 for z > K and ψ(z, τ = 0) = 1 for z < −K. (5.27)

He proved that ψ(z, τ) tends to a Fisher travelling wave solution with v = 2 as t→∞.

This can be applied to equations (5.1) and (5.2) providing the initial conditions are non-

negative and the initial condition for β satisfies the above constraint, i.e. there is a K,

with 0 < K <∞, such that

β(z, τ = 0) = 0 for z > K and β(z, τ = 0) = 1 for z < −K. (5.28)

Under such constraints β also tends to a Fisher travelling wave solution with v = 2.

5.2 Models of epidemics

The study of infectious diseases has a long history and there are numerous detailed models

of a variety of epidemics and epizootics (i.e. animal epidemics). Here we will only scratch

the surface. In what follows we consider a basic model and show how it can be used

to make general comments about epidemics and, in fact, approximately describe some

specific epidemics.

5.2.1 The SIR model (revision from Short Course)

Consider a disease for which the population can be placed into three compartments:

• the susceptible compartment, S, who can catch the disease;

• the infective compartment, I, who have and transmit the disease;

• the removed compartment, R, who have been isolated, or who have recovered and

are immune to the disease, or have died due to the disease during the course of the

epidemic.
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Assumptions

• The epidemic is of short duration course so that the population is constant (counting

those who have died due to the disease during the course of the epidemic).

• The disease has a negligible incubation period.

• If a person contracts the disease and recovers, they are immune (and hence remain

in the removed compartment).

• The numbers involved are sufficiently large to justify a continuum approximation.

• The ‘dynamics’ of the disease can be described by applying the Law of Mass Action

to:

S + I
r−→ 2I, I

a−→ R. (5.29)

The model

Then the equations describing the time evolution of numbers in the susceptible, infective

and removed compartments are given by

dS

dt
= −rIS, (5.30)

dI

dt
= rIS − aI, (5.31)

dR

dt
= aI, (5.32)

subject to

S(t = 0) = S0, I(t = 0) = I0, R(t = 0) = 0. (5.33)

Note that
d

dt
(S + I +R) = 0 =⇒ S + I +R = S0 + I0. (5.34)

Key questions in an epidemic situation are, given r, a, S0 and I0,

1. Will the disease spread, i.e. will the number of infectives increase, at least in the

short-term?

Solution.

dS

dt
= −rIS ⇒ S is decreasing and therefore S ≤ S0. (5.35)

dI

dt
= I(rS − a) < I(rS0 − a). (5.36)

Therefore, if S0 < a/r the infectives never increase, at least initially.
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2. If the disease spreads, what will be the maximum number of infectives at any given

time?

Solution.
dI

dS
= −(rS − a)

rS
= −1 +

ρ

S
where ρ

def
=

a

r
. (5.37)

Integrating gives

I + S − ρ lnS = I0 + S0 − ρ lnS0, (5.38)

and so, noting that dI/dS = 0 for S = ρ, the maximum number of infectives is given

by

Imax =

{
I0 S0 ≤ ρ
I0 + S0 − ρ lnS0 − ρ ln ρ− ρ S0 > ρ

. (5.39)

3. How many people in total catch the disease?

Solution. From 1, I → 0 as t → ∞. Therefore the total number who catch the

disease is

R(∞) = N0 − S(∞)− I(∞) = N0 − S(∞), (5.40)

where S(∞) < S0 is the root of

S∞ − ρ lnS∞ = N0 − ρ lnS0, (5.41)

obtained by setting S = S∞ and N0 = I0 + S0 in equation (5.38).
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Figure 5.2: Numerical solution of the SIR model, equations (5.30)-(5.32), where the solid

lines indicate the phase trajectories and the dashed line S + I = S0 + I0. Parameters are as

follows: r = 0.01 and a = 0.25.

5.2.2 An SIR model with spatial heterogeneity

We consider an application to fox rabies. We will make the same assumptions as for the

standard SIR model, plus:

• healthy, i.e. susceptible, foxes are territorial and, on average, do not move from their

territories;
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• rabid, i.e. infective, foxes undergo behavioural changes and migrate randomly, with

an effective, constant, diffusion coefficient D;

• rabies is fatal, so that infected foxes do not return to the susceptible compartment

but die, and hence the removed compartment does not migrate.

Taking into account rabid foxes’ random motion, the SIR equations become

∂S

∂t
= −rIS, (5.42)

∂I

∂t
= D∇2I + rIS − aI, (5.43)

∂R

∂t
= aI. (5.44)

The I and S equations decouple, and we consider these in more detail. We assume

a one-dimensional spatial domain x ∈ (−∞,∞) and apply the following scalings/non-

dimensionalisations,

I∗ =
I

S0
, S∗ =

S

S0
, x∗ =

√
rS0

D
x, t∗ = rS0t, λ =

a

rS0
, (5.45)

where S0 is the population density in the absence of rabies, to obtain

∂S

∂t
= −IS, (5.46)

∂I

∂t
= ∇2I + I(S − λ), (5.47)

where asterisks have been dropped for convenience in the final expression.

Travelling waves

We seek travelling wave solutions with

S(x, t) = S(y), I(x, t) = I(y), y = x− ct, c > 0, (5.48)

which results in the system

0 = cS′ − IS, (5.49)

0 = I ′′ + cI ′ + I(S − λ), (5.50)

where ′ = d/dy.

We assume λ = a/(rS0) < 1 below. This is equivalent to the condition for disease spread

in the earlier SIR model.

Boundary conditions

We assume a healthy population as y →∞:

S → 1 and I → 0, (5.51)

and as y → −∞ we require

I → 0. (5.52)
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Bound on travelling wave speed

We write S = 1− P and linearise about the wavefront:

−cP ′ − I = 0 and I ′′ + cI ′ + I(1− λ). (5.53)

The I equation decouples and analysis of this equation gives a stable focus at (I, I ′) = (0, 0)

if the eigenvalues

µ =
−c±

√
c2 − 4(1− λ)

2
, (5.54)

are complex. This requires

c ≥ 2
√

1− λ. (5.55)

Severity of epidemic

S(−∞) is a measure of the severity of the epidemic. We have I = cS′/S and therefore

d

dy
(I ′ + cI) + cS′

(
S − λ
S

)
= 0. (5.56)

Therefore

(I ′ + cI) + c(S − λ lnS) = constant = c, (5.57)

by evaluating the equation as y →∞.

In this case

S(−∞)− λ lnS(−∞) = 1, where S(−∞) < 1, (5.58)

gives the severity of the epidemic.

Further comments on travelling wave speed

Typically, the wave evolves to have minimum wave speed:

c ' cmin. (5.59)
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Pattern formation

Examples of spatial pattern and structure can be seen just about everywhere in the natural

world. Here we will be concerned with (i) building and analysing models which generate

patterns, and (ii) understanding how self-organising principles may generate shape and

form.

References.

• J. D. Murray, Mathematical Biology Volume II, Chapters 2 and 3.

• N. F. Britton, Essential Mathematical Biology, Chapter 7.

6.1 Minimum domains for spatial structure

Consider the following dimensionless model for budworm which spread by diffusion on a

one-dimensional domain, 0 ≤ x ≤ L:

ut = Duxx + f(u), where f(u) = ru

(
1− u

q

)
− u2

1 + u2
. (6.1)

We suppose that exterior to the domain conditions are extremely hostile to budworm so

that we have the boundary conditions

u(0, t) = 0, u(L, t) = 0. (6.2)

Note that f ′(0) = r > 0.

Question. Clearly u = 0 is a solution. However, if we start with a small initial distri-

bution of budworm, will the budworm die out, or will there be an outbreak of budworm?

In particular, how does what happens depend on the domain size?

Solution. For initial conditions with 0 ≤ u(x, t = 0) � 1, sufficiently small, we can

approximate f(u) by f ′(0)u at least while u(x, t) remains small. Then our equations are,

approximately,

ut = Duxx + f ′(0)u, u(0, t) = 0, u(L, t) = 0. (6.3)

49
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We look for a solution of the form (invoking completeness of Fourier series):

u(x, t) =
∞∑
n=1

an(t) sin
(nπx
L

)
. (6.4)

This gives that the time-dependent coefficients satisfy

dan
dt

= −Dn
2π2

L2
an + f ′(0)an = σnan, (6.5)

and hence

u(x, t) =
∞∑
n=1

an(0) exp

[(
f ′(0)− Dn2π2

L2

)
t

]
sin
(nπx
L

)
. (6.6)

For the solution to decay to zero, we require that all Fourier modes decay to zero as t→∞.

Hence, we require that

σn < 0 ∀n ⇒ f ′(0)− Dn2π2

L2
< 0 ∀n, (6.7)

or, equivalently,

f ′(0) <
Dn2π2

L2
⇒ L ≤

√
Dπ2

f ′(0)

def
= Lcrit. (6.8)

Hence there is a critical lengthscale, Lcrit, beyond which an outburst of budworm is possible

in a spatially distributed system.

6.1.1 Domain size

On first inspection it is perhaps surprising that Lcrit increases with the diffusion coefficient,

i.e. diffusion is destabilising the zero steady state.

We can further investigate how the nature of a steady state pattern depends on the

diffusion coefficient. Suppose L > Lcrit and that the steady state pattern is of the form:

We therefore have

0 = Duxx + f(u). (6.9)

Multiplying by ux and integrating with respect to x, we have

0 =

∫
Duxuxx dx+

∫
uxf(u) dx. (6.10)
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Thus we have

1

2
Du2

x + F (u) = constant = F (umax) where F ′(u) = f(u). (6.11)

We can therefore find a relation between L, D, integrals of

F (u)
def
=

∫ u

0
f(y) dy, (6.12)

and max(u), the size of the outbreak, as follows:

ux = −
(

2

D

) 1
2 √

F (umax)− F (u) since x > 0 and therefore ux < 0. (6.13)

Integrating, gives

2

∫ L/2

0
dx = −(2D)

1
2

∫ 0

umax

1√
F (umax)− F (ū)

dū, (6.14)

and hence

L = (2D)
1
2

∫ umax

0

1√
F (umax)− F (ū)

dū. (6.15)

Therefore umax is a function of L/
√

2D and the root of equation (6.15).
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Figure 6.1: Numerical simulation of the um-L space, equation (6.15) with r = 0.6, q = 6.2

and D = 0.1.

