
B5.2 - Sheet 0 Applied Partial Differential Equations

Note: These problems are for practice and revision purposes. This sheet is not to be turned in.

1. Consider the wave equation
∂2u

∂x2
− ∂2u

∂y2
= 0

subject to u(x, 0) = u(x, a) = 0. Solve via separation of variables.

Solution: If we seek a solution of the form

u(x, y) = X(x)Y (y),

then the equation becomes

X ′′(x)Y (y)−X(x)Y ′′(y) = 0 → X ′′(x)

X(x)
=

Y ′′(y)

Y (y)
.

Since the LHS of this equation depends only on x and the RHS depends only on y, both sides
must be equal to a constant, λ say. Then the PDE transforms to the following pair of second
order ODEs:

X ′′ − λX = 0 = Y ′′ − λY.

What properties does the constant λ have? If λ = 0 then we have the trivial solution. If λ > 0
then the boundary conditions will give the trivial solution. So, we suppose that λ = −k2 < 0
and deal with the equation (which has homogeneous boundary conditions), i.e. solve

Y ′′ − λY = 0 = Y ′′ + k2Y subject to Y (0) = Y (a) = 0.

This gives the general solution Y (y) = A cos(ky)+B sin(ky). Now, boundary conditions are
Y (0) = Y (a) = 0 so then

A cos(k0) +B sin(k0) = 0

A cos(ka) +B sin(ka) = 0.

For non-trivial solutions we require that the determinant (AB cos k0 sin ka−AB sin k0 cos ka) =
0, which means sin ka = 0, so ka = nπ for n = 1, 2, . . . or k = nπ/a for n = 1, 2, . . . . To sat-
isfy the boundary conditions, we require A = 0 and we take B = 1, without loss of generality.
Hence we have an infinite set of solutions for Y (y), i.e.

{Yn(y) = sin
(πny

a

)

, for n = 1, 2, . . .},

each of which satisfies the boundary conditions. It remains to find a set Xn(x) so that
we can find an expression for the solution of the form un(x, y) = Xn(x)Yn(y). We solve
X ′′ − πn

a
X = 0 to give Xn(x) = Cn cos(

πnx

a
) +Dn sin(

πnx

a
). Now we can write the general

solution u(x, y) in the form of an infinite sum:

u(x, y) =

∞
∑

n=1

{

Cn cos
(πnx

a

)

+Dn sin
(πnx

a

)}

.

The arbitrary constants Cn and Dn may be found by Fourier analysis if u and ∂u

∂x
are given

on (say) x = 0.



2. Solve Laplace’s Equation, with boundary conditions as shown:

∂2u

∂x2
+

∂2u

∂y2
= 0 for x ∈ (0, π), y ∈ (0, π),

u(0, y) = 0, u(π, y) = 0,

u(x, 0) = 0, u(x, π) = sin3 x.

Solution: Separation of variables leads to the solution:

u(x, y) =
3

4
sin(x)

sinh(y)

sinh(π)
− 1

4
sin(3x)

sinh(3y)

sinh(3π)
.

3. Solve the Heat Equation, with boundary conditions as shown:

∂u

∂t
=

∂2u

∂x2
for x ∈ (0, π), t > 0,

u(x, 0) = sin3 x, u(0, t) = u(π, t) = 0 ∀ t > 0,

u → 0 as t → ∞.

Solution: Separation of variables leads to the solution:

u(x, t) =
3

4
sin(x)e−t − 1

4
sin(3x)e−9t.

4. Recall: the Fourier transform of u is defined by

û(t, k) =

∫

∞

−∞

u(x, t)e−ikx dx, (1)

and u may be recovered from û by using the inversion formula

u(x, t) =
1

2π

∫

∞

−∞

û(t, k)eikx dx. (2)

Consider the heat equation
∂u

∂t
=

∂2u

∂x2
, (3)

subject to u → 0 as x → ±∞ and u = u0(x) when t = 0. Solve by taking a Fourier transform
in x.

Solution: The heat equation is transformed to

∂û

∂t
= −k2û ⇒ û = û0e

−k
2
t, (4)

where û0 is the Fourier transform of u0. Then the convolution theorem gives

u(x, t) = u0(x) ∗ f(x, t) =
∫

∞

−∞

u0(ξ)f(x− ξ, t) dξ, (5)

where
f̂(t, k) = e−k

2
t. (6)

It is straightforward to invert this transform and thus find

f(x, t) =
1

2
√
πt

exp

(

−x2

4t

)

. (7)

(This is the Green’s function for the heat equation.)



5. Consider the boundary value problem

Ly(x) = f(x) on 0 < x < 1, y′(0) + y(0) = α, y(1) = β, (8)

with L is the differential operator given by

Ly ≡ y′′(x) + 4y(x), (9)

Derive a problem for the Green’s function g(x, ξ) in terms of the delta function δ(x) and
give the form of the solution in terms of g.

Solution: Multiply the equation Ly = f by g(x, ξ) on both sides and integrate over the
domain. The left hand side becomes, after integrating by parts twice (note that L is a self-
adjoint operator):

∫

1

0

Ly(x)g(x, ξ) dx = (y′g − yg′)
∣

∣

1

0
+

∫

1

0

y(x)Lg(x, ξ) dx.

If g satisfies
Lg(x, ξ) = δ(x− ξ),

then by property of the delta function,

∫

1

0

y(x)Lg(x, ξ) dx = y(ξ).

Further, we choose g to satisfy homogeneous boundary conditions:

gx(0, ξ) + g(0, ξ) = 0, g(1, ξ) = 0,

Combining the conditions on g and the non-homogeneous boundary conditions on y, we get
the solution

y(ξ) =

∫

1

0

g(x, ξ)f(x) dx+ αg(0, ξ) + βgx(1, ξ)


