Distribution Theory and Fourier Analysis: An Introduction MT18

Problem Sheet 1

Problem 1. Define $\phi: \mathbb{R} \to \mathbb{R}$ by

$$
\phi(x) = \begin{cases} e^{-\frac{1}{x}} & \text{if } x > 0\\ 0 & \text{if } x \le 0. \end{cases}
$$

Show that ϕ is C^{∞} , and deduce that

$$
\psi(x) = \phi(2(1-x))\phi(2(1+x))
$$

belongs to $\mathscr{D}(\mathbb{R})$. Does the restriction to $(-1, 1)$, $\psi|_{(-1,1)}$, belong to $\mathscr{D}(-1, 1)$?

Calculate the Taylor series for ϕ about 0 (note: not for ψ). Does the series converge, and if so, then what is its sum?

Problem 2. In this question all functions and distributions are real-valued.

(a) Let K be a compact proper subset of the open interval (a, b) . Show carefully that there exists $\rho \in \mathscr{D}(a, b)$ such that $0 \le \rho \le 1$ and $\rho = 1$ on K.

(b) Give an example of $\varphi, \psi \in \mathscr{D}(\mathbb{R})$ such that $\max(\varphi, \psi)$, $\min(\varphi, \psi)$ are *not* smooth compactly supported test functions. Here we define $\max(\varphi, \psi)(x) = \max{\varphi(x), \psi(x)}$ for each x and similarly for $\min(\varphi, \psi)$.

Next, let $u \in \mathscr{D}(a, b)$. Show that there exist $u_1, u_2 \in \mathscr{D}(a, b)$ with $u_1 \geq 0, u_2 \geq 0$ and $u = u_1 - u_2.$

(c) Generalize the last statement to n dimensions as follows. Let Ω be a nonempty open subset of \mathbb{R}^n and $u \in \mathscr{D}(\Omega)$. Show that there exist $u_1, u_2 \in \mathscr{D}(\Omega)$ with $u_1 \geq 0$ and $u_2 \geq 0$ such that $u = u_1 - u_2.$

(*Hint: You may for instance note that* $4u = (u + 1)^2 - (u - 1)^2$ *and if* v *is a cut-off function between the support of* u *and the boundary of* Ω *, then* $vu = u$ *.*)

Problem 3. Let Ω be a nonempty and open subset of \mathbb{R}^n , $1 \leq p < \infty$ and $f \in L^p(\Omega)$. Show that for each $\varepsilon > 0$ there exists $g \in \mathscr{D}(\Omega)$ such that $||f - g||_p < \varepsilon$.

(*Hint: One approach is to do it in two steps. First choose an appropriate open subset* $O \subset \Omega$ so that $h = f1_O$ is a good L^p approximation of f. Then use a result from lectures.)

Problem 4. In each of the following 3 cases decide whether or not u_j is a distribution:

$$
\langle u_1, \varphi \rangle = \sum_{j=1}^{\infty} 2^{-j} \varphi^{(j)}(0), \quad \langle u_2, \varphi \rangle = \sum_{j=1}^{\infty} 2^j \varphi^{(j)}(j), \quad \langle u_3, \varphi \rangle = \varphi(0)^2,
$$

where $\varphi \in \mathscr{D}(\mathbb{R})$ is so that the expression makes sense.

Problem 5. Let $a > 0$. For each $\varphi \in \mathscr{D}(\mathbb{R})$ we let

$$
\langle T_a, \varphi \rangle = \left(\int_{-\infty}^{-a} + \int_a^{\infty} \right) \frac{\varphi(x)}{|x|} dx + \int_{-a}^{a} \frac{\varphi(x) - \varphi(0)}{|x|} dx.
$$

Show that T_a hereby is well-defined and that it is a distribution on \mathbb{R} .

Now assume that $\varphi \in \mathscr{D}(\mathbb{R})$ satisfies $\varphi(0) = 0$. Show that then

$$
\langle T_a, \varphi \rangle = \int_{-\infty}^{\infty} \frac{\varphi(x)}{|x|} dx.
$$

What distribution is $T_a - T_b$ for $0 < b < a$?

Problem 6. Let Ω be a nonempty and open subset of \mathbb{R}^n . Show that if $u, v \in \mathcal{D}'(\Omega)$ and $\langle u, \varphi \rangle = 0$ for all $\varphi \in \mathscr{D}(\Omega)$ for which $\langle v, \varphi \rangle = 0$, then $u = cv$ for some constant $c \in \mathbb{R}$.