6.2 Diffusion-driven instability

Consider a two component system

ut = Du∇2u+ f(u, v), (6.16)

vt = Dv∇2v + g(u, v), (6.17)
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for x ∈ Ω, t ∈ [0,∞) and Ω bounded.

The initial conditions are

u(x, 0) = u0(x), v(x, 0) = v0(x), (6.18)

and the boundary conditions are either Dirichlet, i.e.

u = uB, v = vB, x ∈ ∂Ω, (6.19)

or homogeneous Neumann, i.e.

n · ∇u = 0, n · ∇v = 0, for x ∈ ∂Ω, (6.20)

where n is the outward pointing normal on ∂Ω.

Definition. Patterns are stable, time-independent, spatially heterogeneous solutions

of equations (6.16)-(6.17).

Definition. A diffusion-driven instability, also referred to as a Turing instability,

occurs when a steady state that is stable in the absence of diffusion becomes unstable

when diffusion is present.

Remark. Diffusion-driven instabilities, in particular, can drive pattern formation in

chemical systems and there is significant, but not necessarily conclusive, evidence that

they can drive pattern formation in a variety of biological systems. A key point is that

this mechanism can drive the system from close to a homogeneous steady state to a state

with spatial pattern and structure. The fact that diffusion is responsible for this is initially

quite surprising. Diffusion, in isolation, disperses a pattern; yet diffusion, combined with

kinetic terms, can often drive a system towards a state with spatial structure.

6.2.1 Linear analysis

We wish to understand when a diffusion-driven instability occurs. Using vector and matrix

notation we define

u =

(
u

v

)
, F (u) =

(
f(u, v)

g(u, v)

)
, D =

(
Du 0

0 Dv

)
, (6.21)

and write the problem with homogeneous Neumann boundary conditions as follows:

ut = D∇2u + F (u), (6.22)

i.e.
∂

∂t

(
u

v

)
=

(
Du 0

0 Dv

)
∇2

(
u

v

)
+

(
f(u, v)

g(u, v)

)
, (6.23)

with

n · ∇u = 0, x ∈ ∂Ω, (6.24)
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i.e.

n.∇u = 0 = n.∇v x ∈ ∂Ω. (6.25)

Let u∗ be such that F (u∗) = 0. Implicit in this definition is the assumption that u∗ is a

constant vector.

Let w = u− u∗ with |w| � 1. Then we have

∂w

∂t
= D∇2w + F (u∗) + Jw + higher order terms, (6.26)

where

J =

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)∣∣∣∣∣
u=u∗

, (6.27)

is the Jacobian of F evaluated at u = u∗. Note that J is a constant matrix.

Neglecting higher order terms in |w|, we have

wt = D∇2w + Jw, n · ∇w = 0, x ∈ ∂Ω. (6.28)

This is a linear equation and so we look for a solution in the form of a linear sum of

separable solutions. To do this, we must first consider a general separable solution given

by

w(x, t) = A(t)p(x), (6.29)

where A(t) is a scalar function of time. Substituting from equation (6.29) into equation

(6.28) yields
1

A

dA

dt
p = D∇2p + Jp. (6.30)

Clearly to proceed, with p dependent on x only, we require Ȧ/A to be time independent.

It must also be independent of x as A is a function of time only. Thus Ȧ/A is constant.

We take Ȧ = λA, where λ is an, as yet, undetermined constant. Thus

A = A0 exp(λt), (6.31)

for A0 6= 0 constant. Hence we require that our separable solution is such that[
λp− Jp−D∇2p

]
= 0. (6.32)

Suppose p satisfies the equation

∇2p + k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (6.33)

where k ∈ R. This is motivated by the fact in one-dimensional on a bounded domain, we

have p′′+k2p = 0; the solutions are trigonometric functions which means one immediately

has a Fourier series when writing the sum of separable solutions.
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Then we have [
λp− Jp + Dk2p

]
= 0, (6.34)

and thus [
λI − J + Dk2

]
p = 0, (6.35)

with |p| not identically zero. Hence

det
[
λI − J + k2D

]
= 0. (6.36)

This can be rewritten as

det

(
λ− fu +Duk

2 −fv
−gu λ− gv +Dvk

2

)
= 0, (6.37)

which gives the following quadratic in λ:

λ2 +
[
(Du +Dv)k

2 − (fu + gv)
]
λ+ h(k2) = 0, (6.38)

where

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv). (6.39)

Note 1. Fixing model parameters and functions (i.e. fixing Du, Dv, f , g), we have an

equation which gives λ as a function of k2.

Note 2. For any k2 such that equation (6.33) possesses a solution, denoted pk(x) below,

we can find a λ = λ(k2) and, hence, a general separable solution of the form

A0e
λ(k2)tpk(x). (6.40)

The most general solution formed by the sum of separable solutions is therefore∑
k2

A0(k2)eλ(k2)tpk(x), (6.41)

if there are countable k2 for which equation (6.33) possesses a solution. Otherwise the

general solution formed by the sum of separable solutions is of the form∫
A0(k2)eλ(k2)tpk2(x) dk2, (6.42)

where k2 is the integration variable.

Unstable points

If, for any k2 such that equation (6.33) possesses a solution, we find Re(λ(k2)) > 0 then:

• u∗ is (linearly) unstable and perturbations from the stationary state will grow;

• while the perturbations are small, the linear analysis remains valid; thus the per-

turbations keep growing until the linear analysis is invalid and the full non-linear

dynamics comes into play;
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• a small perturbation from the steady state develops into a growing spatially hetero-

geneous solution which subsequently seeds spatially heterogeneous behaviour of the

full non-linear model;

• a spatially heterogeneous pattern can emerge from the system from a starting point

which is homogeneous to a very good approximation.

Stable points

If, for all k2 such that equation (6.33) possesses a solution, we find Re(λ(k2)) < 0 then:

• u∗ is (linearly) stable and perturbations from the stationary state do not grow;

• patterning will not emerge from perturbing the homogeneous steady state solution

u∗;

• the solution will decay back to the homogeneous solution1.

6.3 Detailed study of the conditions for a Turing instability

For a Turing instability we require the homogeneous steady state to be stable without

diffusion and unstable with diffusion present. Here we analyse the requirements for

each of these conditions to be satisfied.

6.3.1 Stability without diffusion

First, we require that in the absence of diffusion the system is stable. This is equivalent

to

Re(λ(0)) < 0, (6.43)

for all solutions of λ(0), as setting k2 = 0 removes the diffusion-driven term in equation

(6.36) and the preceding equations.

We have that λ(0) satisfies

λ(0)2 − [fu + gv]λ(0) + [fugv − fvgu] = 0. (6.44)

Insisting that Re(λ(0) < 0) gives us the conditions

fu + gv < 0 (6.45)

fugv − fvgu > 0. (6.46)

1Technical point: strictly, this conclusion requires completeness of the separable solutions. This can

be readily shown in 1D on bounded domains. (Solutions of p′′ + k2p = 0 on bounded domains with

Neumann conditions are trigonometric functions and completeness is inherited from the completeness of

Fourier series). Even if completeness of the separable solutions is not clear, numerical simulations of the

full equations are highly indicative and do not, for the models typically encountered, contradict the results

of the linear analysis. With enough effort and neglecting any biological constraints on model parameters

and functions, one may well be able to find Du, Dv, f, g where there was such a discrepancy but that is

not the point of biological modelling.
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The simplest way of deducing (6.45) and (6.46) is by brute force.

The roots of the quadratic are given by

λ(0)± =
(fu + gv)±

√
(fu + gv)2 − 4(fugv − fvgu)

2
. (6.47)

6.3.2 Instability with diffusion

Now consider the effects of diffusion. In addition to Re(λ(0)) < 0, we must show, for

diffusion-driven instability, that there exists k2 such that

Re(λ(k2)) > 0, (6.48)

so that diffusion does indeed drive an instability.

We have that λ(k2) satisfies

λ2 +
[
(Du +Dv)k

2 − (fu + gv)
]
λ+ h(k2) = 0, (6.49)

where

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv), (6.50)

and

α = (fu + gv)− (Du +Dv)k
2 < 0. (6.51)

Thus Re(λ(k2)) > 0 requires that

Re
(
α±

√
α2 − 4h(k2)

)
> 0 ⇒ h(k2) < 0. (6.52)

Hence we must find k2 such that

h(k2) = DuDvk
4 − (Dvfu +Dugv)k

2 + (fugv − gufv) < 0, (6.53)

so that we have k2 ∈ [k2
−, k

2
+] where h(k2

±) = 0. Figure 6.2 shows a plot of a caricature

h(k2).

We conclude that we have instability whenever

k2 ∈

[
A−
√
A2 −B

2DuDv
,
A+
√
A2 −B

2DuDv

]
=
[
k2
−, k

2
+

]
, (6.54)

where

A = Dvfu +Dugv and B = 4DuDv(fugv − gufv) > 0, (6.55)

and there exists a solution of the following equation

∇2p + k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (6.56)

for k2 in the above range.
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Figure 6.2: A plot of a caricature h(k2).

Insisting that k is real and non-zero (we have considered the k = 0 case above) we have

A > 0 and A2 −B > 0, (6.57)

which gives us that when Re(λ(k2)) > 0, the following conditions hold:

A > 0 : Dvfu +Dugv > 0, (6.58)

A2 −B > 0 : (Dvfu +Dugv) > 2
√
DuDv(fugv − fvgu). (6.59)

6.3.3 Summary

We have found that diffusion-driven instability can occur when conditions (6.45), (6.46),

(6.58), (6.59) hold. Then the instability is driven by separable solutions which solve

equation (6.33) with k2 in the range (6.54).

Key point 1. Note that constraints (6.45) and (6.58) immediately gives us that Du 6=
Dv. Thus one cannot have a diffusion-driven instability with identical diffusion coefficients.

Key point 2. From constraints (6.45), (6.46), (6.58) the signs of fu, gv must be such

that J takes the form

J =

(
+ +

− −

)
or

(
+ −
+ −

)
or

(
− −
+ +

)
or

(
− +

− +

)
. (6.60)

Key point 3. A Turing instability typically occurs via long-range inhibition and short-

range activation. In more detail, suppose

J =

(
+ −
+ −

)
. (6.61)
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Then we have fu > 0 and gv < 0 by the signs of J . In this case Dvfu +Dugv > 0⇒ Dv >

Du. Hence the activator has a lower diffusion coefficient and spreads less quickly than the

inhibitor.

