
Further Mathematical Biology: Supplementary Questions
Michaelmas Term 2018

Morphogen Gradients.

Question 1.

A one-dimensional field 0 ≤ x ≤ X0 contains corn of density C(x, t). The corn undergoes logistic growth
in the absence of external factors. A corn-loving plague of locusts L(x, t) descends on the field, entering
from x = 0. The locusts migrate through the field by random motion and chemotaxis, consuming corn
in the process. We describe this situation as follows:

∂C

∂t
= λ0C(C0 − C)− λ1LC,

∂L

∂t
= µ

∂2L

∂x2
− χ ∂
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(
L
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,

with
L(0, t) = L0, L(X0, t) = 0 for t ≥ 0

C(x, 0) = C0 for 0 ≤ x ≤ X0,

L(x, 0) = 0 for 0 < x ≤ X0.

(a) By writing
C = C0c, L = L0l, x = X0x, t = Tτ,

and choosing T appropriately, show that the model equations can be rewritten in terms of c, l, s and τ
in the following form:

∂c

∂τ
= λ∗0c(1− c)− λ∗1lc,
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)
.

How are λ∗0, λ∗1 and χ∗ defined?

(b) Determine the steady state (time-independent) solutions of the transformed equations for the cases
λ∗0 > λ∗1 and λ∗0 < λ∗1.

(c) Comment briefly on the results from part (b).

Question 2.

Bacteria have a tendency to move towards sources of food. The following model has been proposed to
describe this process as it occurs in a one-dimensional region (0 ≤ x ≤ 1):

∂a

∂t
=
∂2a

∂x2
− k, ∂b

∂t
= −χ ∂

∂x

(
ab
∂a

∂x

)
+ αb,

a(0, t) = 0, a(1, t) = 1, b(x, 0) =

{
(1− x/x∗) 0 ≤ x ≤ x∗
0 x∗ < x < 1

)
,

where a(x, t) and b(x, t) are the nutrient and bacteria densitites and χ, α, k and x∗ are positive constants,
with 0 < x∗ < 1.

(a) Determine the steady state nutrient concentration a(x), and substitute this into the equation for
b(x, t).

(b) Use the method of characteristics to construct an analytical solution for b(x, t) in the special case
k = 0.

(c) Use your results to sketch the solution for

0 < t <
1

χ
ln

(
1

x∗

)
and

1

χ
ln

(
1
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)
< t.

(d) Explain briefly how the long time behaviour of the bacteria differs for the cases α > χ and α < χ.



Domain growth.

Question 1.

The following equations describe the growth of a two-dimensional, circular colony of cells:

0 =
1

r

∂

∂r

(
r
∂c

∂r

)
− λH(c− cN ), (1)

R
dR

dt
=

∫ R

0

P (c) rdr where P (c) =

{
pc > 0 if c > cN ,
−q < 0 if c ≤ cN ,

(2)

c = 1 when r = R(t),
∂c

∂r
= 0 when r = 0, (3)

c,
∂c

∂r
continuous across r = RN (t), (4)

c = cN when r = RN (t), (5)

R = 1 when t = 0. (6)

In equation (1), H(.) denotes the Heaviside step function (H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0), λ,
p, q and cN are positive constants, with 0 < cN < 1.

(a) You are given that c(r, t) represents the local oxygen concentration, r = R(t) the position of the outer
boundary of the colony and RN (t) the position of the interface separating proliferating and dead cells.
Provide a brief description of equations (1)-(6).

(b) Given that there is initially no necrotic region, use equation (1) and the corresponding boundary
conditions to derive an expression relating c(r, t) to R(t) prior to the appearance of dead cells.

(c) Determine the size of the colony R = R∗ at which dead cells first appear. By assuming that R∗ and
λ satisfy R∗ > 1 and 0 < λ < 4(1− cN ), show that the time tN at which necrosis is initiated is given by

tN =
1

p
ln

{
(1− cN )(8− λ)

(1 + cN )λ

}
.

(d) A cytotoxic drug is applied to the cells at t = 0. The drug modifies equation (2) in the following way

R
dR

dt
=

∫ R

0

(P (c)− d)rdr, (7)

where the positive constant d denotes the dose of drug applied to the cells. By assuming that RN = 0
and studying the differential equation for R(t) that arises from equation (7), show that the cell colony
will be eliminated if d > p. What is the limiting behaviour of the colony when (1 + cN )/2 < d/p < 1?

