
Further Mathematical Biology: Problem Sheet 4
Michaelmas Term 2018

Growing domains.

Question 1.

The following equations describe the growth of a tumour that is being radiated by an X-ray
source.

∂C

∂t
= D

∂2C

∂x2
− kC for |x| < R(t),

∂C

∂x
= 0 at x = 0,

C(R(t), t) = C0,

dR

dt
=

∫ R(t)

0
(αC − β)dx,

R(0) = R0,

where k is the rate of uptake of nutrient, the parameter α relates the tumour’s growth rate to
the nutrient concentration, and the parameter β relates the strength of the X-ray source to the
rate of tumour cell death.

(a) Using the substitutions

x = R0ξ, R(t) = R0r(τ), C(x, t) = C0c(ξ, τ), t =
τ

αC0
,

and assuming that αC0R
2
0/D � 1, show that the dimensionless system is

0 =
∂2c

∂ξ2
− µc for |ξ| < r(τ),

∂c

∂ξ
= 0 at ξ = 0,

c(r(τ), τ) = 1,

dr

dτ
=

∫ r(τ)

0
(c− γ)dξ,

r(0) = 1.

State expressions for the dimensionless parameters µ and γ.

(b) Show that the concentration of nutrient inside the tumour is given by

c(ξ, τ) =
cosh(

√
µ ξ)

cosh(
√
µ r(τ))

, |ξ| < r(τ)

(c) Hence show that the differential equation governing the size of the tumour is

dr

dτ
=

1
√
µ

tanh(
√
µr(τ))− γr(τ) (1)

(d) Find an expression for the minimum dose, β∗, in terms of the other dimensional parameters,
that will completely destroy the tumour. Discuss what will happen to the tumour in the cases
β = 0 and 0 < β < β∗ (Hint: sketch the two terms on the right-hand side of equation (1) as a
function of r).



Question 2.

Justify the following model for the growth of a spherically-symmetric tumour of volume V :

∂C

∂t
=
D

r2
∂

∂r

(
r2
∂C

∂r

)
− λ, 0 ≤ r < R(t),

∂C

∂r
= 0 at r = 0,

C(R(t), t) = C∗,

dV

dt
= 4π

∫ R(t)

0
P (C)r2dr,

R(0) = R0.

Identify each term in the equations.

(a) Nondimensionalise the system, scaling lengths with R0, concentrations with C∗, P with a
typical tumour proliferation rate P0, and time with 1/P0. Assuming that R2

0P0/D � 1, show
that the model reduces (approximately) to

1

ρ2
∂

∂ρ

(
ρ2
∂c

∂ρ

)
= µ,

∂c

∂ρ
(0, τ) = 0,

c(s(τ), τ) = 1,

s2
ds

dτ
=

∫ s(τ)

0
p(c)ρ2dρ,

s(0) = 1,


(2)

where s(τ) is the dimensionless tumour radius, and µ is a dimensionless parameter that you
should define.

(b) By solving equations (2), show that when p(c) = c, the tumour radius s(τ) satisfies the
first-order differential equation

ds

dτ
=
s

3

(
1− µs2

15

)
, s(0) = 1.

(c) What are the steady states for the tumour radius?

(d) Show that the tumour-free steady state is unstable and comment on whether the nontrivial
steady state is physically realistic.



Question 3 (optional question).

Consider the following dimensionless model for the growth of a multicellular spheroid:

∂2c

∂ξ2
= µ − r(τ) ≤ ξ ≤ r(τ), (3)

c(ξ, τ) ≡ 1 ξ ≥ r(τ), (4)

∂c

∂ξ
(0, τ) = 0, (5)

c(r(τ), τ) = 1, (6)

dr(τ)

dτ
=

∫ r(τ)

0
p(c)dξ, (7)

r(0) = 1, (8)

where the cells occupy |ξ| ≤ r(τ), c(ξ, τ) is the nutrient concentration, µ is the rate at which
it is taken up by the cells, and the cell proliferation rate, p(c), is a function of the nutrient
concentration.

(a) Suppose that the proliferation function p is given by p(c) = c2. By solving equations (3)–(6),
show that the position r(τ) of the outer radius of the spheroid is governed by the ordinary
differential equation

dr

dτ
= r

(
1− 2

3
µr2 +

2

15
µ2r4

)
. (9)

(b) Find the steady states, and show that the only physically-relevant one is r(τ) ≡ 0.

(c) By conducting a linear stability analysis of this trivial steady state deduce that it is unstable.
What are the implications of these results for the growth of the spheroid in equation (9)?

(d) Assuming that the given form for p is realistic for all positive nutrient concentrations c, what
would happen in the model to make the solution break down?

Discrete-to-Continuum and Age-Structured Models.