6.3.4 The threshold of a Turing instability.

The threshold is defined such that equation (6.39), i.e.

DuDvk
4
c − (Dvfu +Dugv)k

2
c + (fugv − gufv) = 0, (6.62)

has a single root, k2
c .

Thus we additionally require

A2 = B i.e. (Dvfu +Dugv)
2 = 4DuDv(fugv − gufv) > 0, (6.63)

whereupon

k2
c =

A

2DuDv
=
Dvfu +Dugv

2DuDv
. (6.64)

Strictly one also requires that a solution exists for

∇2p + k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (6.65)

when k2 = k2
c . However, the above value of k2

c is typically an excellent approximation.

6.4 Extended example 1

Consider the one-dimensional case:

ut = Duuxx + f(u, v), (6.66)

vt = Dvvxx + g(u, v), (6.67)

for x ∈ [0, L], t ∈ [0,∞) and zero flux boundary conditions at x = 0 and x = L.

The analogue of

∇2p + k2p = 0, n · ∇p = 0, x ∈ ∂Ω, (6.68)

is

pxx + k2p = 0, p′(0) = p′(L) = 0, (6.69)

which gives us that

pk(x) = Ak cos (kx) , k =
nπ

L
, n ∈ {1, 2, . . .}, (6.70)

where Ak is k-dependent in general but independent of t and x.

Thus the separable solution is of the form∑
k

Ake
λ(k2)t cos (kx) , (6.71)

where the sum is over the allowed values of k i.e.

k =
nπ

L
, n ∈ {1, 2, . . .}. (6.72)
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Figure 6.3: Numerical simulation of the Gierer-Meinhardt model for pattern formation.

6.4.1 The influence of domain size

If the smallest allowed value of k2 = π2/L2 is such that

k2 =
π2

L2
>
A+
√
A2 −B

2DuDv
= k2

+, (6.73)

then we cannot have a Turing instability.

Thus for very small domains there is no pattern formation via a Turing mechanism.

However, if one slowly increases the size of the domain, then L increases and the above

constraint eventually breaks down and the homogeneous steady state destabilises leading

to spatial heterogeneity.

This pattern formation mechanism has been observed in chemical systems. It is regularly

hypothesised to be present in biological systems (e.g. animal coat markings, fish markings,

the interaction of gene products at a cellular level, the formation of ecological patchiness)

though the evidence is not conclusive at the moment.

6.5 Extended example 2

Consider the two-dimensional case with spatial coordinates x = (x, y)T , x ∈ [0, a], y ∈
[0, b], and zero flux boundary conditions. We find that the allowed values of k2 are

k2
m,n =

[
m2π2

a2
+
n2π2

b2

]
, (6.74)

with

pm,n(x) = Am,n cos
(mπx

a

)
cos
(nπy

b

)
, n,m ∈ {0, 1, 2, . . .}, (6.75)

excluding the case where n, m are both zero.
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Suppose the domain is long and thin, b� a. We may have a Turing instability if

k2
m,n =

[
m2π2

a2
+
n2π2

b2

]
∈
[
k2
−, k

2
+

]
where h(k2

±) = 0. (6.76)

For b sufficiently small, this requires n = 0 and therefore no spatial variation in the y

direction.

This means we have that the seed for pattern formation predicted by the linear analysis

is a separable solution which is “stripes”; this typically invokes a striped pattern once the

non-linear dynamics sets in.

For a large rectangular domain, b ∼ a sufficiently large, it is clear that a Turing instability

can be initiated with n, m > 0. This means we have that the seed for pattern formation

predicted by the linear analysis is a separable solution which is “spots”. This typically

invokes a spotted pattern once the non-linear dynamics sets in.

0 2 4 6 8 10

0

2

4

6

8

10

0 2 4 6 8 10

0

2

4

6

8

10

Figure 6.4: Changes in patterning as the domain shape changes.

Figure 6.4 shows how domain size may affect the patterns formed. On the left-hand side

the domain is long and thin and only a striped pattern results, whilst the on the right-hand

side the domain is large enough to admit patterning in both directions.

Suppose we have a domain which changes its aspect ratio from rectangular to long and

thin. Then we have the following possibilities:
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This leads to an interesting prediction, in the context of animal coat markings, that if it

is indeed driven by a Turing instability, then one should not expect to see an animal with

a striped body and a spotted tail.

Figure 6.5: Animal coat markings which are consistent with the predictions of pattern

formation by a Turing instability.

Common observation is consistent with such a prediction (see Figure 6.5) but one should

not expect universal laws in the realms of biology as one does in physics (see Figure

6.6). More generally, this analysis has applications in modelling numerous chemical and

biochemical reactions, in vibrating plate theory, and studies of patchiness in ecology and

modelling gene interactions.

Figure 6.6: Animal coat markings which are inconsistent with the predictions of pattern

formation by a Turing instability.
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Domain Growth in Biology

In many biological systems, growth is accompanied by size changes. For example, children

typically increase in height as they grow. Mathematical models that can predict such

growth are very useful and have many applications. For example, domain growth can

affect the animal coat patterns that arise in reaction-diffusion systems (see Figure 6.1).

Alternatively, in tissue engineering, experimentalists aim to create new tissues (e.g. skin,

bone, cartilage) to replace damaged ones.

When testing new drugs and treatments in the laboratory, experimentalists need a system

which is reliable, safe and reproducible. Common methods for doing this involve culturing

(for example) tumour cells, as 2D monolayers or as 3D multicellular spheroids. The

tumour cells cluster together and undergo diffusion limited growth: vital nutrients (eg

oxygen, glucose) diffuse through the cellular mass, enabling the cells to stay alive and

proliferate (see Figure 6.2).

An additional reason for studying the growth of multicellular spheroids is that they mimic

the early stages of tumour growth, before the tumour has developed a blood supply.

During this growth phase, tumour cells aggregate to form a mass which increases in size

as the cells proliferate, their growth depending on local levels of nutrients that diffuse

through the tissue. In order to model the tumour’s growth we need to be able to predict

the nutrient concentration within the tumour (this determines how the tumour grows and

will ultimately enable us to determine the position of the outer tumour boundary). Note

Figure 7.1: Series of images showing how the rate of domain growth can affect the spatial

patterns generated by a reactio-diffusion system. For further information, see EJ Crampin,

EA Gaffney and PK Maini (1999). Bull Math Biol. 61: 1093-1120.

62
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Figure 7.2: Series of images showing how the size and structure of multicellular tumour

spheroids change over time

that the domain on which we solve for the nutrient concentration grows as the tumour

grows: this is an example of a moving boundary problem.

References (for interest).

• H.P. Greenspan (1972) Models for the growth of a solid tumour by diffusion. Stud.

Appl. Math. 52: 317-344.

• E.J. Crampin, E.A. Gaffney and P.K. Maini (1999). Reaction and diffusion on

growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61:

1093-1120.

• D.S. Jones and B.D. Sleeman (2004). Differential equations and mathematical biol-

ogy. Taylor and Francis.

7.1 A simple model of 1D tumour growth

Consider a 3D slab of tumour cells, which are uniform in the y and z directions. Let

x = R(t) denote the position of the outer tissue boundary. We need an equation for the

nutrient concentration C(x, t), and suitable boundary conditions. For moving

boundary problems, since the position of the boundary is unknown, we will need an

extra condition to determine it. This will come from assumptions about how the tumour

grows in response to its consumption of nutrients.

Nutrient concentration, C(x, t). We assume that the nutrient diffuses and is con-

sumed by tumour cells at a constant rate. Thus, C(x, t) satisfies

∂C

∂t
= D

∂2C

∂x2
− λ for |x| < R(t) (within the tumour), (7.1)
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Figure 7.3: Schematic diagram of 1D tumour

where D > 0 is the diffusion constant and lambda > 0 the constant rate at which tumour

cells consume nutrient. We assume that outside the tumour the nutrient is constantly

replenished, so its concentration there is maintained at a constant value:

C(x, t) ≡ C∗ for |x| > R(t).

We assume that the tumour is symmetric about x = 0, so we only need solve on 0 ≤ x ≤
R(t), with boundary conditions

∂C

∂x
= 0 at x = 0, (7.2)

C(R(t), t) = C∗. (7.3)

We need an additional condition (or equation) that describes how tumour growth (repre-

sented by R(t)) depends on nutrient levels.

Tumour boundary, x = R(t). The following equation defines how the growth (repre-

sented by x = R(t)) depends on the nutrient concentration:

dR

dt
=

∫ R(t)

0
P (C)dx, (7.4)

where P (C) represents the local proliferation rate at a given point within the tumour

(it depends only on the availability of nutrient at that point). In general, we expect P (C)

to be an increasing function of C. To close the model, we prescribe the initial position of

the tumour boundary:

R(t = 0) = R0. (7.5)
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Note. Strictly speaking, we should impose initial conditions for the nutrient: C(x, 0) =

Cin(x), say. In practice, as we explain below, it is not necessary to impose initial conditions

for C(x, t).

7.2 Model reduction: nondimensionalise

Our model of tumour growth consists of equations (7.1)-(7.5). Before solving these equa-

tions, it is helpful to nondimensionalise and simplify them. We nondimensionalise as

follows:

x = R0ξ, R(t) = R0r(τ), C(x, t) = C∗c(ξ, τ), P (C) = P0p(c), t =
τ

P0
, (7.6)

where P0 is a typical tumour proliferation rate (e.g. when C ≡ C∗). Equation (7.1) then

becomes (
R2

0P0

D

)
∂c

∂τ
=
∂2c

∂ξ2
− µ, where µ =

λR2
0

C∗D
. (7.7)

The coefficient R2
0P0/D is the ratio of the diffusion timescale, R2

0/D, to a typical

timescale for tumour proliferation, 1/P0. Typically (e.g. from experimental data), the

diffusion timescale is much shorter (minutes, for a small tumour) than the proliferation

timescale (tumour growth occurs over weeks) and, thus,

R2
0P0

D
� 1.

We can therefore neglect the time derivative in the diffusion equation and, to leading

order, we obtain the following dimensionless model:

Dimensionless model equations:

0 =
∂2c

∂ξ2
− µ for 0 ≤ ξ ≤ r(τ), (7.8)

c(ξ, τ) ≡ 1 for ξ > r(τ), (7.9)

∂c

∂ξ
(0, τ) = 0, (7.10)

c(r(τ), τ) = 1, (7.11)

dr

dτ
=

∫ r(τ)

0
p(c)dξ, (7.12)

r(0) = 1. (7.13)

Solving (7.8) gives

c =
µξ2

2
+A(τ)ξ +B(τ).

