1. Find a parametric solution for the PDE

$$
u_x + uu_y = 1,
$$

with $u = x/2$ on $y = x$, $0 \le x \le 1$, and state the domain of definition.

2. Find the solution of

$$
yu_x - 2xyu_y = 2xu
$$

such that $u = y^3$ when $x = 0$ and $1 \le y \le 2$. What is the domain of validity of the solution? Describe the behaviour of u as $y \to 0^+$ in this domain.

3. Find, in parametric form, the solution of

$$
(x-u)u_x + u_y + u = 0
$$

with $u = 1$ on $y = x$, $0 < x < 1/2$. Show that u is determined in the region

$$
-\sinh y < x < \frac{e^{1/2 - y}}{2}.
$$

4. Suppose the ODEs

$$
\frac{\mathrm{d}x}{a(x,y,u)} = \frac{\mathrm{d}y}{b(x,y,u)} = \frac{\mathrm{d}u}{c(x,y,u)}
$$

have two linearly independent solutions $f(x, y, u) = \text{const}$ and $g(x, y, u) = \text{const}$. Explain why f and g must satisfy the equations

$$
af_x + bf_y + cf_u = 0,
$$

$$
ag_x + bg_y + cg_u = 0.
$$

Show that, if $u(x, y)$ is determined implicitly by the relation

$$
f(x, y, u) = F(g(x, y, u)),
$$

where F is any (suitably smooth) function, then $u(x, y)$ satisfies the PDE

$$
a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} = c.
$$

[Hint: Differentiate with respect to x and y and then try to eliminate f_x , f_y , g_x , g_y .]

Hence show that the general solution of the PDE $yu_x + u^2u_y = u^2$ is given by

$$
u = y + F\left(x + \frac{y}{u} - \log u\right).
$$

5. Find the explicit solution of the PDE

$$
(1+u)\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = u
$$

subject to the boundary data

(i) $u(x, 1) = x$ for $0 \le x \le 1$;
 (ii) $u(x, 1) = -x$ for $0 \le x \le 1$.

In case (i) , state where the solution is uniquely determined and sketch this region in the (x, y) -plane.

In case (ii), show that all the characteristic projections pass through the point (x, y) = $(\log 2, 2)$, where the Jacobian $J = |\partial(x, y)/\partial(\tau, s)| = 0$. Hence find and sketch the region of the (x, y) -plane where u is uniquely determined. Explain what happens to the graph of $u(x, y)$ versus x as y increases from 1 to 2.

6. Solve the PDE

$$
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = 0
$$

for $t > 0$, subject to $u(x, 0) = f(x)$, in each of the following two cases:

$$
(i) \quad f(x) = \begin{cases} 0 & x < 0, \\ x & 0 \le x < 1, \\ 1 & 1 \le x, \end{cases} \quad (ii) \quad f(x) = \begin{cases} 0 & x < 0, \\ -x & 0 \le x < 1, \\ -1 & 1 \le x. \end{cases}
$$

In case (ii) , find a single-valued weak solution by introducing a shock. Sketch the resulting solution $u(x, t)$ versus x as t varies, and the characteristic projections in the (x, t) -plane.

7. Solve the Cauchy problem

$$
\frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} = 0
$$

 $x > 0,$
 $u = u_0(y)$
 $x = 0,$

where

$$
u_0(y) = \begin{cases} y(1-y) & 0 < y < 1, \\ 0 & y < 0, y > 1. \end{cases}
$$

Show that u becomes multi-valued on the curve $y = (1+x)^2/(4x)$, $x > 1$. Sketch the characteristic projections in the (x, y) -plane and indicate where a unique classical solution exists. Also sketch profiles of $u(x, y)$ versus y for different values of $x > 0$.

8. Suppose $u(x, t)$ satisfies

$$
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \epsilon \frac{\partial^2 u}{\partial x^2}, \qquad 0 < \epsilon \ll 1.
$$

Show that the change of variables to ξ and τ , where $t = \tau$, $x - Vt = \epsilon \xi$, gives

$$
(-V+u)\frac{\partial u}{\partial \xi} = \frac{\partial^2 u}{\partial \xi^2}
$$
 (1)

when small terms of order ϵ are neglected. Assuming that $u \to u_{\pm}$ as $\xi \to \pm \infty$ (where $u\pm$ are constants), deduce that

$$
V = \frac{1}{2} (u_- + u_+), \qquad u_+ \le u_-,
$$

Determine the form of and sketch the solution $u(\xi)$, and use this to interpret the nature and location of shocks in the system when $\epsilon = 0$.

Hint: to show $u_+ \leq u_-,$ first multiply (1) by u and integrate to obtain the relation

$$
\left[-\frac{Vu^2}{2} + \frac{u^3}{3}\right]_{-\infty}^{+\infty} + \int_{-\infty}^{\infty} \left(\frac{\partial u}{\partial \xi}\right)^2 d\xi = 0.
$$