Question 1 (Fisher’s Equation).

A population of cells is distributed along the real line which is decomposed into a series of boxes
of width ∆x. Denote by Ni(t) the density of cells in the i-th box at time t. During the time
period (t, t + ∆t), the cells in box i move to the right with probability pR, to the left with
probability pL and do not move with probability pS = 1− pL − pR where 0 ≤ pR, pL, pS ≤ 1. In
addition to moving, the cells also reproduce at a constant rate λ and die due to competition for
space at rate µ.

(a) Use the principle of mass balance to deduce discrete conservation equations (DCEs) for Ni(t).

(b) Assume that the box size ∆x is sufficiently small to identify a continuous density n(i∆x, t) =
n(x, t) with the discrete density Ni(t). Use the DCEs from (a) to show that in the limit as
∆x,∆t→ 0, n(x, t) solves

∂n

∂t
= D

∂2n

∂x2
− c∂n

∂x
+ r̂n (1− µ̂n) , (10)

stating clearly how the constants D, c, r̂ and µ̂ are defined.



(c) Seek travelling wave solutions to equation (10). Use phase plane techniques to determine
the minimum wavespeed for a physically realistic travelling wave solution that connects the
equilibrium points at n = 0 and n = 1/µ̂.

Question 2 (Chemotaxis).

Cells produce a signalling molecule as they move along the real line which we view as a series of
compartments of width δx. We denote by ni(t) the cell density and by and ai(t) the concentration
of the chemical in compartment i at time t. During the time step δt, a cell in box i moves to
the right or left with probabilities piR and piL where

piR = p+ θ(ai+1 − ai) and piL = p+ θ(ai−1 − ai),

where p, θ are positive constants and 0 ≤ piR, p
i
L ≤ 1 ∀i. Each cell produces the chemical at a

constant rate λ̂ > 0. The chemical also moves via an unbiased random walk and decays naturally
at rate µ̂ > 0.

(a) Use the principle of mass balance to derive discrete conservation equations for ni(t) and ai(t).

(b) Assume that the box size δx is sufficiently small to identify continuous densities N(iδx, t) =
N(x, t) and A(iδx, t) = A(x, t) with the discrete densities ni(t) and ai(t). Use the DCEs from (a)
to show that in the limit as δx, δt→ 0, N(x, t) and A(x, t) solve the following partial differential
equations

∂N

∂t
= DN

∂2N

∂x2
− χ ∂

∂x

(
N
∂A

∂x

)
, (11)

∂A

∂t
= DA

∂2A

∂x2
+ λN − µA, (12)

stating clearly how the constants DN , DA, χ, λ and µ are defined.

(c) [revision of pattern formation] Identify the spatially uniform steady states of equations (11)-
(12) and examine their linear stability. Derive the dispersion relation and, hence, obtain the
conditions on the parameters under which the system will give rise to spatially heterogeneous
solutions. Comment briefly on how the initial cell seeding density influences the formation of
spatial patterns.

Question 3.

The evolution of an age-structured population N(t, a) satisfies

∂N

∂t
+
∂N

∂a
= −µ(a)N,

with N(0, a) = F (a) and N(t, 0) = B(t) =
∫∞
0 β(a)N(t, a)da, for some positive functions

µ(a), F (a) and β(a).

(a) Use the method of characteristics to show that

N(t, a) =

{
F (a− t) exp

(
−
∫ a
a−t µ(τ)dτ

)
for 0 < t < a,

B(t− a) exp
(
−
∫ a
0 µ(τ)dτ

)
for a < t,

where B(t) =

∫ t

0
β(τ)B(t− τ)e−

∫ τ
0 µ(θ)dθdτ +

∫ ∞
t

β(τ)F (τ − t)e−
∫ τ
τ−t µ(θ)dθdτ.



(b) Suppose that β(a) = β > 0, µ(a) = µ > 0 and that N(t, a) ∼ eγtS(a) as t→∞. Show that
the growth rate γ is given by γ = β − µ.

(c) Sketch the corresponding profiles S(a) for the cases γ > 0, γ = 0 and γ < 0. Comment
briefly on your results.

Question 4.

Consider a population of cells that are executing the cell cycle. We denote by n(φ, t) the
number of cells at position 0 ≤ φ ≤ 1 in their cycle at time t. We introduce the following partial
differential equation to model the evolution of the cells:

∂n

∂t
+ (1 + βφ)

∂n

∂φ
= −µn,

with n(φ, 0) = f(φ) and n(0, t) = 2n(1, t) for some positive function f(φ) and positive constants
β and µ.

By seeking a separable solution of the form n(φ, t) = eγtN(φ), derive an expression for the
unique value of µ = µ∗(β) for which the population evolves, at long times, to a non-trivial,
time-independent solution.