Although we have removed the explicit τ -dependence from the c-equation, A = A(τ) and

B = B(τ) still depend on τ via the boundary conditions. Imposing conditions (7.10)

and (7.11) on c gives

c(ξ, τ) = 1− µ

2
(r2(τ)− ξ2). (7.14)
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Points to note:

• c attains its minimum value at ξ = 0 where c(0, τ) = 1− µr2(τ)/2.

• As the tumour grows and r(τ) increases, the nutrient concentration at the tumour

centre decreases.

• For physically-realistic solutions, we require (at least) c(0, τ) > 0.

• More on this later!

Question: How does r(τ) evolve? Armed with solution (7.14) for c, we can determine

r(τ) via equation (7.12). We consider the simplest case for which p is a linear function

of c so that p(c) = c (nondimensionalisation of P chosen to make coefficient of c unity).

Then (7.12) becomes

dr

dτ
=

∫ r(τ)

0
c(ξ, τ)dξ (7.15)

=

∫ r(τ)

0

(
1− µ

2
(r2(τ)− ξ2)

)
dξ

⇒ dr

dτ
= r(τ)

(
1− µr2(τ)

3

)
= f(r) (7.16)

which is similar to logistic growth (indeed, y = r2 undergoes logistic growth). We can

integrate to find r(τ) explicitly, or we can use phase-plane/stability analysis.

Phase plane analysis.

• In the physically-relevant regime, r ≥ 0, and there are two steady states: r∗1 = 0 and

r∗2 =
√

3/µ.

• Their stability is determined by the sign of f ′(r∗).

• Near r∗1 = 0 f is increasing and positive⇒ small perturbations from r∗1 = 0 continue

to increase, i.e. this tumour-free steady state is unstable.

• Near r∗2 =
√

3/µ, if r < r∗2 then f is positive, so the solution increases back towards

r∗2; if r > r∗2 then f is negative, and the solution decreases towards r∗2. i.e. this

steady state is stable.

• Exercise: demonstrate this by linearising about the critical points.

All solutions to (7.16) will approach the unique stable steady state

r∗ =
√

3/µ.

Below we consider whether this steady state is physically realistic.
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Figure 7.4: Phase-plot of dr/dτ versus r(τ), illustrating the steady states and their stability.

7.3 Cell death at low nutrient concentration

As nutrient levels fall a cell’s ability to proliferate and remain alive diminishes. We model

these effects by assuming that there exist a threshold nutrient concentration, cN ∈ (0, 1),

such that

• c > cN ⇒ proliferation of live cells;

• c < cN ⇒ cell death and degradation (“necrosis”).

With these new features we predict tumour evolution to be as follows.

1. At τ = 0, the tumour has unit radius (r(0) = 1), and nutrient concentration given

by (7.14), where we assume that

c(0, 0) = 1− µ

2
> cN

so that initially the tumour is well-nourished.

2. The tumour boundary grows according to (7.16) until either the steady state is

attained, or until the minimum nutrient concentration c(0, τ) = cN , and necrosis

sets in at centre of the tumour.

3. Which occurs first? Necrosis or a steady state?

We determine whether necrosis occurs before the tumour attains a steady state by de-

termining the tumour size r = r1 at which necrosis first occurs. We do this by setting

c(0, τ) = cN in equation (7.14):
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Figure 7.5: Series of diagrams illustrating how necrosis is initiated.

cN = 1− µr2
1

2
⇒ r1 =

(
2(1− cN )

µ

)1/2

< r∗ =
√

3/µ.

Thus r1 is always attained before the steady state is reached: the steady state is never

physically feasible.

To calculate the time τ = τ1 of necrosis onset, we separate variables and integrate equation

(7.16), between the appropriate limits:∫ r1

1

dr

r(1− µr2/3)
=

∫ τ1

0
dτ = τ1.

In order to describe tumour evolution after the onset of necrosis (i.e. for τ > τ1), we must

modify the model.

7.4 Revised model: proliferation and necrosis

In the original model, λ in (7.1) (or µ in (7.8)) represents uniform nutrient uptake. In

reality only live cells will absorb nutrient. Thus we replace (7.8) by

∂2c

∂ξ2
= µH(c− cN ) 0 ≤ ξ ≤ r(τ), where H(c− cN ) =

{
1 if c > cN ,

0 if c ≤ cN .
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Equations (7.9), (7.10) and (7.11) are unchanged but the growth equation (7.12) must be

modified since only live cells proliferate and contribute to growth, while dead cells de-

grade and effectively remove mass from the system. Thus, again assuming proliferation

(where it occurs) to be linear in c, we take

dr

dτ
=

∫ r(τ)

0
p(c)dξ =

∫ r(τ)

rN (τ)
cdξ −

∫ rN (τ)

0
δ dξ.

That is, the net proliferation function p(c) has the form

p(c) =

{
c if c > cN
−δ if c ≤ cN ,

where δ > 0 is the death rate when nutrient levels are too low (c ≤ cN ) to sustain viable

cells.

We note that the edge of the necrotic region, ξ = rN (τ), say, will move in time: it is

located where the nutrient concentration first dips below the threshold value c(rN (τ), τ) =

cN . We now have two moving boundaries to determine.

Model summary (for τ > τ1):

∂2c

∂ξ2
= µH(c− cN ) 0 ≤ ξ ≤ r(τ), (7.17)

c(ξ, τ) ≡ 1 ξ > r(τ), (7.18)

∂c

∂ξ
(0, τ) = 0, (7.19)

c(r(τ), τ) = 1, (7.20)

c(rN (τ), τ) = cN , with c continuous across ξ = rN (τ), (7.21)

∂c

∂ξ
continuous across ξ = rN (τ), (7.22)

dr

dτ
=

∫ r(τ)

0
p(c)dξ =

∫ r(τ)

rN (τ)
cdξ −

∫ rN (τ)

0
δ dξ, (7.23)

r(τ1) = r1 =

(
2(1− cN )

µ

)1/2

. (7.24)

Note: for τ > τ1, the outer moving boundary r(τ) is determined by (7.23), while

the boundary of the necrotic region rN (τ) is determined implicitly by the condition

c(rN (τ), τ) = cN .

Model solution. We solve for c in each of the two regions, noting that (7.17) is equiv-

alent to

∂2c

∂ξ2
=

{
0 0 ≤ ξ ≤ rN (τ),

µ rN (τ) ≤ ξ ≤ r(τ).

⇒ c(ξ, τ) =

{
A1ξ +B1 0 ≤ ξ ≤ rN (τ)
µξ2

2 +A2ξ +B2 rN (τ) ≤ ξ ≤ r(τ).
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We fix A1(τ) and B1(τ) by imposing conditions (7.19) and (7.21), which give

A1 = 0, B1 = cN .

Conditions (7.20), (7.21) and (7.22) supply:

µr2(τ)

2
+A2r(τ) +B2 = 1,

µr2
N (τ)

2
+A2rN (τ) +B2 = cN ,

µrN (τ) +A2 = 0.

In this way we obtain A2(τ) and B2(τ) in terms of rN (τ), and an equation relating rN (τ)

to r(τ):

A2 = −µrN (τ), B2 = cN +
µr2

N (τ)

2
, (7.25)

1− cN =
µ

2
(r(τ)− rN (τ))2. (7.26)

Equation (7.26) predicts that the width of the tumour’s proliferating rim remains

fixed after the onset of necrosis:

r(τ)− rN (τ) =

√
2

µ
(1− cN ) = α. (7.27)

The nutrient concentration in each region is given by

c(ξ, τ) =


cN 0 ≤ ξ < rN (τ),

cN + µ
2 (ξ − rN (τ))2 rN (τ) ≤ ξ ≤ r(τ),

1 ξ > r(τ),

with equation (7.26) relating rN (τ) and r(τ) and ensuring continuity of c at r(τ).

It remains to solve equation (7.23) subject to the ”initial” condition (7.24):

dr(τ)

dτ
=

∫ r(τ)

rN (τ)
cdξ −

∫ rN (τ)

0
δ dξ

=

∫ r(τ)

rN (τ)

[µ
2

(ξ − rN (τ))2 + cN

]
dξ −

∫ rN (τ)

0
δ dξ

= (r(τ)− rN (τ))
[µ

6
(r(τ)− rN (τ))2 + cN

]
− δrN (τ)

⇒ dr(τ)

dτ
= −δr(τ) +

α

3
(1 + 2cN + 3δ), with r(τ1) = r1,

where equation (7.27) was used to eliminate rN (τ). This ODE for r(τ) is readily solved:

r(τ) =

(
r1 −

β

δ

)
e−δ(τ−τ1) +

β

δ
, β =

α

3
(1 + 2cN + 3δ),

when δ 6= 0. In this case, the tumour evolves to a final dimensionless radius of β/δ.

If δ = 0 (dead cells do not degrade) then we have constant growth,

dr(τ)

dτ
= β, r(τ1) = r1.

In this case, the tumour radius does not attain a steady state: it grows linearly with τ .
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7.5 Summary

• Growth processes can give rise to moving boundaries in mathematical models

• We assumed that domain growth is driven entirely by nutrient consumption and,

hence, that we must account for nutrient transport and uptake within the growing

regions

• As the timescale for tumour growth is typically much longer than the timescale for

nutrient diffusion we can consider the quasi-steady limit in which the diffusion

equation is quasi-steady

• For a simple 1D model, with symmetry about ξ-axis, uniform nutrient concentration

outside the tumour, and a cell proliferation rate linear in c, we obtained an ODE

for tumour boundary r(τ)

• We showed that this model is breaks down for large times because the nutrient

concentration at the centre of the tumour becomes negative (before the steady state

can be attained)

• We modified the model to allow cells to die when insufficient nutrient c < cN (necrotic

core)

• This modification lead to a model with 2 moving boundaries: edge of tumour

(fixed by proliferation condition) and edge of necrotic core (fixed by condition c =

cN )

• If dead cells degrade then the new model leads to steady state for the tumour;

otherwise linear growth ensues.

• There are many ways in which we could make the model more realistic. For exam-

ple, we could solve in 3D geometry, and/or we could incorporate the effects of an

externally-supplied drug (chemotherapy).
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Figure 7.6: Series of images showing how the blood supply to the retina evolves during

development.



