Further Mathematical Biology: Supplementary Questions Michaelmas Term 2018

Morphogen Gradients.

Question 1.

A one-dimensional field $0 \leq x \leq X_{0}$ contains corn of density $C(x, t)$. The corn undergoes logistic growth in the absence of external factors. A corn-loving plague of locusts $L(x, t)$ descends on the field, entering from $x=0$. The locusts migrate through the field by random motion and chemotaxis, consuming corn in the process. We describe this situation as follows:

$$
\frac{\partial C}{\partial t}=\lambda_{0} C\left(C_{0}-C\right)-\lambda_{1} L C, \quad \frac{\partial L}{\partial t}=\mu \frac{\partial^{2} L}{\partial x^{2}}-\chi \frac{\partial}{\partial x}\left(L \frac{\partial C}{\partial x}\right),
$$

with

$$
\begin{gathered}
L(0, t)=L_{0}, \quad L\left(X_{0}, t\right)=0 \quad \text { for } t \geq 0 \\
C(x, 0)=C_{0} \text { for } 0 \leq x \leq X_{0} \\
L(x, 0)=0 \text { for } 0<x \leq X_{0} .
\end{gathered}
$$

(a) By writing

$$
C=C_{0} c, \quad L=L_{0} l, \quad x=X_{0} x, \quad t=T \tau
$$

and choosing T appropriately, show that the model equations can be rewritten in terms of c, l, s and τ in the following form:

$$
\frac{\partial c}{\partial \tau}=\lambda_{0}^{*} c(1-c)-\lambda_{1}^{*} l c, \quad \frac{\partial l}{\partial \tau}=\frac{\partial^{2} l}{\partial x^{2}}-\chi^{*} \frac{\partial}{\partial x}\left(l \frac{\partial c}{\partial x}\right) .
$$

How are $\lambda_{0}^{*}, \lambda_{1}^{*}$ and χ^{*} defined?
(b) Determine the steady state (time-independent) solutions of the transformed equations for the cases $\lambda_{0}^{*}>\lambda_{1}^{*}$ and $\lambda_{0}^{*}<\lambda_{1}^{*}$.
(c) Comment briefly on the results from part (b).

Question 2.

Bacteria have a tendency to move towards sources of food. The following model has been proposed to describe this process as it occurs in a one-dimensional region $(0 \leq x \leq 1)$:

$$
\begin{gathered}
\frac{\partial a}{\partial t}=\frac{\partial^{2} a}{\partial x^{2}}-k, \quad \frac{\partial b}{\partial t}=-\chi \frac{\partial}{\partial x}\left(a b \frac{\partial a}{\partial x}\right)+\alpha b \\
a(0, t)=0, \quad a(1, t)=1, \quad b(x, 0)=\left\{\begin{array}{ll}
\left(1-x / x^{*}\right) & 0 \leq x \leq x^{*} \\
0 & x^{*}<x<1
\end{array}\right)
\end{gathered}
$$

where $a(x, t)$ and $b(x, t)$ are the nutrient and bacteria densitites and χ, α, k and x^{*} are positive constants, with $0<x^{*}<1$.
(a) Determine the steady state nutrient concentration $a(x)$, and substitute this into the equation for $b(x, t)$.
(b) Use the method of characteristics to construct an analytical solution for $b(x, t)$ in the special case $k=0$.
(c) Use your results to sketch the solution for

$$
0<t<\frac{1}{\chi} \ln \left(\frac{1}{x^{*}}\right) \quad \text { and } \quad \frac{1}{\chi} \ln \left(\frac{1}{x^{*}}\right)<t .
$$

(d) Explain briefly how the long time behaviour of the bacteria differs for the cases $\alpha>\chi$ and $\alpha<\chi$.

Domain growth.

Question 1.

The following equations describe the growth of a two-dimensional, circular colony of cells:

$$
\begin{gather*}
0=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial c}{\partial r}\right)-\lambda H\left(c-c_{N}\right) \tag{1}\\
R \frac{d R}{d t}=\int_{0}^{R} P(c) r d r \quad \text { where } \quad P(c)= \begin{cases}p c>0 & \text { if } c>c_{N} \\
-q<0 & \text { if } c \leq c_{N}\end{cases} \tag{2}\\
c=1 \text { when } r=R(t), \quad \frac{\partial c}{\partial r}=0 \text { when } r=0 \tag{3}\\
c, \quad \frac{\partial c}{\partial r} \text { continuous across } r=R_{N}(t) \tag{4}\\
c=c_{N} \text { when } r=R_{N}(t) \tag{5}\\
R=1 \text { when } t=0 \tag{6}
\end{gather*}
$$

