B4.3 Specimen Paper 2019

1. (a) [9 marks] State the definitions of test function $\varphi \in \mathcal{D}(\mathbb{R}^n)$ and distribution $u \in \mathcal{D}'(\mathbb{R}^n)$. We now assume that $u \in \mathcal{D}'(\mathbb{R})$. Explain how one should define its distributional derivative u' and show that it reduces to the usual concept for C^1 functions.

Using that there exists a nonnegative test function $\theta \in \mathcal{D}(\mathbb{R})$ with support in [-1,1] and integral $\int_{\mathbb{R}} \theta dx = 1$ show that if $u \in \mathcal{D}'(\mathbb{R})$ and u' = 0, then u = c for some constant $c \in \mathbb{R}$.

Let $a: \mathbb{R} \to \mathbb{R}$ be a \mathbb{C}^{∞} function and $u \in \mathcal{D}'(\mathbb{R})$ a distribution. Define the product au and state and prove the *Leibniz formula*.

(b) [4 marks] For $f, g \in C^1(\mathbb{R})$ we define

$$u(x) = \begin{cases} f(x) & \text{if } x < 1\\ g(x) & \text{if } x \ge 1 \end{cases}$$

Explain why $u \in \mathcal{D}'(\mathbb{R})$ and calculate its distributional derivative u'.

(c) [12 marks] (i) Solve the equation

$$u' + 2xu = \delta_0$$

for $u \in \mathcal{D}'(\mathbb{R})$, where δ_0 is Dirac's delta function at 0.

(ii) Let $f \in \mathcal{D}(\mathbb{R})$. Solve the equation

$$v' + 2xv = f$$

for $v \in \mathcal{D}'(\mathbb{R})$.

(iii) What is the general solution to

w' - 2xw = 0

in the space of tempered distributions $w \in \mathcal{S}'(\mathbb{R})$?

2. (a) [9 marks] For each r > 0 we define the r-dilation of a test function $\varphi \in \mathcal{D}(\mathbb{R}^n)$ by the rule

$$(d_r\varphi)(x) = \varphi(rx), \quad x \in \mathbb{R}^n.$$

- (i) Extend the *r*-dilation to distributions $u \in \mathcal{D}'(\mathbb{R}^n)$.
- (ii) Let $\alpha \in (-n, \infty)$ and $u_{\alpha}(x) = |x|^{\alpha}$ for $x \in \mathbb{R}^n \setminus \{0\}$. Show that $u_{\alpha} \in L^1_{loc}(\mathbb{R}^n)$ and conclude that $u_{\alpha} \in \mathcal{D}'(\mathbb{R}^n)$. Prove that $d_r u_{\alpha} = r^{\alpha} u_{\alpha}$ for all r > 0. We express this by saying that u_{α} is homogeneous of degree α .
- (iii) Show that the Dirac delta function δ_0 concentrated at the origin $0 \in \mathbb{R}^n$ is homogeneous of degree -n.
- (b) [8 marks] Define for each $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\left\langle \operatorname{pv}\left(\frac{1}{x}\right),\varphi\right\rangle = \lim_{a\to 0^+} \left(\int_{-\infty}^{-a} + \int_{a}^{\infty}\right) \frac{\varphi(x)}{x} \,\mathrm{d}x.$$

Show that hereby $\operatorname{pv}\left(\frac{1}{x}\right) \in \mathcal{D}'(\mathbb{R})$ and that it is homogeneous of order -1 (as defined in (a)). Check that

$$\frac{\mathrm{d}}{\mathrm{d}x}\log|x| = \mathrm{pv}\big(\frac{1}{x}\big).$$

(c) [8 marks] Show that $u = pv(\frac{1}{x})$ solves the equation

$$xu = 1 \tag{1}$$

in the sense of $\mathcal{D}'(\mathbb{R})$. What is the general solution $u \in \mathcal{D}'(\mathbb{R})$ to (1)?

Turn Over

3. (a) [12 marks] (i) What does it mean to say that φ is a *Schwartz test function on* \mathbb{R} and that a sequence (φ_j) converges to φ in $\mathcal{S}(\mathbb{R})$? State your definitions in terms of the norms

$$\overline{S}_{k,l}(\varphi) := \sup \left\{ |x^r \varphi^{(s)}(x)| : r \in \{0, 1, \dots, k\}, s \in \{0, 1, \dots, l\}, x \in \mathbb{R} \right\}$$

where $k, l \in \mathbb{N}_0$. What does it mean to say that u is a tempered distribution on \mathbb{R} ? Define the Fourier transform $\mathcal{F}(f) = \hat{f}$ of $f \in L^1(\mathbb{R})$.