Chapter 8

From Discrete to Continuum

Models

8.1 Introduction

The PDE systems we have studied thus far typically view species as densities or con-

centrations which vary continuously with position and time. In practice, cells (and other

biological quantities, eg animals, people) are individual agents (see Figure 8.1). This raises

the question of when it is valid to represent a population of discrete cells as a continuum.

In this section, we will investigate this issue by focussing on two case studies:

• One-dimensional, biased, random walks;

• Age-structured populations.

The approaches that we use to derive continuum descriptions for the case studies are

explored in more detail in the course B5.1 Stochastic modelling of biological systems.

Figure 8.1: A schematic diagram illustrating the different levels of organisation within a

human.

73
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8.2 Biased Random Walks and Advection-Diffusion Equa-

tions

Consider a population of cells moving along the real line. We decompose the real line into

a series of boxes or compartments, all of width ∆x. We denote by ni(t) the density of cells

in the i−th box, so that ni(t)∆x = total number of cells in the i−th box (see Figure 8.2).

Figure 8.2: Schematic diagram of biased random walk. On each time step, a cell in box i

moves left into box (i−1) with probability 0 ≤ pL ≤ 1 or right into box (i+1) with probability

pR = 1− pL.

We assume that on each time step ∆t > 0, each cell moves left or right with probabilities

0 ≤ pR ≤ 1 and pL = 1− pR respectively (i.e. all cells move to a different box during the

time step ∆t). We use the principle of mass balance to derive discrete conservation

equations (DCEs) for ni(t+ ∆t)∆x, the number of cells in box i at time t+ ∆t:

ni(t+ ∆t) ·∆x = pR · ni−1(t) ·∆x+ pL · ni+1(t) ·∆x

⇒ ni(t+ ∆t)− ni(t) = pR · ni−1(t) + pL · ni+1(t)− ni(t). (8.1)

If the box size ∆x is sufficiently small then we can identify a continuous densityN(i∆x, t) =

N(x, t) with the discrete density ni(t), and rewrite equation (8.1) in terms of N(x, t) as

follows:

N(x, t+ ∆t)−N(x, t) = pR(N(x−∆x, t)−N(x, t)) + pL(N(x+ ∆x, t)−N(x, t)).

We perform Taylor series expansions in x and t to obtain

∂N

∂t
= (pL − pR)

(
∆x

∆t

)
∂N

∂x
+

(∆x)2

2∆t

∂2N

∂x2
+O(∆t) +O(∆x3/∆t).
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Taking the limit as ∆t,∆x→ 0 we deduce

∂N

∂t
= D

∂2N

∂x2
− c∂N

∂x
, (8.2)

where

c = lim
∆t,∆x→0

(pR − pL)
∆x

∆t
and D = lim

∆t,∆x→0

(∆x)2

2∆t
.

Notes:

• If pR = pL = 1/2 then c = 0 and

∂N

∂t
= D

∂2N

∂x2
,

so that the diffusion equation represents the continuum limit of an unbiased

random walk.

• When deriving the diffusion equation, we assume that the cells move a distance ∆x

in time ∆t. Then their speed is ∆x/∆t. If ∆x, ∆t → 0 while (∆x)2

∆t = 2D, then

∆x/∆t⇒∞ i.e., the cells move with infinite speed, which is not physically realistic!

• If ∆x/∆t = O(1), then D → 0 as ∆x,∆t→ 0 and

∂N

∂t
+ c

∂N

∂x
= 0, (8.3)

where c > 0 if pR > pL. Thus, if the distance travelled is similar in magnitude

to the time step of interest then we recover a rightward-travelling wave, with

N(x, t) = NTW (x − ct), for a population of cells undergoing a rightward-biased

random walk.

8.2.1 Boundary Conditions

In practice, cells (or particles) move on a finite domain (0 ≤ x ≤ S, say). We derive

boundary conditions to close equation (8.2) by considering how the boundaries affect cell

movement. There are several cases to consider.

Absorbing boundary: a cell that crosses x = S disappears.

N(S, t+ ∆t) = pRN(S −∆x, t)

⇒ 0 = (1− pR)N(S, t) +O(∆t) +O(∆x)

⇒ N(S, t) = 0 provided pR 6= 1.

Note: if pR = 1 then we cannot have (pR − pL) → 0 as ∆t,∆x → 0, i.e. we cannot

recover an advection-diffusion equation in this limit.
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Reflecting boundary: a cell that attempts to move beyond x = S bounces back.

N(S, t+ ∆t) = pRN(S −∆x, t) + pRN(S, t)

⇒ N(S, t) + ∆t · ∂N
∂t

(St) = pR

(
N(S, t)−∆x

∂N

∂x
(S, t)

)
+ pRN(S, t)

⇒ 0 = (pR − pL)N(S, t)− pR∆x
∂N

∂x
(S, t)−∆t

∂N

∂t
(S, t)

Multiply by (∆x/∆t), recalling the definitions of c and D, to deduce that

0 = cN(S, t)− 2pRD
∂N

∂x
(S, t)−∆x

∂N

∂t
(S, t)

so that, in the limit as ∆t,∆x→ 0, we have

⇒ µ
∂N

∂x
(S, t) =

c

2D
N(S, t),

where µ = pR.

8.2.2 Model Extensions

There are many ways to extend the basic framework used above to derive an advection-

diffusion equation for cell movement. The key point is to include all the relevant (source

and sink) terms when using the principle of mass balance to derive the discrete conservation

equations. Other processes that could be included are:

• Chemotaxis: here, the probabilities of moving left and right from box i will depend

on the concentration of a diffusible chemoattractant in boxes i ± 1 and box i (see

Question Sheet 4);

• Proliferation and death;

• Competition for space.

Exercise: Suppose that cells at position (x, t)

• move left/right with probabilities pL, pR,

• stay still with probability pS ,

• die with probability pD.

Suppose further that pL + pR + pS + pD = 1. Derive a continuum PDE (reaction-

diffusion-advection) equation for the cell population. State clearly how the probabilities

pL, pR, pS and pD should scale with ∆t and ∆x in order to recover your PDE.

Exercise: A population of cells moves on a uniform, 2D grid (i.e. ∆x = ∆y). The

probabilities of moving up, down, left and right are pN , pS , pW and pE respectively.

The sum of these probabilities is one. Derive the corresponding diffusion equation for

the cell population, stating clearly how pN , pS , pW and pE must scale with ∆t and ∆x.
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Figure 8.3: Histograms highlighting differences in the age distribution of males and females

in Mexico and the USA

Notes:

• Turing’s original model of pattern formation was formulated for a discrete chain of

cells [see: AM Turing (1952). The chemical basis of morphogenesis. Bull. Math.

Biol. 52(1): 153-197].

• In the above examples, we assume that, at a given time, cells move ‘right’ and ‘left’

(and possibly ‘up’ and ‘down’) independently of what they were doing at the previous

time point. In practice, cells cannot instantaneously change direction. Models that

account for this will be introduced in the course Stochastic modelling of biological

systems’.

8.3 Age-Structured Populations

Simple models of population dynamics treat all individuals as identical whereas sophis-

ticated models may consider distinct subgroups. For example, SIR models of diseases

such as measles, chicken pox and HIV/AIDS typically decompose the population into 3

subgroups (Susceptibles, Infectives and Recovered), and time-dependent ODEs describe

their evolution. In practice, many processes involved in population growth and/or disease

spread depend on age: young and old individuals may have higher mortality rates and be

more susceptible to a disease; only individuals of a certain age may be able to produce

offspring; school children who frequently come into contact with each other may play a

stronger role in disease transmission than other age-groups. In this section we will use the

approach outlined in the previous section to develop age-structured population models and

then show how they can be used to study population dynamics, epidemics and cell-cycle

dynamics.
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Model development (von Foerster’s Equation)

Consider a population (of humans, cells, animals, ...) structured by age. Let Ni(t) denote

the number of individuals of age i at time t (i = 0, 1, 2, . . .). Over one time step ∆t (= 1

year, 1 day, ...), individuals may die, age and reproduce. As before, we use the principle

of mass balance to derive discrete conservation equations for Ni(t). For i = 1, 2, 3, . . ., we

have  change in number of

individuals of age i

during time step

 =

(
loss due to

cell death

)
+

(
change due

to ageing

)

⇒ Ni(t+ ∆t)−Ni(t) = −µNi(t)∆t+Ni−1(t)−Ni(t).

For i = 0 (new-borns), we have

N0(t+ ∆t)−N0(t) = Σ∞i=0biNi(t)∆t︸ ︷︷ ︸
reproduction

− N0(t)︸ ︷︷ ︸
ageing

,

or, equivalently,

N0(t+ ∆t) = Σ∞i=0biNi(t)∆t.

We identify with Ni(t) a cell density n(a, t) where

Ni(t) = n(i∆a, t)∆a.

Typically ∆a,∆t are small and, so, we can perform Taylor series expansions to switch

from a discrete to a continuous description. In more detail,

n(a, t+ ∆t)− n(a, t) = −µn(a, t)∆t+ n(a−∆a, t)− n(a, t)

⇒ ∂n

∂t
∆t+O(∆t2) = −µn(a, t)∆t− ∂n

∂a
∆a+O(∆a2).



Chapter 8. From Discrete to Continuum Models 79

Figure 8.4: Schematic showing the characteristic curves associated with von Foerster’s equa-

tion.

Dividing by ∆t and taking the limit as ∆t,∆a→ 0, with (∆a/∆t = 1) since a is chrono-

logical age, we deduce that n(a, t) satisfies the following linear PDE:

von Foerster’s Equation:
∂n

∂t
+
∂n

∂a
= −µ(a)n. (8.4)

Boundary conditions for von Foerster’s Equation

n(0, t) =

∫ ∞
0

b(a)n(a, t)da, birth rate of population. (8.5)

where b(a) = birth rate of individuals of age a.

Initial conditions for von Foerster’s Equation

n(a, 0) = f(a), initial age-distribution of population, (8.6)

We use the method of characteristics to solve equations (8.4)-(8.6). The characteristic

curves are straight lines along which da
dt = 1 and, hence,

a =

{
t+ a0, for a > t

t− t0, for a < t

Here a0 represents the initial age of an individual who has age a > t at time t, and t0
represents the time at which an individual of age 0 < a < t was born.