Question 2.

The following equations describe the effect of an externally-supplied poison β on the growth of a radially-
symmetric cluster of mold.

0 =
1

r2
∂

∂r

(
r2
∂β

∂r

)
− β∞H(β),

R2 dR

dt
=

∫ R

0

(s− β)r2dr,

with
∂β

∂r
= h(β∞ − β) on r = R(t),

∂β

∂r
= 0 at r = 0,

and R = R0 at t = 0.

In the equations, β∞, h, s and R0 are positive constants and H(.) denotes the Heaviside step function.



(a) Provide a brief description of the model equations.

(b) Given that initially β(r, t) > 0 for 0 < r < R(t), derive an expression relating β(r, t) to R(t) prior to
the appearance of a central region in which β = 0.

(c) For the case h = 2, explain how the number and structure of the steady state solutions change with
s/β∞. What concentration of poison would you recommend to be confident of eradicating the mold?

Question 3.

Carefully justify the following model for growth of a cylindrical circular tumour:

∂C

∂t
=
D

r

∂

∂r

(
r
∂C

∂r

)
− λ, 0 ≤ r ≤ R(t),

C(r, t) = C∗, r = R(t),

∂C

∂r
(0, t) = 0,

R
dR

dt
=

∫ R(t)

0

P (C)rdr,

R(t = 0) = R0,

where D,λ and C∗ are positive constants.

(a) Describe briefly all terms in the equations [4 marks].

(b) Let the function P (C) be given by

P (C) = P0

(
C

C∗

)α
, α > 0.

Nondimensionalise the model with the scalings r = R0ρ, t = τ/P0, C = C∗c, P (C) = P0p(c), R(t) =
R0s(τ). Assuming R2

0P0/D � 1, obtain an approximate, quasi-steady equation for the dimensionless
variable c, which you should solve to find c in terms of s(τ). Given a condition for the minimum value of
c to be positive. Why is this necessary?

(c) Use the dimensionless version of the governing equations to show that, with P as defined in part (b),
the tumour boundary position is governed by the ODE:

s
ds

dτ
=

2

µ(α+ 1)

{
1−

(
1− µs2

4

)α+1
}
. (8)

(d) Show that s = 0 is the only possible steady state for the tumour boundary. By considering the
behaviour of equation (8) for small s, determine the stability of this steady state.



Age-structured and discrete-to-continuum models.

Question 1.

The evolution of an age-structured population n(t, a) may be modelled by von Foerster’s equation:

∂n

∂t
+
∂n

∂a
= −µn,

with n(0, a) = f(a), n(t, 0) = B(t) =

∫ ∞
0

β(θ)n(t, θ)dθ,

where µ is a positive constant.

(a) Discuss briefly the assumptions underlying the model, providing a physical interpretation of the func-
tions f(a) and β(a).

(b) Use the method of characteristics to show that

n(t, a) =

{
f(a− t)e−µt for 0 < t < a,
B(t− a)e−µa for a < t.

where B(t) is defined implicitly by

B(t) =

∫ t

0

β(θ)B(t− θ)e−µθdθ + e−µt
∫ ∞
t

β(θ)f(θ − t)dθ.

(c) Show that if the long time behaviour of the population has the separable form n(t, a) = eγtF (a) then
the growth rate γ satisfies

1 =

∫ ∞
0

β(θ)e−(γ+µ)θdθ.

(d) Assuming further that

β(a) =

{
β∗ if am − 1 < a < am + 1,
0 otherwise,

determine the unique value of am = am(β∗, µ) for which the population evolves to a time-independent
distribution (γ = 0). What value of am yields a steady state age-distribution in the limit as µ→∞?

Question 2.

(a) The evolution of an age-structured population v(a, t) satisfies

vt + r(a)va = −µ(V, a)v, for 0 < a < L, 0 < t,

with v(0, t) = 2v(L, t) and v(a, 0) = vinit(a),

and V (t) =

∫ L

0

ξv(a)v(a, t)da.

where r(a), ξv(a), µ(V, a) and vinit(a) are known functions. Describe briefly the assumptions underlying
the model equations and provide a physical interpretation of the functions r(a), ξv(a), µ(V, a) and vinit(a).