In equation (1), H(.) denotes the Heaviside step function $(H(x)=1$ if $x \geq 0$ and $H(x)=0$ if $x<0)$, λ, p, q and c_{N} are positive constants, with $0<c_{N}<1$.
(a) You are given that $c(r, t)$ represents the local oxygen concentration, $r=R(t)$ the position of the outer boundary of the colony and $R_{N}(t)$ the position of the interface separating proliferating and dead cells. Provide a brief description of equations (1)-(6).
(b) Given that there is initially no necrotic region, use equation (1) and the corresponding boundary conditions to derive an expression relating $c(r, t)$ to $R(t)$ prior to the appearance of dead cells.
(c) Determine the size of the colony $R=R^{*}$ at which dead cells first appear. By assuming that R^{*} and λ satisfy $R^{*}>1$ and $0<\lambda<4\left(1-c_{N}\right)$, show that the time t_{N} at which necrosis is initiated is given by

$$
t_{N}=\frac{1}{p} \ln \left\{\frac{\left(1-c_{N}\right)(8-\lambda)}{\left(1+c_{N}\right) \lambda}\right\}
$$

(d) A cytotoxic drug is applied to the cells at $t=0$. The drug modifies equation (2) in the following way

$$
\begin{equation*}
R \frac{d R}{d t}=\int_{0}^{R}(P(c)-d) r d r \tag{7}
\end{equation*}
$$

where the positive constant d denotes the dose of drug applied to the cells. By assuming that $R_{N}=0$ and studying the differential equation for $R(t)$ that arises from equation (7), show that the cell colony will be eliminated if $d>p$. What is the limiting behaviour of the colony when $\left(1+c_{N}\right) / 2<d / p<1$?

Question 2.

The following equations describe the effect of an externally-supplied poison β on the growth of a radiallysymmetric cluster of mold.

$$
\begin{gathered}
0=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \beta}{\partial r}\right)-\beta_{\infty} H(\beta), \\
R^{2} \frac{d R}{d t}=\int_{0}^{R}(s-\beta) r^{2} d r, \\
\text { with } \frac{\partial \beta}{\partial r}=h\left(\beta_{\infty}-\beta\right) \text { on } r=R(t), \\
\frac{\partial \beta}{\partial r}=0 \text { at } r=0, \\
\text { and } R=R_{0} \text { at } t=0 .
\end{gathered}
$$

In the equations, β_{∞}, h, s and R_{0} are positive constants and $H($.$) denotes the Heaviside step function.$
(a) Provide a brief description of the model equations.
(b) Given that initially $\beta(r, t)>0$ for $0<r<R(t)$, derive an expression relating $\beta(r, t)$ to $R(t)$ prior to the appearance of a central region in which $\beta=0$.
(c) For the case $h=2$, explain how the number and structure of the steady state solutions change with s / β_{∞}. What concentration of poison would you recommend to be confident of eradicating the mold?

Question 3.

Carefully justify the following model for growth of a cylindrical circular tumour:

$$
\begin{gathered}
\frac{\partial C}{\partial t}=\frac{D}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C}{\partial r}\right)-\lambda, \quad 0 \leq r \leq R(t) \\
C(r, t)=C_{*}, \quad r=R(t) \\
\frac{\partial C}{\partial r}(0, t)=0 \\
R \frac{d R}{d t}=\int_{0}^{R(t)} P(C) r d r \\
R(t=0)=R_{0}
\end{gathered}
$$

where D, λ and C_{*} are positive constants.
(a) Describe briefly all terms in the equations [4 marks].
(b) Let the function $P(C)$ be given by

$$
P(C)=P_{0}\left(\frac{C}{C_{*}}\right)^{\alpha}, \quad \alpha>0
$$

Nondimensionalise the model with the scalings $r=R_{0} \rho, t=\tau / P_{0}, C=C_{*} c, P(C)=P_{0} p(c), R(t)=$ $R_{0} s(\tau)$. Assuming $R_{0}^{2} P_{0} / D \ll 1$, obtain an approximate, quasi-steady equation for the dimensionless variable c, which you should solve to find c in terms of $s(\tau)$. Given a condition for the minimum value of c to be positive. Why is this necessary?
(c) Use the dimensionless version of the governing equations to show that, with P as defined in part (b), the tumour boundary position is governed by the ODE:

$$
\begin{equation*}
s \frac{d s}{d \tau}=\frac{2}{\mu(\alpha+1)}\left\{1-\left(1-\frac{\mu s^{2}}{4}\right)^{\alpha+1}\right\} \tag{8}
\end{equation*}
$$

(d) Show that $s=0$ is the only possible steady state for the tumour boundary. By considering the behaviour of equation (8) for small s, determine the stability of this steady state.