Problem 7. (Optional) Denote $x_+ = \max\{0, x\}$ for $x \in \mathbb{R}$ and fix $m \in \mathbb{N}_0$. Show that if

$$
E(x) = \frac{x_+^m}{m!}
$$

where for $m = 0$ we interpret this as the Heaviside function, then

$$
\frac{\mathrm{d}^{m+1}}{\mathrm{d}x^{m+1}}E=\delta_0 \quad \text{ in }\mathscr{D}'(\mathbb{R}).
$$

Problem 8. (Optional and harder)

(i) Construct $g \in \mathscr{D}(\mathbb{R})$ supported in [-1, 1] such that $g(0) = 1$ and $g^{(j)}(0) = 0$ for all $j \in \mathbb{N}$. (*Hint: First find* $\varphi \in \mathscr{D}(\mathbb{R})$ supported in $[0,1]$ with $\int_{\mathbb{R}} \varphi = 1$. Then consider the solution to $y'(x) = \varphi(-x) - \varphi(x)$ with support in $[-1, 1]$.)

(ii) Let $(a_n)_{n=0}^{\infty}$ be an arbitrary sequence of real numbers. Define for $n \in \mathbb{N}_0$ and positive numbers $\varepsilon_n > 0$ the functions

$$
g_n(x) = g\left(\frac{x}{\varepsilon_n}\right) \frac{a_n x^n}{n!}, \quad x \in \mathbb{R}.
$$

Check that g_n is C^{∞} with support contained in $[-\varepsilon_n, \varepsilon_n]$ and $g_n^{(k)}(0) = a_n \delta_{n,k}$, where $\delta_{n,k}$ is the Kronecker delta.

Show that for each $n \in \mathbb{N}_0$ it is possible to choose $\varepsilon_n > 0$ so small that

$$
|g_n^{(k)}(x)| \le 2^{-n} \tag{1}
$$

holds for all $x \in \mathbb{R}$ and each $0 \leq k \leq n$. (iii) We now fix each ε_n so that (1) holds. With these choices we define

$$
f(x) = \sum_{n=0}^{\infty} g_n(x), \quad x \in \mathbb{R}.
$$

Check that $f \in \mathscr{D}(\mathbb{R})$ with support contained in $[-1, 1]$ and that $f^{(n)}(0) = a_n$ for all $n \in \mathbb{N}_0$. (*This result is due to E. Borel.*)

Problem 9. (Optional and harder)

This problem gives an alternative construction of a smooth compactly supported test function. We start with a rough convolution kernel $h = \mathbf{1}_{(0,1)}$ and put as usual for each $r > 0$,

$$
h_r(x) = \frac{1}{r}h\left(\frac{x}{r}\right) = \frac{1}{r}\mathbf{1}_{(0,r)}(x), \quad x \in \mathbb{R}.
$$

(i) Let $0 < r \le s$. Show that $h_r * h_s$ is continuous, $\text{spt}(h_r * h_s) = [0, r + s]$ and $0 \le h_r * h_s \le \frac{1}{s}$ $\frac{1}{s}$. (ii) Let $k \in \mathbb{N}_0$ and assume $u \in C_c^k(\mathbb{R})$ with $\text{spt}(u) \subseteq [a, b]$. Prove that $h_r * u \in C_c^{k+1}(\mathbb{R})$ with $spt(h_r * u) \subseteq [a, b + r]$ and

$$
(h_r * u)^{(k+1)}(x) = \frac{u^{(k)}(x) - u^{(k)}(x-r)}{r}.
$$

(iii) Let $(r_j)_{j=0}^{\infty}$ be a decreasing sequence of positive numbers and put

$$
R_n = \sum_{j=0}^n r_j.
$$

Define $u_n = h_{r_0} * h_{r_1} * \cdots * h_{r_n}$ for each $n \in \mathbb{N}$.

Show that $u_n \in C_c^{n-1}(\mathbb{R})$ with $\text{spt}(u_n) \subseteq [0, R_n]$ and

$$
|u_n^{(k)}(x)| \le \frac{2^k}{r_0 r_1 \cdots r_k}
$$

for all $x \in \mathbb{R}$ and $0 \leq k < n$. (*Hint: Proceed by induction on* n *and write* $u_n = h_{r_0} * v_n$ *for some suitable* v_n *)*

(iv) Assume that

$$
R = \sum_{j=0}^{\infty} r_j < \infty.
$$

Show that (u_n) is a uniform Cauchy sequence. By suitable iteration of this, deduce that the limit function

$$
u(x) = \lim_{n \to \infty} u_n(x), \quad x \in \mathbb{R},
$$

belongs to $\mathscr{D}(\mathbb{R})$ with $\text{spt}(u) \subseteq [0, R]$ and

$$
|u^{(k)}(x)| \le \frac{2^k}{r_0 r_1 \cdots r_k}
$$

for all $x \in \mathbb{R}$ and $k \in \mathbb{N}_0$. In particular, $u \in \mathscr{D}(\mathbb{R})$, $0 \le u \le \frac{1}{rc}$ $\frac{1}{r_0}$ and $\int_{\mathbb{R}} u = 1$.