B5.2 - Sheet 0 APPLIED PARTIAL DIFFERENTIAL EQUATIONS

Note: These problems are for practice and revision purposes. This sheet is not to be turned in.

1. Consider the wave equation
Pu  Pu
ox2  oy?
subject to u(z,0) = u(x,a) = 0. Solve via separation of variables.

Solution: If we seek a solution of the form
u(z,y) = X (2)Y(y),
then the equation becomes

" new X"(x) _Y"(y)

Since the LHS of this equation depends only on x and the RHS depends only on y, both sides
must be equal to a constant, \ say. Then the PDFE transforms to the following pair of second
order ODFEs:

X" XX =0=Y"-)Y.

What properties does the constant A have? If A = 0 then we have the trivial solution. If A > 0
then the boundary conditions will give the trivial solution. So, we suppose that A\ = —k? < 0
and deal with the equation (which has homogeneous boundary conditions), i.e. solve

Y =AY =0=Y" +k*Y subject to Y(0) =Y (a) = 0.

This gives the general solution Y (y) = Acos(ky) + Bsin(ky). Now, boundary conditions are
Y(0) =Y (a) =0 so then
Acos(k0) + Bsin(k0) =0

Acos(ka) 4+ Bsin(ka) = 0.

For non-trivial solutions we require that the determinant (AB cos k0 sin ka—AB sin k0 cos ka) =
0, which means sinka = 0, so ka =nw forn=1,2,... ork =nn/a forn=1,2,.... To sat-
isfy the boundary conditions, we require A = 0 and we take B = 1, without loss of generality.
Hence we have an infinite set of solutions for Y (y), i.e.

{Y,(y) = sin (%) , form=1,2,...},

each of which satisfies the boundary conditions. It remains to find a set X, (z) so that
we can find an expression for the solution of the form u,(x,y) = X, (2)Y,(y). We solve
X" — T X =0 to give X,,(x) = Cy, cos(™%) + Dy sin(™2%). Now we can write the general
solution u(x,y) in the form of an infinite sum:

u(z,y) = ,i {Cn cos (%) + D, sin (%)} .

The arbitrary constants Cp, and D,, may be found by Fourier analysis if u and g—;‘ are given
on (say) x = 0.



2. Solve Laplace’s Equation, with boundary conditions as shown:
u
ox? = Oy?

u(0,y) = 0,u(m,y) =0,

u(z,0) = 0, u(z, ) = sin® z.

=0 forz € (0,7), y € (0,7),

Solution: Separation of variables leads to the solution:

3 . sinh(y)

u(z,y) = 1 sin(z) sinh(3y)

sinh(r) 4 sin(3z) sinh(37) "

3. Solve the Heat Equation, with boundary conditions as shown:
ou  d*u
ot Ox2

u(z,0) =sin®z, u(0,t) = u(r,t) =0 YVt >0,

u—0 ast— oo.

for x € (0,7), t >0,

Solution: Separation of variables leads to the solution:

3 1
u(z,t) = 1 sin(z)e" — 1 sin(3x)e ",

4. Recall: the Fourier transform of u is defined by

alt, k) = / e da, (1)

— 00

and u may be recovered from @ by using the inversion formula

1 e ik
t)=— u(t, k)e'™ da. 2
wat) = g [l R do 2
Consider the heat equation
ou  0*u
= 3
ot 0x%’ (3)

subject tou — 0 as * — o0 and u = ug(x) when ¢ = 0. Solve by taking a Fourier transform
in z.

Solution: The heat equation is transformed to

ou N L
i —k*0 = 4=dpe *", (4)
where Ug is the Fourier transform of ug. Then the convolution theorem gives
u(z,t) = ug(z) * f(z,t) :/ up(§) f(z — &) dg, (5)
where . ,
flt k) =e"0. (6)
It is straightforward to invert this transform and thus find
1 x?
1) = ——= —— . 7
flant) = 5= (-5 ) g

(This is the Green’s function for the heat equation.)



5. Consider the boundary value problem

Ly(z) = f(z) on0<z<1l, ¥ (0)+y0)=a, y1)=4, (8)
with L is the differential operator given by
Ly =" (z) + 4y(x), 9)

Derive a problem for the Green’s function g(z,€) in terms of the delta function §(z) and
give the form of the solution in terms of g.

Solution: Multiply the equation Ly = f by g(x,£) on both sides and integrate over the
domain. The left hand side becomes, after integrating by parts twice (note that L is a self-
adjoint operator):

/ Ly(2)g(z€) de = (o'g —vg)|} + / y(2)Ly(z,€) d.
0 0

If g satisfies
then by property of the delta function,

1
| v@tote. do = y(c)
0
Further, we choose g to satisfy homogeneous boundary conditions:

92(0,€) +9(0,§) =0, g(1,¢) =0,

Combining the conditions on g and the non-homogeneous boundary conditions on y, we get
the solution

y(€) = / o, €) (@) dz + ag(0.€) + fgs(1,)