Show that $\mathcal{S}(\mathbb{R}) \subset L^1(\mathbb{R})$ and state the Fourier Inversion Formula on $\mathcal{S}(\mathbb{R})$. State the boundedness property of the Fourier transform $\varphi \mapsto \hat{\varphi}$ on the space $\mathcal{S}(\mathbb{R})$ of Schwartz test functions on \mathbb{R} in terms of the family of norms $\overline{S}_{k,l}, k, l \in \mathbb{N}_0$.

(ii) Define the Fourier transform of a tempered distribution on ℝ, and deduce the Fourier Inversion Formula on S'(ℝ) from its version on S(ℝ).
Let u_k and u be tempered distributions on ℝ. What does it mean to say that ∑_{k=1}[∞] u_k = u in S'(ℝ)?

Show, for instance by use of the boundedness property of the Fourier transform on $\mathcal{S}(\mathbb{R})$, that there exist constants $c > 0, m, n \in \mathbb{N}_0$ so that

$$\left|\hat{\varphi}(k)\right| \leqslant c\overline{S}_{m,n}(\varphi)\frac{1}{k^2}$$

holds for all $\varphi \in \mathcal{S}(\mathbb{R})$ and $k \in \mathbb{Z} \setminus \{0\}$. Show that the series

$$\sum_{k=1}^{\infty} e^{ikx} \quad \text{and} \quad \sum_{k=1}^{\infty} \delta_k \tag{2}$$

both converge in $\mathcal{S}'(\mathbb{R})$. Here δ_k is Dirac's delta-function concentrated at k.

(iii) For $\varepsilon > 0$ define the tempered distribution T_{ε} by the rule

$$\langle T_{\varepsilon}, \varphi \rangle = \int_{-\infty}^{\infty} \left(\frac{1}{x+\varepsilon i} - \frac{1}{x-\varepsilon i}\right) \varphi(x) \, \mathrm{d}x, \quad \varphi \in \mathcal{S}(\mathbb{R})$$

Show, for instance by first considering $\text{Log}(x + \varepsilon i) - \text{Log}(x - \varepsilon i)$, where Log denotes the principal logarithm, that $T_{\varepsilon} \to -2\pi i \delta_0$ in S'(\mathbb{R}) as $\varepsilon \to 0^+$. [Results about differentiation of distributions and limit theorems from Integration Theory may be used without careful justification.]

(b) [6 marks] Find the Fourier transform of δ_k . What is the relation between the sums of the two series in (2) above? Show that

$$\frac{1}{\mathrm{e}^{\varepsilon-\mathrm{i}x}-1}\to\sum_{k=1}^{\infty}\mathrm{e}^{\mathrm{i}kx}\quad\text{ and }\quad\frac{1}{1-\mathrm{e}^{-\varepsilon-\mathrm{i}x}}\to\sum_{k=0}^{\infty}\mathrm{e}^{-\mathrm{i}kx}\quad\text{ in }\quad\mathcal{S}'(\mathbb{R})$$

as $\varepsilon \to 0^+$.

(c) [7 marks] We now consider the sum

$$\sum_{k \in \mathbb{Z}} e^{ikx} := \sum_{k=1}^{\infty} e^{ikx} + \sum_{k=0}^{\infty} e^{-ikx}$$

in the sense of tempered distributions on \mathbb{R} . For a test function $\varphi \in \mathcal{D}(\mathbb{R})$ supported in the interval $(-2\pi, 2\pi)$ show that

$$\left\langle \frac{1}{1 - e^{-\varepsilon - ix}} - \frac{1}{1 - e^{\varepsilon - ix}}, \varphi \right\rangle \to 2\pi\varphi(0)$$

Page 2 of 3

as $\varepsilon \to 0^+$. [Note that $\frac{1}{1-e^z} = -\frac{1}{z} + h(z)$ for all $0 < |z| < 2\pi$, where h(z) is a holomorphic function in $|z| < 2\pi$.]

Deduce that

$$\sum_{k \in \mathbb{Z}} e^{ikx} = 2\pi \sum_{k \in \mathbb{Z}} \delta_{2\pi k} \quad \text{in} \quad \mathcal{S}'(\mathbb{R}).$$

[You may use localization results for distributions without careful justification.]