Distribution Theory and Fourier Analysis: An Introduction MT18

Problem Sheet 2

Problem 1. Let $g \in L^1_{loc}(\mathbb{R})$ and T > 0. Then we say that g is T periodic iff g(x + T) = g(x) holds for almost all $x \in \mathbb{R}$. Fix an open interval (a, b) in \mathbb{R} , where we allow $a = -\infty$ and $b = \infty$ but require a < b. Assuming that g is T periodic we define for each $j \in \mathbb{N}$ the function

$$g_j(x) = g(jx), \quad x \in (a, b).$$

Prove that

$$g_j \to \frac{1}{T} \int_0^T g \, \mathrm{d}x \, \mathbf{1}_{(a,b)} \quad \text{in} \quad \mathscr{D}'(a,b) \quad \text{as} \quad j \to \infty,$$

where $\mathbf{1}_{(a,b)}$ is the indicator function for (a, b).

(*Hint:* Assume first that on the interval (0,T] the function g is an indicator function $\mathbf{1}_{(c,d]}$ where $0 \le c < d \le T$. Then use (no need to prove it) that step functions are dense in $L^1(0,T]$ to conclude.)

Problem 2. Let $f, g \in C^1(\mathbb{R})$ and define

$$u(x) = \begin{cases} f(x) & \text{if } x < 0\\ g(x) & \text{if } x \ge 0. \end{cases}$$

Explain why $u \in \mathscr{D}'(\mathbb{R})$ and calculate the distributional derivative u'.

Problem 3. (a) Let $\alpha \in (-n, \infty)$ and $u_{\alpha}(x) = |x|^{\alpha}$ for $x \in \mathbb{R}^n \setminus \{0\}$. Show that $u_{\alpha} \in L^1_{loc}(\mathbb{R}^n)$. (*Hint: Use polar coordinates.*)

(b) For each r > 0 we define the r-dilation of a test function $\varphi \in \mathscr{D}(\mathbb{R}^n)$ by the rule

$$(d_r\varphi)(x) = \varphi(rx), \quad x \in \mathbb{R}^n.$$

Extend the *r*-dilation to distributions $u \in \mathscr{D}'(\mathbb{R}^n)$.

(c) Show that for the distribution u_{α} defined in (a) we have $d_r u_{\alpha} = r^{\alpha} u_{\alpha}$ for all r > 0. We express this by saying that u_{α} is homogeneous of degree α .

(d) Show that the Dirac delta function δ_0 concentrated at the origin $0 \in \mathbb{R}^n$ is homogeneous of degree -n.

(e) Let $u \in \mathscr{D}'(\mathbb{R}^n)$ be homogeneous of degree $\beta \in \mathbb{R}$: $d_r u = r^{\beta} u$ for all r > 0. Show that for each $j \in \{1, \ldots, n\}$ the distribution $x_j u$ is homogeneous of degree $\beta + 1$ and that the distribution $D_j u$ is homogeneous of degree $\beta - 1$. Finally show that

$$\sum_{j=1}^{n} x_j D_j u = \beta u.$$

Problem 4. (a) Prove that if $f : \mathbb{R} \to \mathbb{R}$ is piecewise continuous and $k \in \mathbb{R}$, then the function $u(x,t) = f(x - kt), (x,t) \in \mathbb{R}^2$, is locally integrable on \mathbb{R}^2 . Conclude that it defines a distribution and that it satisfies the one-dimensional wave equation:

$$\frac{\partial^2 u}{\partial t^2} = k^2 \frac{\partial^2 u}{\partial x^2}$$

in the sense of distributions on \mathbb{R}^2 .

(b) Prove that $u(x, y) = \log(x^2 + y^2)$ is locally integrable on \mathbb{R}^2 , and that we have

$$\Delta u = 4\pi \delta_0$$

in the sense of distributions on \mathbb{R}^2 , where δ_0 is the Dirac delta function on \mathbb{R}^2 concentrated at the origin.

Problem 5. Show that $u = \delta_0$, the Dirac delta function concentrated at $0 \in \mathbb{R}$, satisfies the equation

$$xu = 0. (1)$$

Find the general solution $u \in \mathscr{D}'(\mathbb{R})$ to (1). (*Hint: Show first that if* $\eta \in \mathscr{D}(\mathbb{R})$ and $\eta(0) = 1$, then for any $\varphi \in \mathscr{D}(\mathbb{R})$ we can find $\psi \in \mathscr{D}(\mathbb{R})$ and $c \in \mathbb{R}$ such that $\varphi = x\psi + c\eta$. Then proceed as in a proof from lectures.)

Problem 6. Let $\theta \in \mathscr{D}(\mathbb{R})$.

(i) Explain how the convolution θ * u is defined for a general distribution u ∈ D'(ℝ).
(ii) Prove that θ * u ∈ C[∞](ℝ) when u ∈ D'(ℝ).

(iii) Let $(\rho_{\varepsilon})_{\varepsilon>0}$ be the standard mollifier on \mathbb{R} . Show that for a general distribution $u \in \mathscr{D}'(\mathbb{R})$ we have that

$$\rho_{\varepsilon} * u \to u \text{ in } \mathscr{D}'(\mathbb{R}) \text{ as } \varepsilon \to 0^+.$$

(iv) Show that for each $u \in \mathscr{D}'(\mathbb{R})$ we can find a sequence (u_j) in $\mathscr{D}(\mathbb{R})$ such that

$$u_j \to u$$
 in $\mathscr{D}'(\mathbb{R})$ as $j \to \infty$.

Problem 7. (Optional) Define for each $\varphi \in \mathscr{D}(\mathbb{R})$,

$$\langle \operatorname{pv}(\frac{1}{x}), \varphi \rangle = \lim_{a \to 0^+} \left(\int_{-\infty}^{-a} + \int_{a}^{\infty} \right) \frac{\varphi(x)}{x} \, \mathrm{d}x.$$

(a) Show that hereby $pv(\frac{1}{x}) \in \mathscr{D}'(\mathbb{R})$ and that it is homogeneous of order -1 (see Problem 3). Check that

$$\frac{\mathrm{d}}{\mathrm{d}x}\log|x| = \mathrm{pv}\big(\frac{1}{x}\big)$$

(b) Show that $u = pv(\frac{1}{x})$ solves the equation

$$xu = 1 \tag{2}$$

in the sense of $\mathscr{D}'(\mathbb{R})$. What is the general solution $u \in \mathscr{D}'(\mathbb{R})$ to (2)?