(b) The evolution of a second population u(a, t) satisfies

ut + (r(a)u)a = −µ(U, a)u, for 0 < a < L, 0 < t,

with u(0, t) = 2u(L, t) and u(a, 0) = uinit(a),

and U(t) =

∫ L

0

ξu(a)u(a, t)da.

where ξu(a) and uinit(a) are known functions. Under what conditions (i.e. for what choices of ξu(a) and
uinit(a)) are the evolution of u(a, t) and v(a, t) equivalent?



(c) You are given that

ξv(a) = 1, r(a) = (1 + αa), µ(V, a) = µ0 + µ1V for 0 ≤ a ≤ L.

By seeking a separable solution of the form v(a, t) = A(a)V (t) for 0 ≤ a ≤ L and t sufficiently large,
identify conditions under which the population eventually dies out. [Note: here ”t sufficiently large”
means that the evolution of v(a, t) is independent of the initial conditions.]

Question 3.

Two populations of left and right moving cells are distributed along the real line which is decomposed
into a series of boxes of width ∆x. We denote by Li(t) the number of cells in the i-th box that are moving
to the left at time t and by Ri(t) the number of cells in the i-th box that are moving to the right. The
following system of discrete equations describe how the system changes from time t to time t+ ∆t:

Li(t+ ∆t) = Li+1(t) + kL∆tRi(t)− kR∆tLi(t),

Ri(t+ ∆t) = Ri−1(t) + kR∆tLi(t)− kL∆tRi(t),

where the parameters kL and kR are non-negative constants.

(a) Provide a brief physical interpretation of the above equations.

(b) Assume that the box size ∆x is sufficiently small to identify continuous cell densities ρL(i∆x, t) =
ρL(x, t) and ρR(i∆x, t) = ρR(x, t) with Li(t) and Ri(t). Use the discrete equations from (a) to show that
in the limit as ∆x,∆t→ 0, ρL(x, t) and ρR(x, t) solve

∂ρL
∂t
− v ∂ρL

∂x
= kLρR − kRρL, (9)

∂ρR
∂t

+ v
∂ρR
∂x

= kRρL − kLρR. (10)

How is the constant v defined? What assumptions are made about ∆t and ∆x when deriving equations
(9) and (10)?

(c) Suppose now that kLR, kRL � 1. Obtain a relationship for ρR in terms of ρL and then use it to elimi-
nate ρR from equation (9) and obtain a partial differential equation for ρL. Solve the resulting PDE for ρL.

(d) Use the solution for ρL from part (c) to describe the behaviour of the two cell populations for the
cases (i) kL > kR and (ii) kL = kR.



FitzHugh-Nagumo Equations.

Question 1.

Consider an experimental scenario where a nerve axon is bathed in sea water, which is a good conductor
and thus of low resistivity. Additionally, a silver wire is placed down the centre of the axon, greatly
decreasing the internal resistivity.

Assuming these resistivities are sufficiently low, one can non-dimensionalise the Fitzhugh Nagumo equa-
tions into the form

1

δ

∂2u

∂x2
=
∂u

∂τ
+ Jion(u, v),

dv

dτ
= −γv + u,

where Jion(u, v) is a non-dimensionalised ionic current term, typically of unit magnitude, and the non-
dimensional constant δ satisfies 0 < δ � 1.

Suppose one ensures no currents can pass through the ends of the axon so that one additionally has the
boundary conditions

∂u

∂x

∣∣∣∣
x=0

= 0 =
∂u

∂x

∣∣∣∣
x=L

.

(a) By considering the expansion u = u0(x, τ) + δu1(x, τ) + . . ., and the assumption that

∂2u

∂x2
,
∂u

∂τ
, Jion ∼ O(1),

show that u = u0(τ) at leading order.

(b) Show further that, for sufficiently large time, u0(τ) is given by the solution of the ordinary differential
equations

du0
dτ

+ Jion(u0, q0) = 0,

dq0
dτ

= −γq0 + u0,

where q0 = q0(τ), at the first non-trivial order in δ even if v(x, τ = 0) is not spatially constant.