From Figure 8.4, it is clear that

• characteristic curves for which 0 < t < a emanate from the initial data (where t = 0)
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• characteristics for which 0 < a < t emanate from the boundary conditions (at a = 0).

Since information from the boundary and initial conditions propagates along characteris-

tics, we deduce that the solution will have different forms in 0 < t < a and 0 < a < t. We

construct these solutions below.

Region 1 (0 < t < a). In this region

∂n

∂t
+
∂n

∂a
= −µ(a)n, n(0, a) = f(a),

⇒ a = t+ a0,
dn

dt
= −µn, n(a0, 0) = f(a0).

⇒ n(a, t) = f(a0)e
−

∫ a
a0
µ(θ)dθ

.

Since a0 = a− t along characteristic curves, we have

n(a, t) = f(a− t)e−
∫ a
a−t µ(θ)dθ, for 0 < t < a. (8.7)

Region 2 (0 < a < t). In this region

∂n

∂t
+
∂n

∂a
= −µ(a)n, n(0, t) =

∫ ∞
0

b(a)n(a, t)da,

⇒ a = t− t0,
dn

dt
= −µn, n(0, t0) =

∫ ∞
0

b(a)n(a, t0)da when t = 0.

⇒ n(a, t) = n(0, t− a)e−
∫ a
0 µ(θ)dθ, for 0 < a < t. (8.8)

Using Equations (8.7) and (8.8), we deduce

n(0, t) =

∫ ∞
0

b(a)n(a, t)da =

∫ t

0
b(a)n(a, t)da︸ ︷︷ ︸

(0<a<t)

+

∫ ∞
t

b(a)n(a, t)da︸ ︷︷ ︸
(t<a<∞)

,

and, hence,

n(0, t) ≡
∫ t

0

(
b(a)n(0, t− a)e−

∫ a
0 µ(θ)dθ

)
da+

∫ ∞
t

(
b(a)f(a− t)e−

∫ a
a−t µ(θ)dθ

)
da, (8.9)

Equation (8.9) defines n(0, t) in terms of known functions and n(0, τ) (0 ≤ τ < t). Al-

though this is a linear equation for n(0, t), it is usually difficult to solve.
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Worked Example

Suppose µ(a) = µ, constant and b(a) = bH(aR − a) where H(.) is the Heaviside step

function (H(x) = 1 if x > 0 and H(x) = 0 otherwise). Then n(a, t) satisfies

∂n

∂t
+
∂n

∂a
= −µn,

with n(0, a) = 1 and n(0, t) =
∫∞

0 b(a)n(a, t)da, where

b(a) =

{
b, for 0 < a < aR,

0, otherwise.

Region 1 (0 < t < a). With µ(a) = µ and f(a) = 1, equation (8.7) supplies

n(a, t) = e−µt. (8.10)

Region 2 (0 < a < t). In this region, equations (8.8) and (8.9) supply

n(a, t) = n(0, t− a)e−µa where n(0, t) = b

∫ aR

0
n(a, t)da. (8.11)

When solving equation (8.11), we consider separately cases for which 0 < t < aR and

aR < t <∞.

Case 1. If 0 < t < aR, then

n(0, t) = b

∫ aR

0
n(a, t)da = b

∫ t

0
n(a, t)da+ b

∫ aR

t
n(a, t)da

⇒ n(0, t) = b

∫ t

0
n(0, t− a)e−µada+ b

∫ aR

t
e−µtda, (8.12)

where we have exploited the fact that n(a, t) = e−µt for 0 < t < a. We rewrite equation

(8.12) in terms of N(t) = n(0, t):

N(t) = b

∫ t

0
N(t− a)e−µada+ b(aR − t)e−µt

= b

∫ t

0
N(τ)e−µ(t−τ)dτ + b(aR − t)e−µt.

Differentiating this expression for N(t) with respect to t we obtain the following ODE for

N(t):
dN

dt
= (b− µ)N − be−µt

⇒ N(t) = N̂e(b−µ)t + e−µt

where N̂ is a constant of integration. Substituting with N(t) = n(0, t) in equation (8.11)

(and recalling that n(a, t) = e−µt for 0 < t < a), we deduce that for 0 < a < t < aR
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n(a, t) =

{
N(t− a)e−µa = e−µt

(
N̂eb(t−a) + 1

)
for 0 < a < t

e−µt for 0 < t < a.
(8.13)

Case 2. For aR < t, and with N(t) = n(0, t), equations (8.11) supply

N(t) = b

∫ aR

0
N(t− a)e−µada = b

∫ t

t−aR
N(τ)e−µ(t−τ)dτ,

where, as before, N(t) = n(0, t). If we differentiate this expression for N(t) with respect

to t we obtain a delay differential equation for N(t):

dN

dt
= (b− µ)N(t)− bN(t− aR)e−µaR .

We seek solutions of the form N(t) = Ñeωt where

ω = (b− µ)− be−(ω+µ)aR . (8.14)

With N(t) = Ñeωt, equation (8.13) supplies

n(a, t) = N(t− a)e−µa = Ñeω(t−a)e−µa.

If <e(ω) > 0 then our age-dependent population increases over time; if <e(ω) < 0 then it

decays. For a stable, age-structured population, we require ω = 0. From equation (8.14)

we deduce that the population will be stable if the birth rate b, the death rate µ and the

parameter aR satisfy

b =
µ

1− e−µaR
. (8.15)

In this case (when ω = 0),

n(a, t) =

{
e−µa, for 0 < a < t

e−µt, for aR < t < a.

Remarks: Equation (8.15) states how the birth and death rates should be related in

order to achieve a stable, age-structured population (i.e. one which neither explodes nor

dies out). We can use this equation to draw the following conclusions:

• b > µ: since only individuals of age 0 < a < aR reproduce, the birth rate b must

exceed the death rate to achieve a stable population;

• If aR → ∞, then b → µ: if all individuals reproduce, then a stable population will

be achieved if the birth and death rates balance;

• If aR → 0, then b → 1/aR � 1: as the reproductive lifespan of the population

decreases, their birth rate must increase in order to maintain a stable population.
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Separable Solutions for Age-Structured Models

Guided by the solution for the worked example, we now seek separable solutions to von

Foerster’s equation of the form:

n(a, t) = eγtF (a),

i.e. we assume that the age distribution is altered by a time-dependent factor which decays

or grows depending on whether <e(γ) < 0 or <e(γ) > 0. Substituting this separable form

into equation (8.4) supplies the following ODE for F (a):

dF

da
= −(µ(a) + γ)F ⇒ F (a) = F (0) exp

{
−γa−

∫ a

0
µ(θ)dθ

}
.

Imposing boundary conditions (8.6) we deduce

n(0, t) = eγtF (0) =

∫ ∞
0

b(a)eγtF (a)da

= eγtF (0)

∫ ∞
0

b(a) exp

{
−γa−

∫ a

0
µ(θ)dθ

}
da.

Cancelling by a nonzero factor eγtF (0), we deduce

1 =

∫ ∞
0

b(a) exp

{
−γa−

∫ a

0
µ(θ)dθ

}
da ≡ Φ(γ). (8.16)

Since Φ(γ) is a monotonic decreasing function of γ, we deduce that equation (8.16) admits

a unique solution for γ.

In general, a separable solution will not satisfy the initial conditions n(0, a) = f(a).

However, in the limit as t→∞, equation (8.9) supplies

n(0, t) ∼
∫ t

0
b(a)n(0, t− a) exp

{
−
∫ a

0
µ(θ)dθ

}
da.

If we seek solutions to this equation of the form n(a, t) ∼ eγtF (a), then equation (8.16) is

recovered.

Exercise 8.2: By seeking separable solutions to the worked example, verify that

equation (8.16) is a necessary condition for obtaining a stable, age-structured popula-

tion.

Exercise 8.3: Suppose that µ(a) = µ, constant, n(0, a) = 1 and b(a) is given by

b(a) =

{
b, for aL < a < aR,

0, otherwise.

By seeking separable solutions to von Foerster’s equation, show that

b = µ/(e−µaL − e−µaR)

is a necessary condition for obtaining a stable, age-structured population. Explain what

happens in the limit at (aR − aL)→ 0.
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Figure 8.5: Schematic showing the different phases of the cycle cycle and how DNA content

varies with cell cycle phase.

8.3.1 Structured Models for Proliferating Cells

Cells reproduce by duplicating their contents and then dividing in two (see Figure 8.6).

The duration of the cell cycle varies widely: from 8 minutes in fly embryos to more than a

year for mammalian liver cells. In this subsection we will adapt the age-structured models

developed above to study cell cycle dynamics.

Worked Example

A tissue contains two types of cells:

• p(t, s) = number of cycling cells at position 0 ≤ s < T of the cell cycle at time t;

• q(t, s) = number of quiescent (or non-cycling) cells arrested at position 0 ≤ s < t at

time t.

The evolution of the cycling population is governed by a nonlinear PDE similar to equation

(8.4); as quiescent cells do not progress around the cell cycle, their evolution is governed

by a time-dependent ODE. In particular

∂p

∂t
+
∂p

∂s
= − µNp︸︷︷︸

cell death

− λNp︸︷︷︸
exit cell cycle

+
γq

N0 +N︸ ︷︷ ︸
re-enter cell cycle

, (8.17)

∂q

∂t
= −µNq + λNp− γq

N0 +N
(8.18)
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where N(t) =
∫ T

0 (p(t, s)+q(t, s))ds = total number of cells at time t and µ, λ, γ and N0 are

positive constants. In addition, we impose the following boundary and initial conditions:

p(0, s) = p0(s), q(0, s) = q0(s), p(t, 0) = 2p(t, T ).

The final condition states that at the end of the cell cycle (when s = T ) a cell

produces 2 cells of age s = 0.

We seek separable solutions of the form p(t, s) = eθtP (s) and q(t, s) = eθtQ(s) with θ = 0.

Then N(t) =
∫ T

0 (p(t, s) + q(t, s))ds = N , constant, and

dP

ds
= −(µ+ λ)NP +

γQ

N0 +N
and 0 = λNP −

(
µN +

γ

N0 +N

)
Q

⇒ dP

ds
= −µN(P +Q) and Q =

(
λN(N0 +N)

γ + µN(N0 +N)

)
P.

Eliminating Q we deduce

1

P

dP

ds
= −µN

(
1 +

λN(N0 +N)

γ + µN(N0 +N)

)
≡ −ω, say.