Age-Structured and discrete-to-continuum models.

Question 1.

The evolution of an age-structured population $n(t, a)$ may be modelled by von Foerster's equation:

$$
\begin{aligned}
\frac{\partial n}{\partial t}+\frac{\partial n}{\partial a} & =-\mu n \\
\text { with } \quad n(0, a)=f(a), \quad n(t, 0) & =B(t)=\int_{0}^{\infty} \beta(\theta) n(t, \theta) d \theta
\end{aligned}
$$

where μ is a positive constant.
(a) Discuss briefly the assumptions underlying the model, providing a physical interpretation of the functions $f(a)$ and $\beta(a)$.
(b) Use the method of characteristics to show that

$$
n(t, a)= \begin{cases}f(a-t) e^{-\mu t} & \text { for } 0<t<a \\ B(t-a) e^{-\mu a} & \text { for } a<t\end{cases}
$$

where $B(t)$ is defined implicitly by

$$
B(t)=\int_{0}^{t} \beta(\theta) B(t-\theta) e^{-\mu \theta} d \theta+e^{-\mu t} \int_{t}^{\infty} \beta(\theta) f(\theta-t) d \theta
$$

(c) Show that if the long time behaviour of the population has the separable form $n(t, a)=e^{\gamma t} F(a)$ then the growth rate γ satisfies

$$
1=\int_{0}^{\infty} \beta(\theta) e^{-(\gamma+\mu) \theta} d \theta
$$

(d) Assuming further that

$$
\beta(a)= \begin{cases}\beta^{*} & \text { if } a_{m}-1<a<a_{m}+1 \\ 0 & \text { otherwise }\end{cases}
$$

determine the unique value of $a_{m}=a_{m}\left(\beta^{*}, \mu\right)$ for which the population evolves to a time-independent distribution $(\gamma=0)$. What value of a_{m} yields a steady state age-distribution in the limit as $\mu \rightarrow \infty$?

Question 2.

(a) The evolution of an age-structured population $v(a, t)$ satisfies

$$
\begin{gathered}
v_{t}+r(a) v_{a}=-\mu(V, a) v, \text { for } 0<a<L, 0<t \\
\text { with } v(0, t)=2 v(L, t) \text { and } v(a, 0)=v_{i n i t}(a) \\
\text { and } V(t)=\int_{0}^{L} \xi_{v}(a) v(a, t) d a
\end{gathered}
$$

where $r(a), \xi_{v}(a), \mu(V, a)$ and $v_{i n i t}(a)$ are known functions. Describe briefly the assumptions underlying the model equations and provide a physical interpretation of the functions $r(a), \xi_{v}(a), \mu(V, a)$ and $v_{\text {init }}(a)$.
(b) The evolution of a second population $u(a, t)$ satisfies

$$
\begin{gathered}
u_{t}+(r(a) u)_{a}=-\mu(U, a) u, \text { for } 0<a<L, 0<t, \\
\text { with } u(0, t)=2 u(L, t) \text { and } u(a, 0)=u_{i n i t}(a), \\
\text { and } U(t)=\int_{0}^{L} \xi_{u}(a) u(a, t) d a .
\end{gathered}
$$

where $\xi_{u}(a)$ and $u_{\text {init }}(a)$ are known functions. Under what conditions (i.e. for what choices of $\xi_{u}(a)$ and $\left.u_{\text {init }}(a)\right)$ are the evolution of $u(a, t)$ and $v(a, t)$ equivalent?
(c) You are given that

$$
\xi_{v}(a)=1, \quad r(a)=(1+\alpha a), \quad \mu(V, a)=\mu_{0}+\mu_{1} V \text { for } 0 \leq a \leq L
$$

By seeking a separable solution of the form $v(a, t)=A(a) V(t)$ for $0 \leq a \leq L$ and t sufficiently large, identify conditions under which the population eventually dies out. [Note: here "t sufficiently large" means that the evolution of $v(a, t)$ is independent of the initial conditions.]

