B5.3 Viscous Flow: Sheet 4

Q1 Slow flow past a circular cylinder. Consider the two-dimensional steady viscous flow of a uniform stream with
velocity Ui past a rigid circular cylinder of radius a whose centre is at the origin of the plane polar coordinate system

(r,0).

(a) By scaling (r, ¢, w) with (a, Ua, U/a) in the vorticity—streamfunction formulation in sheet 1, Q5(c)(iii), show

that the dimensionless problem is given by
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with (upon taking 1) to be equal to zero on the cylinder)
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where the Reynolds number Re = Ua/v.

(b) When the Reynolds number is small (i.e. Re < 1), show that the slow flow approximation leads to

Vi =0,

and by separating the variables as ¢ = f(r) sin f show that
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(c) Write down the boundary conditions which f must satisfy at » = 1 and show that if f satisfies these conditions
then 1 cannot approach the free stream at infinity. Explain, without detailed calculations, how this paradox is
resolved. Given that the resolution of the paradox leads to C' = 1/1In(1/Re), D = 0, use the remaining boundary

conditions to determine A and B.

Q2 Slow flow past a sphere. Incompressible Newtonian fluid flows with constant velocity Uk past a sphere of radius

a whose centre is at the origin of the spherical polar coordinate system (r, 6, ¢).

(a) Starting from the steady incompressible Navier-Stokes equations with no body forces, explain how the

dimensionless slow flow approximation
(curl)®u = 0, V-u=0

can be determined when the Reynolds number is small.

(b) An axisymmetric solution of (??) can be written as
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where e,, eg and ey are unit vectors in the r-, - and ¢-directions. Given that
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show that 1 satisfies
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(c) By separating the variables as ¢ = f(r)sin?6, show that
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Q3 Lubrication theory for a slider-bearing. Incompressible Newtonian fluid occupies the thin gap, of thickness
O(dL), between a flat plate z = 0 moving with constant velocity U in the z-direction and a stationary rigid surface
described by z = h(x), 0 < < L. There is no gravitational field and the ends of the slider-bearing are held at the
ambient pressure pgtn,. Assume that the flow is two-dimensional with velocity u = u(z, 2)i + w(z, 2)k and pressure
p(z, z), and governed by the incompressible Navier-Stokes equations with no body forces.

(a) By using the dimensionless variables
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show that the Navier-Stokes equations become (dropping the stars * on the dimensionless variables)
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with (u,w) = (1,0) on z =0 and (u,w) = (0,0) on z = h(z) for 0 < & < 1, where Re = pUL/p.
(b) Deduce that if § < 1 and §?Re < 1, then the lubrication equations
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pertain at leading order. Hence deduce Reynolds equation for p(z) in the form
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(c) In dimensionless variables a slider bearing has gap thickness h(z) = (1 — Az) for 0 <z < land 0 < A < 1.
Calculate the pressure p(x) within the bearing and show that the total load supported by the bearing per unit

length in y is given by
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Q4 Injection problem in a Hele-Shaw cell. In a Hele-Shaw cell, a viscous fluid is injected with velocity U between
two rigid parallel plates which are of lateral extent L and a fixed distance §L apart. There is no gravitational field.

(a) Starting from the incompressible Navier-Stokes equations with no body forces and the z-axis normal to the plates,
show that, provided § < 1 and 62pUL/u < 1, the flow satisfies at leading order the dimensional lubrication
equations
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withu=v=w=0o0nz=0and z = h.
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(b) Hence show that, if @, v are the mean velocities in the z- and y-directions respectively, then
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Deduce that p(x,y) satisfies Laplace’s equation.

(¢) A circular blob of fluid of radius Ry centred at the origin is at rest within the cell. At ¢ = 0, a source of constant
strength @ is introduced at the origin so that in the subsequent flow the fluid is contained within a circle of
radius R(t). What are the boundary conditions on p and @ = (@,?) on r = R(t)?
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and determine the corresponding pressure. Do you expect this solution to be valid for both ¢ > 0 and @ < 07

(d) Show that a possible solution gives



Q5 Gravity-driven flow of a thin film. A thin two-dimensional sheet of viscous fluid lies on a plate which is at an
angle a to the horizontal. Initially the sheet is of width L and maximum height L where § < 1, and the fluid flows
over the plate under gravity. Choose Cartesian coordinates (z, z) tangential and normal to the plate respectively, with
x measured down the plate along the line of greatest slope. Denote by u = u(x, z,t)i + w(z, 2, t)k the liquid velocity,
by p(z, z,t) the pressure and by z = h(z,t) the free surface at which the kinematic and zero stress conditions pertain.
The flow is governed by the incompressible Navier-Stokes equations with a body force due solely to the gravitational
acceleration F = g(isina — kcos ).

(a) By using the dimensionless variables
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where U is a representative velocity scale, show that the Navier-Stokes equations become (dropping the stars *

on the dimensionless variables)

ou  Ou ou dp Pu  0%u  §%pgLl? .
52 el - et - _r 527 -
Re(@t +u8x+w82> or o2 T2 T uU S,
ow ow Ow Op 0%w Pw  §3pgL?
R (L8 4o 120 = B pu 00 0
Re(@t +u8x+w8z> 9: "0 a2 T 92 wU con e
u o _
oxr 9z
where the Reynolds number Re = pUL/p.
(b) Show that the stress tensor is given by
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(c) If the plate angle @ = O(1) as § — 0, show that, in the thin-film regime in which § < 1 and §?Re < 1, an
appropriate velocity scale is U = §2pgL? sin a/p and at leading order the lubrication equations
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Hence show h(x,t) satisfies the equation
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Verify that h = f(x — h2t) solves this equation, so that particular values of h propagate down the plate with
speed proportional to h2. Draw rough sketches of the evolution with time of the initial profile h(x,0) = exp(—x?).

(d) If the plate is horizontal (i.e. & = 0), show that an appropriate velocity scale is U = §°pgL?/p and that
lubrication theory leads in this case to the thin-film equation
on_ o (1on
ot 0x\30x)"