⇒ P (s) = P∞e
−ωs and Q(s) = Q∞e

−ωs =

(
λN(N0 +N)

γ + µN(N0 +N)

)
P∞e

−ωs.

Now P (s = 0) = 2P (s = T ) ⇒ 1 = 2e−ωT

⇒ ln 2

T
= ω = µN

(
1 +

λN(N0 +N)

γ + µN(N0 +N)

)
.

This equation defines the total population size N in terms of the cell cycle length T and

other parameters.

We determine the proportion of cycling cells by noting that

N =

∫ T

0
[P (s) +Q(s)]ds =

(
1− e−ωT

ω

)
(P∞ +Q∞),

⇒ 2ωN =
ω

µN
P∞ or P∞ = 2µN2,

⇒ P (s) = 2µN2e−ωs and Q(s) = 2µN2

(
λN(N0 +N)

γ + µN(N0 +N)

)
e−ωs.

Exercise 8.4:

• Suppose γ → 0: how are N , P and Q defined? Interpret your results.

• Suppose λ→ 0: how are N , P and Q defined? Interpret your results.
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Figure 8.6: Schematic showing the age distribution of people with AIDS in Botswana.

8.3.2 Age-dependent epidemic models (not examinable)

One of the main reasons for developing age-structured models is to study the spread of

diseases for which age is an important factor for susceptibility and infectiousness. For

example, vulnerability to AIDS/HIV decreases dramatically with age (see Figure 8.5). In

this section, we will extend our previous age-structured model of population growth to

describe the spread of a disease. In order to do this, we divide the population into two,

age-structured sub-populations:

Susceptibles, S(t, a) and Infectives, I(t, a).

Applying the arguments used to derive equation (8.4), we assume that S(t, a) and I(t, a)

satisfy the following PDEs:

∂S

∂t
+
∂S

∂a
= −

(∫ ∞
0

r(α)I(t, α)dα

)
S(t, a)︸ ︷︷ ︸

infection

− µS︸︷︷︸
death

, (8.19)

∂I

∂t
+
∂I

∂a
=

(∫ ∞
0

r(α)I(t, α)dα

)
S(t, a)︸ ︷︷ ︸

infection

− µI︸︷︷︸
death

, (8.20)

where, for simplicity, we assume that susceptibles and infectives die at the same, constant

rate µ.

We close equations (8.19) - (8.20) by prescribing the following initial and boundary con-

ditions:
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S(0, a) = S0(a), I(0, a) = I0(a), S(t, 0) =

∫ ∞
0

b(a)S(t, a)da, I(t, 0) = 0,

i.e. all newborns are susceptible.

In general solutions for S(t, a) and I(t, a) require numerical approaches. Here, we seek

separable solutions of the form

S(t, a) = eγtS(a), I(t, a) = eγtI(a),

with γ = 0, i.e. time-independent solutions. Then equations (8.19) and (8.20) supply:

dS

da
= −

(∫ ∞
0

r(α)I(α)dα

)
S(a)− µS,

dI

da
=

(∫ ∞
0

r(α)I(α)dα

)
S(a)− µI,

⇒ d

da
(S + I) = −µ(S + I), ⇒ S + I = Λe−µa,

where Λ is a constant of integration. If r(a) = r, constant, then

dI

da
= r

∫ ∞
0

I(α)dα︸ ︷︷ ︸
≡ITOT

S(a)− µI = rITOTΛe−µa − (µ+ rITOT )I,

⇒ I(a) = Λe−µa +Ae−(µ+rITOT )a.

where

ITOT =

∫ ∞
0

I(a)da =
A

µ+ rITOT
+

Λ

µ
,

⇒ I(a) = Λe−µa −
(

Λ

µ
− ITOT

)
(µ+ rITOT ) e−(µ+rITOT )a.

Now

S(a) = Λe−µa − I(a) =

(
Λ

µ
− ITOT

)
(µ+ rITOT )e−(µ+rITOT )a

where S(0) =
∫∞

0 b(a)S(a)da. Substituting for S(0) and S(a) we deduce that ITOT satisfies

1 =

∫ ∞
0

b(a)e−(µ+rITOT )da.

If b(a) = b−θa (i.e. an individual’s birth rate decreases with age), then

ITOT = (b− µ− θ)/r.

Exercise 8.5: Derive an expression for ITOT when b(a) = bae−θa.



Appendix A

The phase plane

Throughout this appendix we will be concerned with systems of two coupled, first-order,

autonomous, non-linear ordinary differential equations.

Disclaimer. This material should have been covered elsewhere (for example in your

course on differential equations) and hence below is intended to review, rather than intro-

duce and lecture this topic.

We can represent solutions to the equations

dx

dt
= X(x, y), (A.1)

dy

dt
= Y (x, y), (A.2)

as trajectories (or “integral paths”) in the phase plane, that is the (x, y) plane. Suppose,

for the initial condition x(t = tinitial) = x0, y(t = tinitial) = y0 we plot, in the (x, y) plane,

the solution of (A.1):

We can do exactly the same for all the values of {tinitial, xinitial, yinitial}, to build-up a

graphical representation of the solutions to the equations (A.1) and (A.2) for many initial

conditions. This plot is referred to as the “phase plane portrait”.

88



Chapter A. The phase plane 89

A.1 Properties of the phase plane portrait

The gradient of the integral path through the point (x0, y0) is given by

dy

dx
=

dy

dt

/
dx

dt
=

(
Y (x, y)

X(x, y)

)∣∣∣∣
(x0,y0)

=
Y (x0, y0)

X(x0, y0)
. (A.3)

Key point 1. Note that if Y (x0, y0) = 0 and X(x0, y0) 6= 0 then(
dy

dx

)∣∣∣∣
(x0,y0)

= 0, (A.4)

which corresponds to a horizontal line segments in the phase plane.

Key point 2. If Y (x0, y0) 6= 0 and X(x0, y0) = 0 then∣∣∣∣dydx

∣∣∣∣→∞ as (x, y)→ (x0, y0), (A.5)

which corresponds to a vertical line segment in the phase plane.

Key point 3. Assuming that either X(x0, y0) 6= 0 or Y (x0, y0) 6= 0, then two path

integral curves do not cross at the point (x0, y0). This is because under these circumstances

dy/dx takes a unique value, i.e. the following is not possible:

A.2 Equilibrium points

Definition. A point in the phase plane where X(x0, y0) = Y (x0, y0) = 0 is defined

to be an equilibrium point, or equivalently, a stationary point.

The reason for the above definition is because if (x, y) = (x0, y0) then both dx/dt and

dy/dt are zero, and hence (x, y) do not change as t increases; hence x(t), y(t) remain at

(x0, y0) for all time.
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Key point 1. Integral curves cannot cross at points which are not equilibrium points.

Key point 2. If an integral path ends it must end on a stationary point.

Key point 3. As we shall see below, equilibrium points are only approached as t→∞
or t→ −∞.

However, what about the gradient of integral paths at (x0, y0)? We informally have

dy

dx
=

0

0
, (A.6)

which is not uniquely defined—the value ultimately depends on the details of how quickly

X(x, y) and Y (x, y) approach zero as (x, y)→ (x0, y0), and this generally depends on the

direction upon which (x, y) approaches (x0, y0).

A.2.1 Equilibrium points: further properties

Suppose the equations (A.1) and (A.2) have an equilibrium point at (x0, y0). Thus

X(x0, y0) = Y (x0, y0) = 0. To determine the behaviour of integral paths close to the

equilibrium point we write

x = x0 + x̄, y = y0 + ȳ, (A.7)

where it is assumed that x̄, ȳ are sufficiently small to allow the approximations that we

will make below.

By Taylor expansion, we have

X(x, y) = X(x0 + x̄, y0 + ȳ) = X(x0, y0) + x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t.

= x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t., (A.8)

using the fact X(x0, y0) = 0. Similarly, we have

Y (x, y) = Y (x0 + x̄, y0 + ȳ) = Y (x0, y0) + x̄
∂Y

∂x
(x0, y0) + ȳ

∂Y

∂y
(x0, y0) + h.o.t.,

= x̄
∂X

∂x
(x0, y0) + ȳ

∂X

∂y
(x0, y0) + h.o.t. (A.9)

Note that x0 and y0 are constant, and hence have zero time derivative. Hence, by use

of Taylor expansions and neglecting higher orders (i.e. taking x̄, ȳ sufficiently small), we

can neglect terms of the order O
(
x̄ȳ, x̄2, ȳ2

)
and hence we can write equations (A.1) and

(A.2) in the form

du

dt
=

(
∂X
∂x (x0, y0) ∂X

∂y (x0, y0)
∂Y
∂x (x0, y0) ∂Y

∂y (x0, y0)

)
u
def
= Ju where u

def
=

(
x̄

ȳ

)
. (A.10)
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Definition. The matrix

J =

(
∂X
∂x (x0, y0) ∂X

∂y (x0, y0)
∂Y
∂x (x0, y0) ∂Y

∂y (x0, y0)

)
, (A.11)

is defined to be the Jacobian matrix at the equilibrium point (x0, y0).

A.3 Summary

The key points thus far are as follows.

1. We have taken the full non-linear equation system, (A.1) and (A.2), and expanded

about one of its (possibly many) equilibrium points taken to be located at (x0, y0),

using Taylor expansions of X(x, y), Y (x, y).

2. We assume that we are sufficiently close to (x0, y0) to enable us to only consider

linear terms of the order of (x− x0), (y − y0).

3. In this way, we obtain a set of two coupled, linear, autonomous ordinary differential

equations, i.e. equation (A.10) above, which in principle we can solve!

4. This procedure is sometimes referred to as “a linearisation of equations (A.1) and

(A.2) about the point (x0, y0)”.

5. In virtually all cases the behaviour of the linearised system is the same as the be-

haviour of the full non-linear equations sufficiently close to the point (x0, y0). In this

respect one should note that the statement immediately above can be formulated

more rigorously and proved for all the types of stationary points except:

• centre type equilibrium points, i.e. case [3c] below;

• the degenerate cases where λ1 = 0 and/or λ2 = 0, which are briefly mentioned in

item 2 on page (94). These stationary points can be considered non-examinable.

The relevant theorem is “Hartmann’s theorem”, as discussed further in P. Glendin-

ning, Stability, Instability and Chaos [?].

6. However, one should also note that the solution of the linearised equations may

behave substantially differently from the solutions of the full non-linear equations,

(A.1) and (A.2), sufficiently far from (x0, y0).