Question 3.

Two populations of left and right moving cells are distributed along the real line which is decomposed into a series of boxes of width Δx. We denote by $L_{i}(t)$ the number of cells in the i-th box that are moving to the left at time t and by $R_{i}(t)$ the number of cells in the i-th box that are moving to the right. The following system of discrete equations describe how the system changes from time t to time $t+\Delta t$:

$$
\begin{aligned}
L_{i}(t+\Delta t) & =L_{i+1}(t)+k_{L} \Delta t R_{i}(t)-k_{R} \Delta t L_{i}(t) \\
R_{i}(t+\Delta t) & =R_{i-1}(t)+k_{R} \Delta t L_{i}(t)-k_{L} \Delta t R_{i}(t)
\end{aligned}
$$

where the parameters k_{L} and k_{R} are non-negative constants.
(a) Provide a brief physical interpretation of the above equations.
(b) Assume that the box size Δx is sufficiently small to identify continuous cell densities $\rho_{L}(i \Delta x, t)=$ $\rho_{L}(x, t)$ and $\rho_{R}(i \Delta x, t)=\rho_{R}(x, t)$ with $L_{i}(t)$ and $R_{i}(t)$. Use the discrete equations from (a) to show that in the limit as $\Delta x, \Delta t \rightarrow 0, \rho_{L}(x, t)$ and $\rho_{R}(x, t)$ solve

$$
\begin{align*}
& \frac{\partial \rho_{L}}{\partial t}-v \frac{\partial \rho_{L}}{\partial x}=k_{L} \rho_{R}-k_{R} \rho_{L} \tag{9}\\
& \frac{\partial \rho_{R}}{\partial t}+v \frac{\partial \rho_{R}}{\partial x}=k_{R} \rho_{L}-k_{L} \rho_{R} . \tag{10}
\end{align*}
$$

How is the constant v defined? What assumptions are made about Δt and Δx when deriving equations (9) and (10)?
(c) Suppose now that $k_{L R}, k_{R L} \gg 1$. Obtain a relationship for ρ_{R} in terms of ρ_{L} and then use it to eliminate ρ_{R} from equation (9) and obtain a partial differential equation for ρ_{L}. Solve the resulting PDE for ρ_{L}.
(d) Use the solution for ρ_{L} from part (c) to describe the behaviour of the two cell populations for the cases (i) $k_{L}>k_{R}$ and (ii) $k_{L}=k_{R}$.

FitzHugh-Nagumo Equations.

Question 1.

Consider an experimental scenario where a nerve axon is bathed in sea water, which is a good conductor and thus of low resistivity. Additionally, a silver wire is placed down the centre of the axon, greatly decreasing the internal resistivity.

Assuming these resistivities are sufficiently low, one can non-dimensionalise the Fitzhugh Nagumo equations into the form

$$
\begin{aligned}
& \frac{1}{\delta} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial \tau}+J_{i o n}(u, v) \\
& \frac{\mathrm{d} v}{\mathrm{~d} \tau}=-\gamma v+u
\end{aligned}
$$

where $J_{i o n}(u, v)$ is a non-dimensionalised ionic current term, typically of unit magnitude, and the nondimensional constant δ satisfies $0<\delta \ll 1$.

Suppose one ensures no currents can pass through the ends of the axon so that one additionally has the boundary conditions

$$
\left.\frac{\partial u}{\partial x}\right|_{x=0}=0=\left.\frac{\partial u}{\partial x}\right|_{x=L}
$$

(a) By considering the expansion $u=u_{0}(x, \tau)+\delta u_{1}(x, \tau)+\ldots$, and the assumption that

$$
\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial u}{\partial \tau}, J_{i o n} \sim \mathcal{O}(1)
$$

show that $u=u_{0}(\tau)$ at leading order.
(b) Show further that, for sufficiently large time, $u_{0}(\tau)$ is given by the solution of the ordinary differential equations

$$
\begin{aligned}
\frac{\mathrm{d} u_{0}}{\mathrm{~d} \tau}+J_{\text {ion }}\left(u_{0}, q_{0}\right) & =0 \\
\frac{\mathrm{~d} q_{0}}{\mathrm{~d} \tau} & =-\gamma q_{0}+u_{0}
\end{aligned}
$$

where $q_{0}=q_{0}(\tau)$, at the first non-trivial order in δ even if $v(x, \tau=0)$ is not spatially constant.

