
B5.3 Viscous Flow: Sheet 4

Q1 Slow flow past a circular cylinder. Consider the two-dimensional steady viscous flow of a uniform stream with
velocity U i past a rigid circular cylinder of radius a whose centre is at the origin of the plane polar coordinate system
(r, θ).

(a) By scaling (r, ψ, ω) with (a, Ua, U/a) in the vorticity–streamfunction formulation in sheet 1, Q5(c)(iii), show
that the dimensionless problem is given by
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with (upon taking ψ to be equal to zero on the cylinder)

ψ =
∂ψ

∂r
= 0 on r = 1; ψ ∼ r sin θ as r →∞,

where the Reynolds number Re = Ua/ν.

(b) When the Reynolds number is small (i.e. Re� 1), show that the slow flow approximation leads to

∇4ψ = 0,

and by separating the variables as ψ = f(r) sin θ show that

f =
A

r
+Br + Cr log r +Dr3.

(c) Write down the boundary conditions which f must satisfy at r = 1 and show that if f satisfies these conditions
then ψ cannot approach the free stream at infinity. Explain, without detailed calculations, how this paradox is
resolved. Given that the resolution of the paradox leads to C = 1/ ln(1/Re), D = 0, use the remaining boundary
conditions to determine A and B.

Q2 Slow flow past a sphere. Incompressible Newtonian fluid flows with constant velocity Uk past a sphere of radius
a whose centre is at the origin of the spherical polar coordinate system (r, θ, φ).

(a) Starting from the steady incompressible Navier-Stokes equations with no body forces, explain how the
dimensionless slow flow approximation

(curl)3u = 0, ∇ · u = 0 (1)

can be determined when the Reynolds number is small.

(b) An axisymmetric solution of (??) can be written as
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where er, eθ and eφ are unit vectors in the r-, θ- and φ-directions. Given that
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show that ψ satisfies

D4ψ = 0 for r > 1; ψ =
∂ψ

∂r
= 0 on r = 1; ψ ∼ 1

2
r2 sin2θ as r →∞.

(c) By separating the variables as ψ = f(r) sin2θ, show that
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2
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4
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)
sin2 θ.
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Q3 Lubrication theory for a slider-bearing. Incompressible Newtonian fluid occupies the thin gap, of thickness
O(δL), between a flat plate z = 0 moving with constant velocity U in the x-direction and a stationary rigid surface
described by z = h(x), 0 < x < L. There is no gravitational field and the ends of the slider-bearing are held at the
ambient pressure patm. Assume that the flow is two-dimensional with velocity u = u(x, z)i + w(x, z)k and pressure
p(x, z), and governed by the incompressible Navier-Stokes equations with no body forces.

(a) By using the dimensionless variables
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U
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,

show that the Navier-Stokes equations become (dropping the stars ∗ on the dimensionless variables)
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with (u,w) = (1, 0) on z = 0 and (u,w) = (0, 0) on z = h(x) for 0 < x < 1, where Re = ρUL/µ.

(b) Deduce that if δ � 1 and δ2Re� 1, then the lubrication equations
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pertain at leading order. Hence deduce Reynolds equation for p(x) in the form

d
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)
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.

(c) In dimensionless variables a slider bearing has gap thickness h(x) = (1 − λx) for 0 < x < 1 and 0 < λ < 1.
Calculate the pressure p(x) within the bearing and show that the total load supported by the bearing per unit
length in y is given by ∫ 1

0

p(x) dx =
6

λ2

(
log

1
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− 2λ
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)
.

Q4 Injection problem in a Hele-Shaw cell. In a Hele-Shaw cell, a viscous fluid is injected with velocity U between
two rigid parallel plates which are of lateral extent L and a fixed distance δL apart. There is no gravitational field.

(a) Starting from the incompressible Navier-Stokes equations with no body forces and the z-axis normal to the plates,
show that, provided δ � 1 and δ2ρUL/µ � 1, the flow satisfies at leading order the dimensional lubrication
equations

0 = −∂p
∂x

+ µ
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with u = v = w = 0 on z = 0 and z = h.

(b) Hence show that, if ū, v̄ are the mean velocities in the x- and y-directions respectively, then

(ū, v̄) = − h2
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)
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∂
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Deduce that p(x, y) satisfies Laplace’s equation.

(c) A circular blob of fluid of radius R0 centred at the origin is at rest within the cell. At t = 0, a source of constant
strength Q is introduced at the origin so that in the subsequent flow the fluid is contained within a circle of
radius R(t). What are the boundary conditions on p and ū = (ū, v̄) on r = R(t)?

(d) Show that a possible solution gives

R(t) =

√
R2

0 +
Qt

πh

and determine the corresponding pressure. Do you expect this solution to be valid for both Q > 0 and Q < 0?
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Q5 Gravity-driven flow of a thin film. A thin two-dimensional sheet of viscous fluid lies on a plate which is at an
angle α to the horizontal. Initially the sheet is of width L and maximum height δL where δ � 1, and the fluid flows
over the plate under gravity. Choose Cartesian coordinates (x, z) tangential and normal to the plate respectively, with
x measured down the plate along the line of greatest slope. Denote by u = u(x, z, t)i +w(x, z, t)k the liquid velocity,
by p(x, z, t) the pressure and by z = h(x, t) the free surface at which the kinematic and zero stress conditions pertain.
The flow is governed by the incompressible Navier-Stokes equations with a body force due solely to the gravitational
acceleration F = g(i sinα− k cosα).

(a) By using the dimensionless variables
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x

L
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z

δL
, h∗ =
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δL
, u∗ =

u

U
, w∗ =

w

δU
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t

L/U
, p∗ =

p

µU/δ2L
,

where U is a representative velocity scale, show that the Navier-Stokes equations become (dropping the stars ∗

on the dimensionless variables)
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where the Reynolds number Re = ρUL/µ.

(b) Show that the stress tensor is given by

σ11 ∼ σ33 ∼ −
µU

δ2L
p, σ13 = σ31 ∼

µU

δL

∂u

∂z
as δ → 0

(c) If the plate angle α = O(1) as δ → 0, show that, in the thin-film regime in which δ � 1 and δ2Re � 1, an
appropriate velocity scale is U = δ2ρgL2 sinα/µ and at leading order the lubrication equations

0 = −∂p
∂x

+
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∂z2
+ 1, 0 = −∂p

∂z
,

∂u
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+
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pertain, with
u = w = 0 on z = 0,

and

p =
∂u

∂z
= 0, w =

∂h

∂t
+ u
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∂x
on z = h(x, t).

Hence show h(x, t) satisfies the equation
∂h

∂t
+ h2

∂h

∂x
= 0.

Verify that h = f
(
x − h2t

)
solves this equation, so that particular values of h propagate down the plate with

speed proportional to h2. Draw rough sketches of the evolution with time of the initial profile h(x, 0) = exp(−x2).

(d) If the plate is horizontal (i.e. α = 0), show that an appropriate velocity scale is U = δ3ρgL2/µ and that
lubrication theory leads in this case to the thin-film equation
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.
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