A.4 Investigating solutions of the linearised equations

We now have a set of two coupled, linear, autonomous ordinary differential equations,

(A.10). It is useful to look for a solution of the form

u = u0e
λt, (A.12)
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for some constant, λ. Substituting this into equation (A.10) we obtain

λu0e
λt = Ju0e

λt i.e. (J − λI)u0 = 0. (A.13)

For a non-zero solution, we must have u0 6= (0, 0) and hence we require

det (J − λI) = 0, (A.14)

where I is the 2× 2 identity matrix.

This quadratic equation has two roots for λ, denoted λ1, λ2, which are possibly equal and

possibly complex; these are, of course, the eigenvalues of J evaluated at the point (x0, y0).

A.4.1 Case I

λ1, λ2 real, with λ1 6= 0, λ2 6= 0, λ1 6= λ2. Without loss of generality we take λ2 > λ1

below.

We have two distinct, real eigenvalues. Let the corresponding eigenvectors be denoted by

e1 and e2. We thus have

Je1 = λ1e1, Je2 = λ2e2. (A.15)

We seek a solution of the form

u = A1e1 +A2e2. (A.16)

Substituting this into equation (A.10), we find, by comparing coefficients of e1 and e2,

that
dA1

dt
= λ1A1,

dA2

dt
= λ2A2, (A.17)

and hence

A1 = A1(t = 0)eλ1t, A2 = A2(t = 0)eλ2t. (A.18)

Thus we have (
x̄

ȳ

)
def
= u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.19)

which gives us a representation of the solution of (A.10) for general initial conditions. This

information is best displayed graphically, and we do so below according to the values of

λ2, λ1.

Note. The equilibrium point i.e. (x̄, ȳ) = (0, 0) can only be reached either as t→∞ or

t→ −∞.

1. λ1 < λ2 < 0. The phase plot of the linearised equations in the (x̄, ȳ) plane looks

like one of the two possibilities in Figure A.1.

Definition. An equilibrium point which results in this case is called a stable

node, with the word “stable” referring to the fact that integral paths enter the

node, i.e. the equilibrium point at (0, 0).
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Figure A.1: Possible phase portraits of a stable node. The equilibrium point in each case is

denoted by the large dot.

2. λ2 > λ1 > 0. We still have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2. (A.20)

However, the direction of the arrows is reversed as the signs of λ1, λ2 are changed.

The phase plane portraits are the same as in Figure A.1 except the direction of the

arrows is reversed.

Definition. An equilibrium point which results in this case is called an unstable

node, with the word “unstable” referring to the fact that integral paths leave the

node, i.e. the equilibrium point at (0, 0).

3. λ2 > 0 > λ1. Once more, we still have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.21)

but again the phase plane portrait is slightly different—see Figure A.2.

Definition. An equilibrium point which results in this case is called a saddle

point.

Definition. The two integral paths originating from the saddle point are some-

times referred to as the unstable manifolds of the saddle point. Conversely, the

integral paths tending to the saddle point are sometimes referred to as the sta-

ble manifolds of the saddle point. This forms part of a nomenclature system

commonly used in more advanced dynamical systems theory; see P. Glendinning,

Stability, Instability and Chaos [?].
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A.4.2 Case II

λ2, λ1 real. One, or more, of the following also holds:

λ2 = λ1, λ1 = 0, λ2 = 0. (A.22)

We typically will not encounter these degenerate cases in this course. We briefly note

that behaviour of the full equations, (A.1), can be highly nontrivial when the lineari-

sation reduces to these degenerate cases. Further details of such cases can be found in

P. Glendinning, Stability, Instability and Chaos [?], which is on the reading list for this

course. When λ1, λ2 = 0, Hartmann’s theorem doesn’t hold.

A.4.3 Case III

λ2, λ1 complex. The complex eigenvalues of a real matrix always occur in complex conju-

gate pairs. Thus we take, without loss of generality,

λ1 = a− ib = λ∗2, λ2 = a+ ib = λ∗1, (A.23)

where a, b real, b 6= 0, and ∗ denotes the complex conjugate.

We also have two associated complex eigenvectors e1, e2, satisfying

Je1 = λ1e1, Je2 = λ2e2, (A.24)

which are complex conjugates of each other, i.e. e1 = e∗2.

Using the same idea as in Case I above, we have

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.25)

though now, in general, A1(t = 0), λ1, e1, A2(t = 0), λ2, e2 are complex, and hence so is

u.

Restricting u to be real gives

u = A1(t = 0)eλ1te1 +A∗1(t = 0)eλ2te2 = A1(t = 0)eλ1te1 + (A1(t = 0)eλ1te1)∗, (A.26)

and this is real, as for any complex number z, we have z + z∗ ∈ R.

After some algebra this reduces to

u = eat [M cos(bt) + K sin(bt)] = eat

[(
M1

M2

)
cos(bt) +

(
K1

K2

)
sin(bt)

]
, (A.27)

where M = (M1,M2)T , K = (K1,K2)T are real, constant vectors, which can be expressed

in terms of A1(t = 0), A2(t = 0) and the components of the eigenvectors e1 and e2.

Equivalently, we have

x̄ = eat [cos(bt)M1 + sin(bt)K1] , ȳ = eat [cos(bt)M2 + sin(bt)K2] , (A.28)

where M1, M2, K1, K2 are real constants.
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1. a > 0. We have x̄, ȳ are, overall, increasing exponentially but are oscillating too.

For, example, with K1 = 0, M1 = 1 we have x̄ = eat cos(bt), which looks like:

Note that the overall growth of x̄ is exponential at rate a. Thus, in general, the

phase plane portrait looks like one of the examples shows in Figure A.3.

Note. The sense of the rotation, clockwise or anti-clockwise, is easily determined

by calculating dȳ/dt when ȳ = 0 or dx̄/dt when x̄ = 0.

Definition. An equilibrium point which results in the above, is called an un-

stable spiral or, equivalently, an unstable focus. The word “unstable” refers to

the fact that integral paths leave the equilibrium point.

2. a < 0. This is the same as 1. except now the phase plane portrait arrows point

towards the equilibrium point as x̄ and ȳ are exponentially decaying as time increases

rather than exponentially growing.

Definition. An equilibrium point which results in this case is called a stable

spiral or, equivalently, a stable focus. The word “stable” refers to the fact that

integral paths enter the equilibrium point.

3. a = 0. Thus we have λ2 = −ib = −λ1, b 6= 0, b real, and

x̄ = [cos(bt)M1 + sin(bt)K1] , ȳ = [cos(bt)M2 + sin(bt)K2] , (A.29)

where M1, M2, K1, K2 are constants. Note that

K2x̄−K1ȳ = L cos(bt), −M2x̄+M1ȳ = L sin(bt), (A.30)

where L = K2M1 − K1M2. Letting x∗ = K2x̄ − K1ȳ and y∗ = −M2x̄ + M1ȳ, we

have

(x∗)2 + (y∗)2 = L2, (A.31)

i.e. a circle in the (x∗, y∗) plane, enclosing the origin, which is equivalent to, in

general, a closed ellipse, in the (x̄, ȳ) plane enclosing the origin.

Note. As with 3. above, the sense of the rotation, clockwise or anti-clockwise, is

easily determined by calculating dȳ/dt when ȳ = 0 or dx̄/dt when x̄ = 0.

Definition. An equilibrium point which results in this case, is called a centre.

A centre is an example of a limit cycle.

Definition. A limit cycle is an integral path which is closed (and which does not

have any equilibrium points).
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A.5 Linear stability

Definition. An equilibrium point is linearly stable if the real parts of both eigenvalues

λ1, λ2 are negative.

From the expressions for u above, for example

u = A1(t = 0)eλ1te1 +A2(t = 0)eλ2te2, (A.32)

when λ1, λ2 real, we see that any perturbation away from the equilibrium decays back to

the equilibrium point.

Definition. An equilibrium point is linearly unstable if the real parts of at least one

of the eigenvalues λ1, λ2 is positive (and the other is non-zero).

Other situations are in general governed by the non-linear behaviour of the full equations

and we do not need to consider them here.

A.5.1 Technical point

The behaviour of the linearised equations and the behaviour of the non-linear equations

sufficiently close to the equilibrium point are guaranteed to be the same for any of the

equilibrium points [I 1-3], [III 1,2] or [II] with λ1 = λ2 6= 0. All these equilibrium points are

such that Re(λ1) Re(λ2) 6= 0. This is the essence of Hartmann’s theorem. This guarantee

does not hold for centres, or the equilibrium points described in [II] with λ1λ2 = 0.

The underlying reasons for this are as follows.

• First, note from the above that integral paths which meet the equilibrium point

can either grow/decay at exponential rate Re(λ1), or exponential rate Re(λ2), or

consist of the sum of two such terms. Second, note that in the above we took a

Taylor expansion. Including higher order terms in this Taylor expansion can lead to

a small correction for the rate of exponential decay towards or growth away from

the stationary point exhibited by the integral paths. These corrections tend to zero

as one approaches the equilibrium point.

• Consider the centre equilibrium point, which has Re(λ1) = Re(λ2) = 0, and an

exponential growth/decay of zero. If the corrections arising from the Taylor series are

always positive, the exponential growth/decay rate of all integral paths sufficiently

near the stationary point is always (slightly) positive. Hence these integral paths

grow exponentially away from the stationary point. However, b is non-zero, so x̄ and

ȳ are still oscillating. Hence one has the non-linear equations behave like a stable

focus.

• If Re(λ1), Re(λ2) 6= 0, then for all integral paths reaching the stationary point, the

above mentioned corrections, sufficiently close to the equilibrium point, are negligi-

ble, e.g. they cannot change exponential growth into exponential decay or vice-versa.
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This allows one to show that stationary points with Re(λ1) Re(λ2) 6= 0 are guar-

anteed to have the same behaviour for the linearised and the non-linear equations

sufficiently close to the equilibrium point.

A.6 Summary

We will typically only encounter stationary points [I 1-3], [III 1-3]. Of these stationary

points, all but centres exhibit the same behaviour for the linearised and the non-linear

equations sufficiently close to the equilibrium point as plotted above and in D. W. Jordan

and P. Smith, Mathematical Techniques [?].
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Figure A.2: The phase portrait of a saddle point. The equilibrium point is denoted by the

large dot.
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Figure A.3: Possible phase portraits of a focus. The equilibrium point in each case is denoted

by the large dot.
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